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Abstract: Recent advances in salient object detection adopting deep convolutional neural networks
have achieved state-of-the-art performance. Salient object detection is task in computer vision
to detect interesting objects. Most of the Convolutional Neural Network (CNN)-based methods
produce plausible saliency outputs, yet with extra computational time. However in practical, the low
computation algorithm is demanded. One approach to overcome this limitation is to resize the input
into a smaller size to reduce the heavy computation in the backbone network. However, this process
degrades the performance, and fails to capture the exact details of the saliency boundaries due to the
downsampling process. A robust refinement strategy is needed to improve the final result where the
refinement computation should be lower than that of the original prediction network. Consequently,
a novel approach is proposed in this study using the original image gradient as a guide to detect
and refine the saliency result. This approach lowers the computational cost by eliminating the huge
computation in the backbone network, enabling flexibility for users in choosing a desired size with a
more accurate boundary. The proposed method bridges the benefits of smaller computation and a
clear result on the boundary. Extensive experiments have demonstrated that the proposed method is
able to maintain the stability of the salient detection performance given a smaller input size with a
desired output size and improvise the overall salient object detection result.

Keywords: saliency detection; transition module; refinement module

1. Introduction

Salient object detection is a prominent first step for various computer vision appli-
cations to produce a coarse detection. Given an image, the salient detection provides
the guidance on the image region that requires attention. This technique can be immedi-
ately applied in many applications such as visual tracking, image captioning [1–3], image
segmentation [4–11], and visual question answering [12,13].

The advances in deep learning architectures [14–17] have made them widely used
feature extractors in many computer vision applications. In addition, the deep learning
has been gaining a lot of attention for the improvement of saliency prediction in recent
years. The utilization of deep learning in saliency models can effectively imitate the at-
tention mechanism of human vision compared with handcrafted features, as proposed
in [18]. Several approaches that utilize the edge prediction as the additional feature have
been proposed. A mutual learning module is proposed in [19] to incorporate edge predic-
tion with saliency detection. The multitask intertwined supervision is used to train this
module. This work shows the mutual benefit between nested edge prediction and salient
object prediction. The predicted edge gradually enhances the accuracy by integrating the
additional boundary prediction to precisely locate the boundary of the salient object. A
cascaded partial decoder is proposed in [20], in which only features of the deeper layers are
integrated in the decoder. A holistic attention module is utilized to combine the features
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from the initial prediction to the final prediction of the partial decoder. Another approach
utilized refinement and improved it with the top-down and bottom-up approach [21]. The
result from the saliency is refined using a Recurrent Neural Network (RNN) in top-down
order using the convolutional feature from coarse prediction. Subsequently, these features
are refined again in a bottom-up order using both convolution and refined saliency from the
previous top-down approach. Some other works also utilize side-outputs during training
as [22] and have shown the effectiveness of the single refinement process, which is able
to refine the coarse saliency maps into a more precise boundary such as BASNet [23] that
used Fully Convolutional Network (FCN)-based architecture as the refined network. In
BASNet, the refinement network predicted the residual image that refined the coarse map
through element-wise summation. In addition, the Conditional Random Field (CRF) [24]
and Recurrent network [25] also can provide good results with additional computation.

As the first step in vision tasks, fast saliency detection is highly demanded. Conversely,
the CNN involves a lot of computation which slows down the process. Specifically, most of
the CNN-based salient detectors adopt a backbone network which contains many layers of
convolution. This arrangement becomes non-trivial when receiving a large image. This
obstacle has been addressed by utilizing the downsampling trick, in which the input
was resized into a smaller size, and the result was upsampled back to its original size.
This arrangement is referred to as “bottleneck prediction” in this study. The bottleneck
prediction approach reduces the computation significantly, yet the results are less accurate
when the bilinear interpolation is adopted as the post processing. For instance, when an
image of size 512 × 512 is resized into a smaller image of size 256 × 256, it is termed as
the temporal size. Subsequently, it is fed to the CNN with symmetrical encoder-decoder
architecture to obtain a result of size 256 × 256. To obtain a similar size as the input, this
saliency result is upsampled into 512 × 512. Normally, this approach achieves a good result
when the original image size is close to 256 × 256. However, when the image size is much
larger than this size, such as 1028 × 1028, the salient detector degrades its performance.

The edge detection-based approach enhances the accuracy by adding additional
boundary prediction to precisely locate the boundary of the salient object. Edge prediction
is deployed in each stage of the encoder. This forms the nested edge detection, which is
beneficial for the prediction. However, the original input size is needed for this approach
to predict a more accurate edge in every encoder stage. Unfortunately, the encoder is
mostly composed of the backbone network which requires a lot of computation. The
bottleneck prediction approach does not work well with this structure, in which the edge
prediction, which is produced as a side output, is not accurate enough to represent the
real gradient of the original image. Due to the inaccurate boundaries, the predicted edge
in the aforementioned case is less beneficial for refinement purposes. In addition, the
predicted edges are only available with limited sizes up to the defined temporary size
which is still smaller than the original image size. This means that the predicted edges
are only available with limited sizes up to the defined temporary size. To overcome this
limitation, the predicted edge needs to be upsampled to the same size as that of the saliency
result, leading to thicker and inaccurate boundaries in the result.

To overcome this issue, the refinement-based approach is a good option that works
well with the bottleneck prediction scheme. The two modules must collaborate, with one
of the modules acting as the predictor and the other as the refinement. This mechanism can
effectively reduce the computation, and still provide better results. In this process, a robust
refinement module is highly demanded. Since the prediction size is smaller than that of
the original image size, the refinement module must be able to adapt with the change of
object size inside the image. Thus, to enhance the refinement, the original image gradient is
utilized as guidance for the refinement. The gradient image is obtained is of the original
image size to provide more precise boundary information for the refinement process.

In this study, a novel salient object detection is proposed, in which the coarse salient
object is predicted by the prediction module, and subsequently refined by a light CNN
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with the image gradient of the original size. The contributions of this work are summarized
as follows.

• A transition module is proposed to use the original image gradient as the additional
input for refinement purposes.

• A 3D convolution, termed the ‘channel domain analyzer’, is adopted to handle the
feature map relationships in different channels.

• Applying the training mechanism to improve the performance of the existing salient
detection network by using the original image gradient.

• Introducing various refinement strategies for better saliency results.

The remainder of this paper is organized as follows. Some related works are reviewed
in Section II. Section III elaborates the components and the process of the proposed MEAN
in detail. Extensive experimental results and discussions are reported in Section IV. Section
V draws the conclusion.

2. Related Works

Many approaches have been proposed prior to deep learning using classical block-
based and region-based analysis. However, recently deep learning has been adopted for its
ability to solve the salient problem through learning. Specifically, the FCN-based method is
the most popular with many variations and improvements. One popular improvement
is the encoder–decoder architecture. The design of an encoder can be VGGNet [14] or
ResNet [17]. The fully convolutional network can also be extended into a recurrent-type
approach [25].

Attention mechanisms are widely used in natural language processing and caption
generation. The Squeeze and Excitation Network [26] shows a basic idea utilizing the
attention mechanism both in channel and spatial domains with global average pooling
which improves the accuracy in recognition. The Convolutional Block Attention Module
(CBAM) deploys the fully convolutional networks to deal with the channel attention, in
which it handles both spatial and channel domains separately and combines the features
for robust recognition. Both methods have shown that deploying an attention model in
the network is able to improve the performance of the CNN by paying more attention or
weighting the most important feature maps for a specific task. In [18], a multilevel deep
neural network (DNN) with an identity block is proposed. This design is also strengthened
by a semantic perception subnetwork, in which it can capture potential saliency regions
and possible high-level semantic information in an image. Both of these modules allow the
network to obtain the robust and accurate feature for saliency map generation.

Improving the saliency accuracy from the coarse map has been widely adopted. Most
of the saliency algorithms employ three types of refinements, i.e., Conditional Random
Field (CRF) [24], Convolutional Neural Network, and Recurrent Neural Network. The
CNN type layer can be a single convolutional layer or adopting FCN again with the
encoder-decoder as in BASNet [23], which is able to generate promising salience boundary.
However, this approach is not trained to perform in various sizes for refinement. This
condition refers to BASNet feeding the same image input size for both its prediction module
and residual refinement module. In MLMSNet [19], it has been proven that supervision
plays an important role for the model, in particular for edge supervision. However, this
approach does not address the refinement across various scales. Thus, in this work, the edge
feature is utilized to guide the refinement of the saliency result for better saliency contours.

3. Proposed Method

The proposed method consists of three components, i.e., prediction, transition, and
refinement modules. The prediction module acts as the base predictor that captures the
important object shape, structure, and determines the salient object area in the downsam-
pled size. The refinement module transforms the coarse saliency map to a better result.
The transition module serves as the bridge for the additional edge feature with the coarse
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map before refinement. Figure 1a illustrates the overall flow of the proposed Multi-Edge
Adaptation Network (MEAN).
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3.1. Salient Object Detection Mechanism

With the intensive development of deep learning for salient object detection, a lot of
techniques were introduced. Yet, they share one common mechanism, in which the input
image is directly fed to the CNN to predict the salient object and background classes. Let
us assume that I is the input image and S is the salient detection result. Meanwhile, the
bottleneck prediction approach utilizes a different method, in which I is first resized to a
predefined temporary size IR. Subsequently, IR is fed to the CNN network to produce the
prediction SR. At the last stage, SR is resized to the original image size to form the final
prediction S. The framework introduces several issues: (1) It is infeasible for a network
to capture the details because the prediction result, SR, lacks many details when it is
upsampled into S, in particular when a large size difference exists between S and SR. (2) It
is necessary to have a module that is sufficiently robust to refine the result from SR to S.
Since the image may contain complex boundaries, the refinement needs to adapt this type
of boundary into a coarse map, SR, that is usually inaccurate due to the downsampling
process. (3) A huge computation can be introduced when a large I is fed to the network,
slowing down the training and increasing memory consumptions.

Another reason for applying the bottleneck prediction is that the salient object tends to
be located in the center and is normally the biggest object in the image. By downsampling
the image, it can increase the receptive field of the kernel in the convolution operation by
widening the field of view to capture a bigger object inside the image. With a smaller spatial
dimension, the computational complexity is reduced, yet it may introduce inaccuracy to
boundary of the SR.

As shown in Figure 1a, the MEAN consists of the predictor module (ϕP) which is
composed of the encoder (E(i)) and decoder (D(i)) with side output (O(i)), transition module
(ϕT) and the refinement module (ϕR). The MEAN adopts the original image gradient to
serve as the guidance of the refinement. The training scenario of the MEAN is designed to
produce a robust refinement network, in which the transition and refinement modules are
purposely incorporated at each side output.

Consequently, as opposed to the general encode–decode salient detector, the bottleneck
prediction can be handled with the MEAN in several ways: (1) refining the SR to S with the
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refinement network, (2) designing the decoder with progressive (sequential refinement)
feature, and (3) using refinement network to refine SR after a huge upsampling operation
(skip refinement), as shown in Figure 2.
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In the first approach, the refinement network which is used to refine the coarse map
is introduced in BASNet [23]. A similar approach is also employed in this study. Yet, in
this study the edge is extracted from the original image as guidance for the training of the
refinement network. There are three different refinement mechanisms as follows and as
described in Figure 2.

3.1.1. Basic Refinement (BR)

The first is the Basic Refinement (BR) stage, in which all of the modules, i.e., prediction,
transition, and refinement are with the same input size. This refinement mechanism is
widely adopted in former schemes such as BARNet [23]. In the BR case, the refinement is
only equipped in the O7 with no upsampling operation involved. This condition indicates
that the model only works at a single scale. Thus, the processing time increases a lot because
the input of the prediction module is not downsampled.

3.1.2. Sequential Refinement (SQR)

The second approach is the sequential refinement (SQR), in which the coarse map
that has been refined at certain scales is upsampled and refined again to produce a better
result at higher scales. Let R be the set of scales which contains r number of scales, the
proposed framework produces r results as prediction S = {S1, S2, S3, . . . , Sr}, termed as
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Sequential Refinement (SQR). For instance, the image I has a certain scale R(i), and R(i−1)
and S(i−1) are downsampled result and saliency result of I, respectively. The edge, E, is
generated from I at scale R(i). The S(i−1) is upsampled from R(i−1) to R(i) and incorporated
with E to obtain S(i) in scale R(i). Thus, the upsampled S(i−1) defines the salient area, and
subsequently the refinement network ϕREF adjusts it using E for a better contour. Since
the Sobel operator can produce the image gradient E in any size, this approach can be
conducted multiple times. The progressive approach can also be utilized to refine the
coarse map from any side output in the decoder stages. The computational complexity
depends on how many times the refinement is applied. It will consume more time when
the refinement is frequently conducted.

3.1.3. Skip Refinement (SKR)

The last refinement type is skip refinement (SKR). The SKR skips some refinement
processes in SQR. The refinement process is only placed in the final scale instead of applying
progressively, as in SQR. In addition, instead of producing r results, the method skips some
scales. For instance, refining S1 in scale R(1) into S4 in scale R(4) involves a three-times
upsampling process. Compared to the SQR, SKR is with a lower computational complexity,
because the refinement process is only performed once instead of multiple times. The final
scale in this scenario refers to the original image size. The SKR incorporates the edge at
the final size r, denoted as E(r), and the coarse map upsamples n times for the refinement
process, as in Equation (7). The performance of SKR gets worse when the final size and
temporary size have a large difference.

3.2. Edge Detector

The directional change of the intensity in an image is widely utilized to detect the
image gradient. Many algorithms have been proposed for edge detection using deep
learning such as HED [22]. This method has also been applied in salient object detection
as additional information for the decoder, as in [19,21]. This approach has drawbacks in
bottleneck prediction. Specifically, the predicted edge in a smaller size of feature map cannot
be a good feature to guide the refinement at higher scales due to its inaccurate boundaries.

For instance, the encoder ϕENC with n stages is only capable of giving n edges infor-
mation for refining. Due to the downsampling process utilized in the bottleneck prediction
approach, this predicted edge is resized back to its original size. Yet, when the scale dif-
ference between the input image and predicted edge is too large, many contour details
are missing. Another issue that may arise is that the training relies on the availability of
a dataset containing a huge amount of both edge information and salient detection with
accurate labeling.

Consequently, in this study, the conventional Sobel edge detection is utilized. The
Sobel was chosen due to its simplicity with low computational complexity. In general, the
bottleneck prediction needs refinement in the bigger scale. Using Sobel, the computation
can be reserved because it only contains two convolution operations along x and y directions
with 1 × 3 and 3 × 1 kernels, respectively. However, it has a drawback in that it returns
very noisy edges, some of which can be related to the salient mask, but most of which
are unwanted edge results. Consequently, the detected edge result is fed to the transition
module which will be discussed in the next section.

3.3. Prediction Module

Let χ be the feature maps produced by a composite function ϕ. The MEAN predictor
module (ϕP) adopts the encoder–decoder architecture. The encoder ϕENC contains several
convolutional layers, followed by the batch normalization and ReLU activation function,
which are grouped into n stages, ϕENC = {ϕE1, ϕE2, ϕE3, . . . , ϕEn}, and it produces n
feature maps, denoted as χENC = {χE1, χE2,χE3, . . . ,χEn}. The term ‘stage’ refers to the set
of operations, including convolution, batch normalization and activation function, before
the pooling operation. In this study, ResNet 34 [17] is employed as the encoder. Inspired by
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BASNet [23], the first input layer of the encoder is modified to a 3 × 3 filter with no pooling.
In addition, there are two additional stages after the fourth stage, which contains three
residual blocks (512 filters) after the max pooling operation. The variable n is the number
of ϕENC stages, and the decoder ϕDEC normally has identical stages to those of the encoder.
Inspired by UNet [4], the skip connection is utilized to refine the decoder-reconstructed
result and the design of the decoder is expected to be symmetrical. The ϕP also adopts the
deep supervision training style which generates a prediction {O1, O2, O3, . . . , O7} for each
decoder stage as the side output as shown in Figure 1a.

3.4. Transition Module

During the refinement step, the original image edge is utilized as an additional input
to the refinement network. However, the edges detected by Sobel not only contain the
salient contour, but also contain other objects which are not related to the salient object.
Consequently, an additional screening process is needed before feeding the detected edge
as an additional feature. Inspired by the SE Networks [26] and CBAM [27], the transition
module is designed in this study to handle the feature in the spatial and channel domains.
In the spatial domain, the method pays attention to the objects inside the image. In addition,
in the channel domain, the method emphasizes the relation between the generated feature
maps in a depth-wise manner.

3.4.1. Spatial Domain Analyzer

In analyzing the spatial domain, 2D convolution is adopted. The most challenging
task in this domain is the ability of the convolution to capture most of the object features,
meaning suitable receptive fields of the convolution should be adopted in various scales.
For instance, in a small image, e.g., 64 × 64, a 3 × 3 convolution is able to capture the object
inside the image. Yet, when the size of the image increases to 512 × 512, a convolution
receptive field of size 3 × 3 is unable to capture the shape of the object as it can only see a
small portion of the object.

χpool2 = ϕpool2

(
Avgpool2

(
χinp

))
(1)

χpool4 = ϕpool4

(
Avgpool4

(
χinp

))
(2)

To overcome this problem and generate a more robust feature that is invariant to
the various object sizes inside the image, multiple pooling operations are incorporated
with 2 × 2 of stride 2, as in Equation (1), and 4 × 4 stride 4 pooling in Equation (2). The
average pooling is used to downsize the feature map input χin. Both of the features are later
processed by ϕpool2 and ϕpool4 layers that consist of a single 3 × 3 convolution followed by
the batch normalization and ReLU activation function. Thus, the network is able to handle
various scales, and make decisions based on the combinations of them. The operations,
ϕpool2 and ϕpool4, are applied after the pooling operation, as shown in Figure 3.

In addition, the original χin is also analyzed using ϕin, and the generated feature map
is combined using the element-wise summation, as in Equation (3). Subsequently, it is fed
to the 3 × 3 convolution for generating χ f inal , as in Equation (4). As a result, it widens the
field of view (FOV) and increases the chance of the convolution kernel capturing a bigger
object in the image. This operation is termed ‘pooling convolution’ in the rest of the section.

χsum = ϕin(χin) +χpool2+χpool4 (3)

χ f inal = ϕ f in(χsum) (4)
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3.4.2. Channel Domain Analyzer

In the channel domain, the main focus is to capture the relation channel-wise. The
transition layer maps the relationship between the upsampled coarse map and the edge,
E, in the higher scale size. This relation can only be captured in the channel relation. In
SE networks, the global average pooling operation is applied in each channel to produce
a single number in each channel instance. To capture a more detailed channel relation,
the fully connected layer is applied to the pooled feature maps. The output of the FC
layer indicates the attenuator value for different channels, which is termed the ‘feature
descriptor’. In addition, in the CBAM channel attention module, the max pooling and
average pooling operations are performed to produce two feature maps. The two feature
maps have a different FC layer for capturing the channel relation in max and average
operations. Thus, for the SE network, it only provides one channel relation, while there are
two channel relations in CBAM.

These mechanisms have drawbacks that the global pooling operation losses a lot of
spatial information. Instead of using the global pooling operation to produce a single
number as a feature representation, the 3D convolution is applied. Yet, the difference is
that the size of the 3D convolution is (1 × 1 × D) where D is equivalent to the channel of
the feature maps. The number of the filters in the 3D convolution also represents a different
relation that may occur in the feature maps, and it is set at 16 in this study. The 16 kernels
represent 16 various relations of the channels, as described in Figure 4a.
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Given an intermediate feature map χin∈ RCXHXW as the input, the channel domain an-
alyzer ϕCDA transforms χin to χCDA∈ RCXHXW with the 3D convolution kernel K ∈ RCX1X1.
Let H and W be the height and width, respectively; C is the channel and N is the batch
number of the feature maps. The single 3D convolution is with depth D. In practice, the
feature map with size {N, C, H, W} is transformed to a five-dimensional tensor with a
depth as the additional information with format {N, C, D, H, W} where C is equal to 1.
This operation is termed the ‘unsqueeze’ operation. The five-dimensional tensor is fed
to the 3D CNN with kernel size (1 × 1 × D), producing the feature map {N, 1, D, H, W}.
Subsequently, this five-dimensional tensor is reshaped into {N, C, H, W}, where C = D is
termed the ‘squeeze’ operation.

3.4.3. Transition Module

The proposed transition module is the combination of channel and spatial domain
analyzer. However, prior to channel attention, another convolution is applied to expand
the channel size, producing more comprehensive information to be processed in both the
channel and spatial domains. In this study, a similar pooling convolution for spatial domain
process is utilized to produce an intermediate channel with size 32. Figure 4b illustrates the
detailed architecture. The topmost layer is the spatial analyzer which is another pooling
convolution with output size 1 for generating the filtered edge map. During the training,
the transition module is placed after the side output O4, 05, and O6 to capture various
upsampling ratios. All of the transition modules share the same weighting. To produce
the filtered edge map, χT(i), the upsampled coarse map, χS(i−1), and edge, E(i), are needed,
in which i is the step, indicating the current size and U is the upsampled operation, as in
Equation (5).

χT(i) = ϕT

(
E(i) ⊗U

(
χS(i−1)

))
(5)

3.5. Refinement Module

Similar to the transition module, the refinement module works on the original image
size. The main differences with BASNet [23] are in the input and output. The MEAN
refinement module receives both adapted image gradient from transition module and the
saliency coarse map. In addition, for the output, as opposed to predicting the residual
image, the refinement module in this study predicts the salient map directly without the
element-wise summation at the end as shown in Figure 1b.

During the training, the refinement module is placed after the transition module.
Herein, a huge advantage can be obtained during the training because the upsampling
factor in T5 is 4, and it is 2 in T6. No upsampling is arranged in T7. This variety serves as
the data augmentation, in which the refinement module is able to detect a different input at
a different scale factor. The refinement networks in R5, R6, and R7 share the same weighting.
The refinement process always needs the result of the transition module as in Equation (6),
in which ⊗ is a concatenation operation.

χR(i) = ϕR

(
χT(i) ⊗U

(
χS(i−1)

))
(6)

3.6. Training and Inference

In the training phase, Basic Refinement (BR) is deployed, where the predictor, transi-
tion, and refinement work at the same scale. Yet, this mechanism lacks augmentation for
robust transition and refinement. Thus, a transition module is placed in all side outputs.
A similar method is also applied in the refinement network to refine transition module
results. For instance, for an image input of size 256 × 256, a change of O5 size produces 4X
upsampling; O6 produces 2× upsampling and no upsampling is produced in O7. With a
different upsampling ratio from a side output, the model has a different scale configuration,
enabling free data augmentation. All of the outputs are directly fed to the loss function as
the supervision during training, as shown in Figure 1. The weightings of transition and
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refinement modules are shared across all the side outputs to generate robust transition and
refinement instead of generating a specific module for each scale.

During the inference phase, the aforementioned methods, BM, SQR, and SKR, are
deployed. In the BM case, the refinement is only equipped in the O7 with no upsampled
operation involved. In addition, Equation (6) is deployed in the SQR approach in the
different sequential upsampled levels. The SKR skips some refinement processes in SQR.
The refinement process is only placed in the final scale instead of applying progressively
as that in SQR. The final scale in this scenario refers to the original image size. The SKR
incorporates the edge at the final size r, denoted by E(r), and the coarse map upsamples n
times for the refinement process, as in Equation (7). The performance of SKR gets worst
when the final size and temporary size have a large difference.

χR(r) = ϕR

(
ϕT

(
U
(
χS(r−n)

)
⊗ E(r)

)
⊗U

(
χS(r−n)

))
(7)

4. Experimental Results

Extensive experiments were conducted to validate the effect of varying image sizes.
First, for the stability comparison, the image size was fixed at 256 × 256. Accordingly, the
BASNet and the proposed method with basic refinement BR utilize image size 256 × 256 as
the baseline. To test the progressive SQR, the initial size is fixed at 32 × 32 taken from the
side output O4, and progressively refined to 256 × 256 by the scale factor 2. In addition,
in the skip refinement, SKR, the results of the decoder in various sizes {32 × 32, 64 × 64,
128 × 128} are upsampled to 256 × 256 before refinement. Second, in the final comparison
with the former schemes, the SKR is adopted. As opposed to the stability comparison, it
resizes the side output O7 into the original image size and refines it using the transition
and refinement modules.

4.1. Dataset

Many datasets are available to evaluate the performance of the methods in this domain.
In this study, performance comparison was carried out with DUTS [28], HKU-IS [29], DUT-
OMRON [30], and ECSSD [31]. The DUTS dataset contains 10,553 images for training in
DUTS-TR, and 5019 images for testing in DUTS-TE. Due to the large number of images,
this study utilizes the DUTS-TR dataset for training purposes. Compared with the other
datasets, the DUTS is the largest dataset which contains many complex scenarios. Hence,
the DUTS-TR was used as the training dataset. The DUT-OMRON, HKU-IS, and ECSSD
contain 5168, 4447 and 1000 images, respectively.

4.2. Training

As mentioned above, the training process was carried out using the DUTS dataset, in
which the Adam solver is employed with a learning rate = 0.01, epsilon = 1e-8, and betas of
0.9 and 0.999. The validation set was randomly picked from 10% of the DUTS-TR dataset,
and the remainder formed the training set. The network was trained for 200,000 iterations
with images of size 256 × 256, and the batch size was set at four. Random cropping and
horizontal flip were employed for data augmentation. The network was implemented
in the Pytorch 1.3 framework and trained with a GTX 1080 Ti GPU with 11 Gigabytes
of memory. In addition, the CPU was an Intel Core i7 8th generation with 32 Gigabytes
of memory.

In this study, three different experimental setups were involved in the performance
validation of the model. The first was the stability analysis, in which there were three
refinement setups, i.e., base refinement (BR), skip refinement (SKR) and sequential refine-
ment (SQR). In BR, all of the modules, prediction, transition, and refinement, had the same
input size. In SKR, a smaller size was determined by the prediction module, and the real
size was fed into transition and refinement along with upsampled coarse map provided
by the prediction module. In SQR, an initial smaller size was defined as the input from
the prediction module, and the coarse map was gradually refined with 2× upsampling.
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Next was the effectiveness of transition module, where the output of the transition module
is qualitatively examined to determine whether it can provide beneficial information for
the contour refinement. The last were the quantitative and qualitative measurements that
compared the results between the proposed method with the former schemes.

4.3. Loss Function

In this study, hybrid loss [23] is utilized, consisting of binary cross-entropy, SSIM, and
intersection over union (IoU) losses. In the proposed architecture, the refinement network
needs to be trained in various scales. Consequently, instead of comparing the side output
directly, the aforementioned approach for refinement training is deployed. Hence, not only
each decoder in the network is trained, as in BASNet, the refinement and transition also
need to be retrained simultaneously. As opposed to BASNet, the loss is weighted, because
the side output that produces the smaller feature map size has less information, yet is still
important for the generation of good results. In addition, the final weighting for the loss is
set at A = {α1 = 0.1, α2 = 0.1, α3 = 0.1, α4 = 1, α5 = 1, α6 = 1, α7 = 1} for Equation (8).

L f inal =
n

∑
i=1

αi

(
Li

BCE + Li
SSIM + Li

IoU

)
(8)

Binary cross entropy is utilized, since the salient object detection only has foreground
and background classes. Subsequently, the loss is denoted as Lbce and is calculated using
Equation (9), in which Yp and Ŷp are the ground truth and predicted saliency map in
spatial location p, respectively. During the training, the model has to learn the structural
information of the salient object. To that end, the SSIM loss is utilized, as in Equation (10),
where the variables µ and σ are the mean and standard deviation, respectively. The notation
σŶY is the covariance of prediction Ŷ and ground truth Y, and its loss is denoted as LSSIM.
The parameters C1 = 0.012 and C2 = 0.032 are applied during the experiment. Meanwhile
the IoU is used to evaluate the performance of the prediction based on the overlapping of
prediction and ground truth sets. The IoU loss penalizes the prediction if the prediction
result is not aligned well with the ground truth, as in Equation (11), and is denoted as LIoU.

Lbce = −∑
p

(
Yplog

(
Ŷp

)
+

(
1−Yp

)
log

(
1− Ŷp

)
)
)

(9)

LSSIM = 1−
(
2µŶµY + C1

)(
2σŶY + C2

)(
µ2

Ŷ
+ µ2

Y + C1

)(
σ2

Ŷ
+ σ2

Y + C2

) (10)

LIoU = 1−
∑H

i=1 ∑W
j=1 Ŷ(i,j)Y(i,j)

∑H
i=1 ∑W

j=1 Ŷ(i,j) + Y(i,j) − Ŷ(i,j)Y(i,j)
(11)

4.4. Evaluation Metric

The performance of salient object detection is measured using Mean Absolute Error
(MAE) and F-measure as in Equations (12) and (13), respectively. Specifically, in F-measure,
the salient result S has a threshold with a value ranged from 0 to 1, and subsequently the
precision and recall are calculated. In this study, the maximum F-measure is taken, and
denoted as maxFβ, where β2 is set at 0.3.

MAE =
1

HXW

H

∑
i=1

W

∑
j=1

∣∣∣ŷ(i,j) − y(i,j)
∣∣∣ (12)

Fβ =

(
1 + β2)× Precission× Recall

β2 × Precission + Recall
(13)
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4.5. Result of Stability Experiment

In stability analysis, Table 1 shows that the SKR and SQR results are stable across
various scales, since no big difference in between maxF and MAE is observed. This com-
parison includes the performance of the current scales with the initial scale in 256 × 256.
This indicates that the refinement and transition modules work well for maintaining the
results across various scales. Compared to SQR, the skip case of SKR has a better result,
because in sequential refinement the error introduced in the current state is diffused to the
next refinement. Regarding the running time, in case of 256 × 256 input for all modules,
the prediction module consumes about 54.5 ms, and the transition module and refinement
module are 6.1 ms and 12.4 ms, respectively. This experiment was conducted with an
NVIDIA GTX 1080ti GPU, and the result may be even better with newer NVIDIA series.

Table 1. Comparison of Max-F and MAE results on different scenarios where (*) is BR, (+) is SKR,
and (#) is SQR in DUTS-TE. Each result is compared with BR as the baseline (bold style font) to see
the difference between Max-F and MAE value.

Method Max F Max-F Diff. MAE MAE Diff.

BASNet * 0.8600 0.0000 0.0470 0.0000
Basnet 128 + 0.8479 0.0121 0.0479 0.0009
Basnet 64 + 0.8440 0.016 0.0482 0.0012
Basnet 32 + 0.8354 0.0246 0.0496 0.0026

Proposed 256 * 0.8548 0.0000 0.0435 0.0000
Proposed 128 + 0.8545 0.0003 0.0436 0.0001
Proposed 64 + 0.8514 0.0034 0.0438 0.0003
Proposed 32 + 0.8490 0.0058 0.0443 0.0008

Proposed # 0.8547 0.0001 0.0436 0.0001

4.6. Effectiveness of the Transition Module

The transition module acts as the bridge between the coarse map and the original
image gradient. The qualitative result is shown in Figure 5, in which the Sobel operator
returns all of the boundaries of the objects in Figure 5a. In addition, the transition module
is able to adapt the coarse map, and reject many unrelated boundaries as in Figure 5b. This
feature is later utilized by the refinement module to generate the final prediction as in
Figure 5c, in which it produces an accurate boundary for the saliency result.

Electronics 2022, 11, x FOR PEER REVIEW 14 of 19 
 

 

   
(a) (b) (c) 

Figure 5. Results of the transition module. (a) Sobel detected edge. (b) Result of transition module. 
(c) Final refinement result. 

4.7. Qualitative and Quantitative Result 
Table 2 shows the quantitative comparison, in which the proposed method outper-

forms the former schemes in terms of the Max.F and MAE. Some qualitative results are 
provided in Figure 6. The proposed method produces more accurate boundaries, com-
pared with the former schemes. Some false positives are also rejected in the prediction as 
in the first row of Figure 6. Notably, the false negatives are also reduced compared to the 
BASNet as shown in the second row of Figure 6. The proposed method can also provide 
promising results on the details as shown in the last row of Figure 6, where the bird’s leg 
is well preserved compared with BASNet and RAS. Notably, during the training phase, 
the designed transition and refinement modules are able to facilitate a quick convergence 
and generate promising results. Finally the boundary quality comparison is shown in Fig-
ure 7. 

Table 2. Comparison with former schemes. The records highlighted in green, blue and red colors 
indicate first, second and third best. 

Method 
ECSSD DUT-OMRON HKU-IS DUTS-TE 

Max-F MAE Max-F MAE Max-F MAE Max-F MAE 
Proposed 0.943 0.035 0.843 0.051 0.928 0.030 0.865 0.042 

MLMSNet [19] 0.914 0.038 0.742 0.056 0.893 0.034 0.802 0.045 
CPD-RA [20] 0.934 0.043 0.783 0.059 0.918 0.038 0.852 0.048 
BASNet [23] 0.942 0.037 0.805 0.056 0.928 0.032 0.860 0.047 

PAGE-Net [24] 0.926 0.035 0.770 0.063 0.920 0.030 0.817 0.047 
R3Net+ [25] 0.934 0.040 0.795 0.063 0.915 0.036 0.828 0.058 
AFNet [32] 0.935 0.042 0.797 0.057 0.923 0.036 0.862 0.046 

Iterative [33] 0.926 0.040 0.780 0.059 0.920 0.038 0.836 0.048 
PiCANetR [34] 0.935 0.046 0.803 0.065 0.918 0.043 0.860 0.050 

BMPM [35] 0.928 0.045 0.774 0.064 0.921 0.039 0.852 0.048 
PAGRN [36] 0.927 0.061 0.771 0.071 0.918 0.048 0.854 0.055 

RAS [37] 0.921 0.056 0.786 0.062 0.913 0.045 0.831 0.059 
C2S [38] 0.910 0.055 0.758 0.072 0.896 0.048 0.807 0.062 

RADF+ [39] 0.923 0.049 0.791 0.061 0.914 0.039 0.821 0.061 
DGRL [40] 0.925 0.042 0.779 0.063 0.913 0.037 0.834 0.051 
LFR [41] 0.911 0.052 0.740 0.103 0.911 0.040 0.778 0.083 
SRM [42] 0.917 0.054 0.769 0.069 0.906 0.046 0.826 0.058 

Amulet [43] 0.915 0.059 0.743 0.098 0.897 0.051 0.778 0.084 
DSS+ [44] 0.921 0.052 0.781 0.063 0.916 0.040 0.825 0.056 

NLDF+ [45] 0.905 0.063 0.753 0.080 0.902 0.048 0.813 0.065 
UCF [46] 0.903 0.069 0.730 0.120 0.888 0.062 0.773 0.112 
MDF [47] 0.832 0.105 0.694 0.092 0.860 0.129 0.729 0.099 
 

Figure 5. Results of the transition module. (a) Sobel detected edge. (b) Result of transition module.
(c) Final refinement result.

4.7. Qualitative and Quantitative Result

Table 2 shows the quantitative comparison, in which the proposed method outper-
forms the former schemes in terms of the Max.F and MAE. Some qualitative results are
provided in Figure 6. The proposed method produces more accurate boundaries, compared
with the former schemes. Some false positives are also rejected in the prediction as in
the first row of Figure 6. Notably, the false negatives are also reduced compared to the
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BASNet as shown in the second row of Figure 6. The proposed method can also provide
promising results on the details as shown in the last row of Figure 6, where the bird’s leg is
well preserved compared with BASNet and RAS. Notably, during the training phase, the
designed transition and refinement modules are able to facilitate a quick convergence and
generate promising results. Finally the boundary quality comparison is shown in Figure 7.

Table 2. Comparison with former schemes. The records highlighted in green, blue and red colors
indicate first, second and third best.

Method
ECSSD DUT-OMRON HKU-IS DUTS-TE

Max-F MAE Max-F MAE Max-F MAE Max-F MAE

Proposed 0.943 0.035 0.843 0.051 0.928 0.030 0.865 0.042
MLMSNet [19] 0.914 0.038 0.742 0.056 0.893 0.034 0.802 0.045
CPD-RA [20] 0.934 0.043 0.783 0.059 0.918 0.038 0.852 0.048
BASNet [23] 0.942 0.037 0.805 0.056 0.928 0.032 0.860 0.047

PAGE-Net [24] 0.926 0.035 0.770 0.063 0.920 0.030 0.817 0.047
R3Net+ [25] 0.934 0.040 0.795 0.063 0.915 0.036 0.828 0.058
AFNet [32] 0.935 0.042 0.797 0.057 0.923 0.036 0.862 0.046

Iterative [33] 0.926 0.040 0.780 0.059 0.920 0.038 0.836 0.048
PiCANetR [34] 0.935 0.046 0.803 0.065 0.918 0.043 0.860 0.050

BMPM [35] 0.928 0.045 0.774 0.064 0.921 0.039 0.852 0.048
PAGRN [36] 0.927 0.061 0.771 0.071 0.918 0.048 0.854 0.055

RAS [37] 0.921 0.056 0.786 0.062 0.913 0.045 0.831 0.059
C2S [38] 0.910 0.055 0.758 0.072 0.896 0.048 0.807 0.062

RADF+ [39] 0.923 0.049 0.791 0.061 0.914 0.039 0.821 0.061
DGRL [40] 0.925 0.042 0.779 0.063 0.913 0.037 0.834 0.051
LFR [41] 0.911 0.052 0.740 0.103 0.911 0.040 0.778 0.083
SRM [42] 0.917 0.054 0.769 0.069 0.906 0.046 0.826 0.058

Amulet [43] 0.915 0.059 0.743 0.098 0.897 0.051 0.778 0.084
DSS+ [44] 0.921 0.052 0.781 0.063 0.916 0.040 0.825 0.056

NLDF+ [45] 0.905 0.063 0.753 0.080 0.902 0.048 0.813 0.065
UCF [46] 0.903 0.069 0.730 0.120 0.888 0.062 0.773 0.112
MDF [47] 0.832 0.105 0.694 0.092 0.860 0.129 0.729 0.099
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5. Conclusions

In this study, a novel salient object detection scheme was proposed to solve the
bottleneck prediction scheme, and reduce computation by reducing the image size for initial
prediction. The proposed MEAN network performs well in prediction and refinement.
The proposed refinement strategy adopts image gradient as the refinement guidance, and
it can maintain the stability of the prediction across various scales. Experimental results
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demonstrate that the performance is improved by resizing the coarse map into its original
image size, and subsequently refining the coarse map. By adopting the 3D CNN as a
channel analyzer can facilitate the transition module to identify a better edge for the next
refinement step. The proposed training mechanism for transition and refinement modules
has shown good performance to generate a robust result for various refinement scenarios
compared to that of the former schemes.

This study proposes some fields which can be explored in the future. The first possible
improvement is on the training mechanism with an adaptive hyper-parameter. This
mechanism refers to an additional module for training that can adaptively change the hyper-
parameter of loss for weighting of the side-output and the refinement. By treating each loss
separately, the method may achieve better performance. Another possible improvement
could be automatic refinement switching. This improvement is related to choosing different
refinement strategies such as BR, SQR and SKR, which depend on the need for computation.
Moreover, a new architecture design for different modules can be explored further for
different applications.
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