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Abstract: Cancer is a highly lethal disease that is mainly treated by image-guided radiotherapy.
Because the low dose of cone beam CT is less harmful to patients, cone beam CT images are often
used for target delineation in image-guided radiotherapy of various cancers, especially in breast
and lung cancer. However, breathing and heartbeat can cause position errors in images taken
during different periods, and the low dose of cone beam CT also results in insufficient imaging clarity,
rendering existing registration methods unable to meet the CT and cone beam CT registration tasks. In
this paper, we propose a novel multi-intensity optimization-based CT and cone beam CT registration
method. First, we use a multi-weighted mean curvature filtering algorithm to preserve the multi-
intensity details of the input image pairs. Then, the strong edge retention results are registered using
and intensity-based method to obtain the multi-intensity registration results. Next, a novel evaluation
method called intersection mutual information is proposed to evaluate the registration accuracy
of the different multi-intensity registration results. Finally, we determine the optimal registration
transformation by intersection mutual information and apply it to the input image pairs to obtain
the final registration results. The experimental results demonstrate the excellent performance of the
proposed method, meeting the requirements of image-guided radiotherapy.

Keywords: CT; cone beam CT; registration; image-guided radiotherapy

1. Introduction

Cancer, with remarkable incidence and mortality, is one of the most concerning dis-
eases worldwide, especially for a country like China, where the population base is undoubt-
edly huge. According to the latest statistics published by the National Cancer Center (NCC)
of China [1], more than four million new cancer cases and nearly two million new cancer
deaths happened in China in 2016. For this reason, radiotherapy, together with surgery and
chemotherapy as major or complementary approaches, plays an important role as one of
the three major strategies of cancer management [2–4].

Radiotherapy kills cancer cells by feeding high-energy dose rays to the target area.
During image-guided radiotherapy (IGRT), images taken at different periods (before and
after radiotherapy) need to be registered for target delineation and postoperative curative
effectiveness analysis [5]. IGRT represents a great breakthrough in modern radiation
oncology, in which linear accelerators are equipped with imaging devices, thus providing
verification images prior to and during treatment [6–9]. The extensively adopted IGRT
methods can be classified into two categories: 1000 V CT imaging using a cone X-ray
beam (KVCT/CBCT) and an electronic portal image device (EPID) using a MV X-ray
beam. Typically, considering the difference in beam energy, CBCT is widely applied in
the clinical IGRT routine [10–13]. The development of IGRT has promoted the research
and application of related new technologies for cancer treatment [14–16]. For CBCT-based
guided radiotherapy, it is meaningful that, with the help of imaging registration techniques,
the shift data generated according to the comparison of on-site images can correct the
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treatment table per fraction, subsequently resulting in more precise patient positioning.
Specifically, in the process of IGRT, CT images (with a high imaging dose more harmful to
patients) are first captured, and the cancerous areas are analyzed using the clear CT images
before developing the radiotherapy plan. Then, CBCT images (with a low imaging dose
less harmful to patients) serve as a guide to the location of the patient’s cancerous areas
during the radiotherapy sessions. However, the current methods mainly rely on manual
matching; although many registration methods have since been proposed, most of them
cannot meet the requirements of CT and cone beam CT (CBCT) image registration tasks.
Some typical imaging styles of CT and CBCT in IGRT are shown in Figure 1.
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Figure 1. Typical imaging styles of CBCT and CT in IGRT (chest site).

As can be seen from Figure 1, unlike most existing image registration tasks, the CT and
CBCT image registration task faces the following difficulties: (i) poor imaging quality. As
shown in Pair 1 of Figure 1, CBCT images generally have poor imaging quality (low-dose
imaging), and most existing intensity-based registration methods cannot find sufficient
feature regions; (ii) imaging deformation. As shown in Pair 2, the length of the yellow
lines is consistent, meaning that the CBCT image is deformed compared with the CT image,
indicating that the rigidity-based registration method is not suitable to solve the CT–CBCT
registration task; (iii) incomplete imaging. As shown in Pair 3 and Pair 4, the imaging
region of the CBCT is incomplete compared with the corresponding CT image, and most
visual features and similarity-based registration methods cannot be applied to the CT–
CBCT image registration task; (iv) inconsistent visual features. As shown in Pair 4, the
poor quality of the CBCT image can cause some messy feature points that are not strictly
consistent with the CT image. It should be noted that these four issues can occur randomly
or even simultaneously during CBCT imaging, which poses a great challenge to the existing
registration methods.

To address the above problems, we propose a novel multi-intensity optimization-based
CT–CBCT registration method for image-guided radiotherapy. First, we propose a novel
multi-weighted mean curvature filtering algorithm (MWMC) algorithm to process the input
image pairs to obtain a series of multi-intensity image pairs of CT and CBCT. Then, the
multi-intensity image pairs are registered using an intensity-based method. Next, we pro-
pose a novel evaluation index called intersection mutual information (IMI) to determine the
optimal registration transformation for different intensity image pairs. The final registration
result can be produced by applying the optimal registration transformation to the source
input image pairs. The experimental results demonstrate the excellent performance of the
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proposed method in CT–CBCT image registration tasks, with the registration accuracy and
time cost meeting the requirements of IGRT.

The remainder of this paper is organized as follows: Section 2 introduces the proposed
multi-intensity optimization-based CT–CBCT registration method; Section 3 provides the
experimental results and their analysis; Section 4 draws the conclusion of our work and
discusses prospects for future applications.

2. Materials and Methods

In this section, the proposed CT and CBCT registration method is introduced in detail.
As shown in Figure 2, the proposed method has two main stages. First, the input CT–CBCT
pairs are processed using the proposed multi-weighted mean curvature filtering algorithm
(MWMC) to produce the multi-intensity edge preserving results. Then, the multi-intensity
image pairs are registered using the intensity-based method. In addition, we propose
a novel evaluation metric for incomplete image registration to measure the registration
performance, called intersection mutual information (IMI). Using IMI, we can obtain the
optimal registration transformation with different intensity image pairs, before finally
applying this transformation to register the source input pairs.
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Figure 2. Flowchart of the proposed method.

2.1. Details of the Proposed Model

The proposed model in this paper mainly contains four steps: multi-weighted mean
curvature filter, intensity-based registration, multi-intensity-based registration, and inter-
section mutual information-based optimal transformation selection. Below, these four steps
are introduced in detail.

2.1.1. Multi-Weighted Mean Curvature Filter

Weighted mean curvature (WMC) [17] originates from mean curvature (MC) [18,19].
MC has been widely used in the field of image processing, and the MC of an image U is
defined as

H(U) =
1
n
∇ · ∇U
‖∇U‖2

, (1)

where ∇ and ∇· are the gradient and divergence operators, respectively. For 2D images,
n = 2, MC can be rewritten as

H =
U2

xUyy − 2UxUyUxy + U2
yUxx

2(U2
x + U2

y)
3
2

. (2)

MC is independent of image contrast, which is suitable for medical images. WMC is
defined as

Hw(U) = n‖∇U‖2H(U). (3)

For 2D images, Equation (3) can be rewritten as
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Hw(U) = ‖∇U‖2(∇ ·
∇U
‖∇U‖2

) = ∆U −
U2

yUyy + 2UxUyUxy + U2
xUxx

U2
x + U2

y
, (4)

where ∆ denotes the isotropic Laplace operator. The WMC regularization term is defined as

RHw(U) =
∫
|Hw(U)|

q
d
→
x , (5)

where q is the scalar parameter defining the norm, q > 0.
→
x ∈ Rn is the spatial coordinate,

and n is the dimension of the input image (n = 2 in this paper).
The proposed multi-weighted mean curvature (MWMC) is defined as

MWMC(I)m =

{
I, m = 0

MWMC(I)m−1 + δHw(MWMC(I)m−1, m ≥ 1
, (6)

where m is the number of filtered image pairs obtained by MWMC, and δ is the size of the
discrete timestep. Figure 3 shows a set of multi-intensity edge preserving results using
MWMC with different m.
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Figure 3. Multi-intensity edge preserving results using MWMC with different m. The first and
third lines display the CBCT and CT images, whereas the second and fourth lines display the
pseudo-color maps.

It can be seen from Figure 3 that edge preserving results with different intensity can be
obtained using MWMC with different m. Figure 4 gives the results of color images using
MWMC, where it can be clearly observed that MWMC can effectively retain the strong
edge information of different intensities. The main motivation of the proposed method
based on MWMC is that, by filtering out the chaotic textures and noisy points in CBCT
and CT images, the registration accuracy can be improved. When m is large enough, only
the significant information is retained in the input image, which helps us to improve the
registration accuracy and efficiency.
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2.1.2. Intensity-Based Registration

The registration problem can be defined as follows: find a suitable transformation
such that a transformed version of a moving image is similar to a fixed image [20–22];
that is, given images s(m, n) and t(m, n), find the spatial transformation f such that
s( fx(m, n), fy(m, n)), and t(m, n) are similar or consistent by optimizing

min
f∈c

ψ(s( f ), t, f ), (7)

where ψ(·, ·, ·) denotes the difference measure. The spatial transformation can be ex-
pressed as

s( fx(m, n), fy(m, n)) = ∑
p∈Z

∑
q∈Z

c[p, q]ϕ( fx(m, n)− p)ϕ( fy(m, n)− q), (8)

where c is the coefficient, and ϕ(x) is the image representation function. For our registration
tasks, CT and CBCTs are 2D images; hence, the optimization function using the least squares
method can be defined as

ψ(s( f ), t, f ) = ∑
m

∑
n
(s( fx(m, n), fy(m, n)− t(m, n))2. (9)

As the CT and CBCT images do not use the same imaging modality, there is no linear
relationship between the intensity values. Accordingly, when using the sum of squared
differences, cross-correlation may not work. Thus, we can use the mutual information to
measure the similarity of CT and CBCT images. In this paper, we used CT as the fixed
image and CBCT as the moving image.

Let Ps( f ),t(s( f ), t) denote the joint probability distribution function of image s( f ) and
t. The mutual information [23] can be defined as

MI(s( f ), t) = ∑
s( f ),p

Ps( f ),p(s( f ), t) log(
Ps( f ),t(s( f ), t)

Ps( f )(s( f ))Pt(t)
). (10)

Thus, the optimization function can be defined as

MI(s( f ), t)→ min
f

. (11)

The process of intensity-based image registration is shown in Figure 5. Intensity-based
image registration is an iterative process, which begins with a random initial transformation
matrix. Then, the transformation matrix is applied to the input CBCT image with bilinear
interpolation. When the transformation is finished, a similarity metric is used to compare
the transformed CBCT with the input CT image. Next, the optimizer checks for a stop
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condition. The process stops when the similarity measure matrix is large enough or the
maximum number of iterations is reached.
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2.1.3. Multi-Intensity Based Registration

The intensity-based registration method introduced in Section 2.2 lacks robustness
for CT–CBCT registration tasks. Figure 6 shows some intensity-based registration results
using different similarity metrics. It can be found that CT–CBCT image registration cannot
be achieved using the similarity metrics of phase correlation and mean squares. Mutual
information outperformed the other two similarity metrics. However, due to the imaging
quality of CBCT images, the registration result based on mutual information still could not
obtain ideal results (as shown by the white arrows in Figure 6).
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The reason for the poor registration performance in Figure 6 is the poor imaging
quality of CT and CBCT introduced in Section 1. Because intensity-based registration
methods are more sensitive to local intensity information, noisy points and messy textures
directly affect the registration performance. Therefore, we propose a multi-intensity-based
registration method.

First, we generate a series of multi-intensity edge-preserving CT and CBCT image pairs
using the MWMC proposed in Section 2.1. Then, the multi-intensity edge-preserving results
are registered using the intensity-based method, allowing us to obtain transformation
matrices of the input images with different intensities. Some results are given in Figure 7. It
can be seen that excellent registration performance could be achieved with certain intensity
edge-preserving results, such as m = 80 and m = 100. Therefore, after determining the
optimal registration transformation, it can be directly applied to the input CT and CBCT
images, thus obtaining an ideal registration result.
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Figure 7. Multi-intensity-based registration results using different m.

2.1.4. Intersection Mutual Information-Based Optimal Transformation Selection

Due to the incomplete imaging and poor imaging quality of CBCT, the calculation of
mutual information can be vulnerable to noisy points and inconsistent imaging regions.
In order to overcome this problem, we propose a novel similarity metric, i.e., intersection
mutual information, which can be defined as follows:

IMI = MI{(Rmoved_CBCT ∩ RCT)·Imoved_CBCT , (Rmoved_CBCT ∩ RCT)·ICT}, (12)

where MI{, } can be computed using Equation (10), and RI denotes the imaging regions of
image I. In our paper, the imaging region was segmented by the active contours (snakes)
technique, which is a region growing algorithm [24,25]. To illustrate the validity of the
proposed IMI, Figure 8 presents a set of experiments. As can be seen from Figure 8b, the MI
values of CT and moving CBCT were greater than the MI values of CT and moved CBCT,
which is obviously unreasonable. In other words, we cannot directly use MI to measure the
registration degree of the input image pairs. Using Equation (12), the obtained IMI value
after registration is significantly higher than that before registration, indicating that we can
measure the registration degree of the input image pairs using IMI.
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Finally, the optimal transformation fopt with different multi-intensity registration
results can be determined by ranking their IMI.

fopt = max
i≤m

IMI(Icbct( fi), Ict), (13)

where m is the number of multi-intensity edge preserving image pairs obtained by MWMC.
The optimal transformation can be found from the m transformations using Equation (13).
Furthermore, the final registration result can be obtained by applying fopt to the input CBCT.

2.2. Sample and Data

The datasets used in our experiments were obtained from our cooperative medical
facility, Affiliated Hospital of Yunnan University. The samples are shown in Figure 9. All
datasets were anonymized. For each patient, a pair of treatment planning CT and CBCT
images was obtained. All planning CT images were acquired using the same CT simulation
system (Philips Brilliance Big Bore), with a slice thickness of 3 mm. Likewise, CBCT images
were all obtained using the same imaging device integrated on linac (XVI, Elekta Solutions
AB, Stockholm, Sweden) prior to treatment. The size of all images was uniformly set to
256 × 256 pixels in our experiments.

Electronics 2022, 11, x FOR PEER REVIEW 8 of 12 
 

 

Finally, the optimal transformation optf  with different multi-intensity registration 

results can be determined by ranking their IMI. 

max ( ( ), )opt cbct i ct
i m

f IMI I f I


= , (13) 

where m is the number of multi-intensity edge preserving image pairs obtained by 

MWMC. The optimal transformation can be found from the m transformations using 

Equation (13). Furthermore, the final registration result can be obtained by applying optf  

to the input CBCT. 

2.2. Sample and Data 

The datasets used in our experiments were obtained from our cooperative medical 

facility, Affiliated Hospital of Yunnan University. The samples are shown in Figure 9. All 

datasets were anonymized. For each patient, a pair of treatment planning CT and CBCT 

images was obtained. All planning CT images were acquired using the same CT simula-

tion system (Philips Brilliance Big Bore), with a slice thickness of 3 mm. Likewise, CBCT 

images were all obtained using the same imaging device integrated on linac (XVI, Elekta 

Solutions AB, Stockholm, Sweden) prior to treatment. The size of all images was uni-

formly set to 256 × 256 pixels in our experiments. 

 

Figure 9. Data used in our experiments (CBCT and CT images of the chest site). 

2.3. Measures of Parameters 

The parameters required in the proposed method mainly included the multi-inten-

sity retention parameter m and the intensity-based registration parameters. After exten-

sive testing using the CT and CBCT images, when the multi-intensity parameters ex-

ceeded 100, the processing results remained stable. Therefore, we set m to 100 in this pa-

per. For the CT and CBCT images exported from medical devices, their size was uniformly 

normalized to 250 × 250. In practical applications, the size can be adjusted as needed. 

3. Experiments and Analysis 

To illustrate the effectiveness of the proposed CT–CBCT registration method, we 

compare the proposed method with some typical registration methods using several da-

tasets . 

  

CBCT

CT

Pair 1 Pair 2 Pair 3 Pair 4

Figure 9. Data used in our experiments (CBCT and CT images of the chest site).

2.3. Measures of Parameters

The parameters required in the proposed method mainly included the multi-intensity
retention parameter m and the intensity-based registration parameters. After extensive
testing using the CT and CBCT images, when the multi-intensity parameters exceeded 100,
the processing results remained stable. Therefore, we set m to 100 in this paper. For the CT
and CBCT images exported from medical devices, their size was uniformly normalized to
250 × 250. In practical applications, the size can be adjusted as needed.

3. Experiments and Analysis

To illustrate the effectiveness of the proposed CT–CBCT registration method, we com-
pare the proposed method with some typical registration methods using several datasets.

3.1. Experimental Settings

In our experiments, we compared the proposed method with the Advanced Normal-
ization Tools (ANTs) [26–31]. ANTs is the most used medical image registration toolkit
with very good performance. An overview of the compared methods and similarity terms
is given in Table 1. Among them, Affine denotes the affine transformation-based method,
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Rigid denotes the rigid transformation-based method, Similarity denotes the rotation and
uniform scaling transformation-based method, and SyN denotes the symmetric diffeomor-
phic transformation-based method.

Table 1. Compared methods. Similarity measure acronyms: CC = neighborhood cross-correlation,
Mean Squares = mean squared difference, MI = mutual information.

Method Transformation Similarity Measures

Affine Affine registration MI, Mean Squares, GC
Rigid Rigid registration MI, Mean Squares, GC

Similarity Rotation + uniform scaling MI, Mean Squares, GC
SyN Symmetric diffeomorphic CC, MI, Mean Squares, Demons

3.2. Experimental Results and Analysis

The experimental results using different medical image registration methods are
shown in Figure 10. As can be seen from Pair 4, when the imaging regions of CT and CBCT
images were relatively consistent, i.e., the CBCT image was relatively complete, the Affine,
Similarity, SyN-based, and our proposed method could achieve better registration results.
For CBCT images with partially missing regions, the Affine and SyN-based methods also
achieved good registration performance, as shown in Pair 3. However, it can be seen from
the enlarged region (yellow arrow) that the registration accuracy of the proposed method
was superior to that of the Affine and SyN-based methods.

As shown in Figure 11 (Pair 1 and Pair 2), the compared methods were completely
ineffective for severely incomplete imaging CBCT and CT image pairs. However, the pro-
posed method also achieved good registration accuracy in these cases. These experiments
illustrate that the proposed method can overcome the challenges in CT and CBCT image
registration tasks introduced in Section 1.

To further validate the performance of the proposed CT–CBCT registration method,
we performed a quantitative comparison of different methods using the IMI and SSIM
metrics [32,33]; the results are shown in Table 2. It can be seen that the values of IMI
obtained using were superior to those using other methods. in particular, our method
exhibited a great advantage when using incomplete images, such as Pair 1 and Pair 2. This
is consistent with the visual comparison shown in Figure 9. For relatively complete CBCT
images, our method also achieved good performance (Pair 3 and Pair 4).

Table 2. Quantitative comparison of different methods according to IMI and SSIM metrics. The best
results are shown in bold.

Pair 1 Pair 2 Pair 3 Pair 4

Method IMI SSIM IMI SSIM IMI SSIM IMI SSIM

Affine 0.4746 0.3183 0.5032 0.2705 0.6904 0.3030 0.8766 0.3134
Rigid 0.5711 0.2542 0.5035 0.2973 0.6923 0.2636 0.8351 0.3515

Similarity 0.4727 0.2569 0.5549 0.3885 0.6912 0.2667 0.8767 0.3138
SyN 0.4742 0.2712 0.4813 0.2283 0.7236 0.2906 0.8835 0.3188

Our method 0.5940 0.3898 0.5826 0.3847 0.7676 0.3066 0.8926 0.3159

Table 3 presents the average values of IMI and SSIM using different registration
methods on our datasets. It can be seen that our method achieved the best IMI and SSIM
values, indicating its higher registration accuracy compared to other methods. More
importantly, the proposed method is a promising candidate for application in IGRT.
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Table 3. The average IMI and SSIM metrics using different methods for all datasets. The best results
are shown in bold.

Method Affine Rigid Similarity SyN Our Method

IMI 0.6362 0.6505 0.6488 0.6406 0.7092
SSIM 0.3013 0.2916 0.3064 0.2772 0.3492

4. Conclusions

In this paper, we proposed a novel multi-intensity optimization-based CT–CBCT reg-
istration method for IGRT tasks. The proposed method can overcome the problems caused
by poor imaging quality, imaging deformation, incomplete imaging, and inconsistent visual
features of CBCT and CT image pairs. The experimental results demonstrated the excellent
performance of the proposed method in CT–CBCT image registration tasks and showed
its potential application in IGRT. At present, this method can be applied to the evaluation
of postoperative treatment effectiveness, as well as other medical applications. However,
because the proposed method involves an optimization process, it is difficult to guide
patient positioning during IGRT in real time. Thus, in the future, we will consider how to
reduce the complexity of the proposed method and make it more suitable for IGRT.
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