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Abstract: Hybrid energy storage systems for hybrid electric vehicles (HEVs) consisting of multi-
ple complementary energy sources are becoming increasingly popular as they reduce the risk of
running out of electricity and increase the overall lifetime of the battery. However, designing an
efficient power split optimization algorithm for HEVs is a challenging task due to their complex
structure. Thus, in this paper, we propose a model that jointly learns the optimal power split for a
battery/ultracapacitor/fuel cell HEV. Concerning the mechanical system of the HEV, two propulsion
machines with complementary operation characteristics are employed to achieve higher efficiency.
Additionally, to train and evaluate the model, standard driving cycles and real driving cycles are
employed as input to the mechanical system. Then, given the inputs, a temporal attention long
short-term memory model predicts the next time step velocity, and through that velocity, the pre-
dicted load power and its corresponding optimal power split is computed by a soft actor–critic
deep reinforcement learning model whose training phase is aided by shaped reward functions. In
contrast to global optimization techniques, the local velocity and load power prediction without
future knowledge of the driving cycle is a step toward real-time optimal energy management. The
experimental results show that the proposed method is robust to different initial states of charge
values, better allocates the power to the energy sources and thus better manages the state of charge
of the battery and the ultracapacitor. Additionally, the use of two motors significantly increases the
efficiency of the system, and the prediction step is shown to be a reliable way to plan the HESS power
split in advance.

Keywords: hybrid electric vehicle; deep reinforcement learning; optimal power split; real-time

1. Introduction

The basic operating principle of internal combustion engine (ICE) vehicles involves
transforming energy from fossil fuels into thermal energy. In this combustion, the gases
generated are released into the atmosphere with a negative impact on the environment
and human health. In particular, the transportation sector contributed 29% of greenhouse
gas emissions (GHG) to total United States GHG emissions in 2019 [1]. Furthermore, there
is a growing concern regarding the scarcity of fossil fuels and the need to implement a
sustainable economy based on renewable energy sources. The Sustainable Development
Goals (SDGs) established in 2015 by the United Nations General Assembly have sustainable
energy at its core. The seventh goal specifically emphasizes the need for renewable energy
sources [2]. In light of the growing concern of society with environmental issues, the
development of battery electric vehicles (BEVs) is a step toward the fulfillment of the
seventh SDG.

The engine is the primary distinction between a traditional internal combustion engine
(ICE) car and an electric vehicle (EV). The latter is powered by an electric motor that works
by transforming chemical energy stored in rechargeable batteries into electrical energy. The
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generated electricity is then transformed into mechanical and kinetic energy. These new
models of vehicles also have multiple advantages when compared to ICE ones. EVs are
efficient, do not emit tailpipe pollutants, are quiet and produce little noise pollution. In
addition, recharging an EV is cheaper than refueling an ICE car [3,4].

Electric vehicles include battery electric vehicles (BEVs), hybrid electric vehicles(HEVs),
plug-in hybrid electric vehicles(PHEVs), and fuel cell hybrid electric vehicles (FCHEVs),
depending on the energy source for the vehicle [5,6].

Fuel cells are considered an ideal energy source for electric vehicles because of their
high efficiency and zero emission [7]. However, there is very little charging infrastructure
for fuel cells compared to charging stations for EVs and gas stations for ICEs. Moreover, the
cost of charging a fuel cell is much higher than that of charging an electric vehicle. Because
of this shortcoming of fuel cells, FCHEVs require additional energy sources.

Batteries are the most widely used energy source in EVs because they have high energy
density [8,9]. However, they have disadvantages such as long charging times, high prices,
and high temperature sensitivity. Therefore, recently, solid-state type batteries with better
performance and shorter charging time than conventional batteries have been continuously
studied [10,11].

Ultracapacitors (UC) have high power density and very long lifetimes and are not
affected by temperature; so they are suitable for devices with high peak currents [12].
However, low energy density, the need for voltage balancing and high self-discharging are
major drawbacks. One of the most promising solutions proposed for FCHEVs is a hybrid
energy storage system (HESS) consisting of three energy sources: a fuel cell (FC), a battery,
and an ultracapacitor [13].

Since the HESS structure for EVs is diverse, a different energy management system
(EMS) control strategy is required according to the HESS structure [14]. One of the most
common HESS structures consists of a battery and a UC [15]. Among other existing studies,
there are studies that reviewed a HESS consisting of an FC and a battery [16] and an FC
and a UC [17]. As a more complex structure, there have been studies on hybrid energy
storage systems that include all three of them: a battery, a UC, and an FC [18].

In addition, there are some studies [19,20] of EMS considering a complex HESS struc-
ture in which not only multiple energy storage units but also more than one propulsion
machine are connected. To improve power performance and propulsion efficiency, two
propulsion machines with complementary torque–speed characteristics can be used in the
EV powertrain.

The energy management systems of electric vehicles with hybrid energy storage
systems are largely classified into two types: rule-based and optimization-based [21]. Rule-
based EMSs are divided into deterministic rule-based EMSs and fuzzy rule-based EMSs
according to the characteristics of the rules used. In addition, optimization-based EMSs
can be classified into global optimization and real-time optimization EMSs according to
the level of information of the driving condition. Global optimization-based methods
have the advantage of finding the global optimum of the problem, but they demand
previous knowledge of the entire driving cycle, which would be unfeasible in a real-time
optimization scenario.

Many previous studies focused on convex optimization techniques [19,20,22,23]. How-
ever, convex optimization of complex systems is very difficult due to the excessive number
of parameters to consider and the difficulty of linearizing all systems. Therefore, a neural
network (NN)-based machine learning algorithm was proposed by [20] to solve the multi-
purpose energy problem for a dual-motor battery/FC/UC. The control was performed
through two steps. First, the load power was divided between the two complementary
motors, and then the load power was split between the battery pack, the FC and the UC in
the HESS. For the HESS power split, a convex optimization technique was used to generate
optimal target values which became the training data for the NN. When employing convex
optimization, the results showed that the battery life was extended by about 5 years in
contrast to the NN model which extended the battery life by about 92.5% of 5 years.
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Another technique that has been emerging in the area of HEV EMSs is deep rein-
forcement learning (DRL) [24–28]. They explore different DRL techniques such as deep
Q-learning (DQN), soft actor–critic (SAC) and deep deterministic policy gradient (DDPG)
for different HEV topologies. Particularly, by applying reinforcement learning using real
driving data, energy savings of about 16% compared to the existing binary control strategy
were confirmed [28]. The energy efficiency was improved by looking at the existing driving
cycle of one’s vehicle and dividing the power output level of the ICE into 24 levels through
reinforcement learning, instead of just following the rules set by the EMS.

However, we found only one work that addresses the dual-motor battery/UC/FC
HEV EMS control strategy, due to their complex structure [20], which makes use of convex
optimization and machine learning techniques, not reinforcement learning. Additionally,
even though the authors in [27] develop a reinforcement learning-based model for an
FC/battery/UC HEV, they use a deep-Q network model and do not explore the use of
multiple motors nor the forecast of the future load power. Thus, in this paper, a real-time
deep reinforcement learning (SAC)-based EMS control strategy for a HESS of a vehicle that
has three energy sources, battery, FC and UC, and two complementary motors is proposed.
First, a method for real-time velocity and load power prediction using SDCs and RDCs
is proposed. This prediction step allows the EMS to better plan the use of resources of
the HEV and prevent it from running out of electricity. Given the predicted load power,
the SAC model is then used to efficiently distribute energy in the HESS. Through the
experimental results, it was confirmed that compared to traditional rule-based methods the
proposed method can better allocate the energy sources power and thus achieve good FC
efficiencies and better manage the SOCs of the battery and the ultracapacitor. The model is
also shown to be robust, as it can handle different initial values of SOC while satisfying
all the constraints of the system. Moreover, the addition of reward shaping to the training
phase of the SAC agent accelerated its convergence. Additionally, it can be seen that the use
of two complementary motors leads to a big improvement in the efficiency of the vehicle
compared to a single-motor architecture. Finally, the results of the prediction step show
that the method is reliable to forecast the future speeds and load power and, therefore, aid
the model in allocating the resources of the HEV.

2. Preliminaries
2.1. Overall Procedure for a Reinforcement Learning-Based Energy Management Strategy (EMS)

Figure 1 illustrates the proposed method. The inputs of the neural network are the
five past velocity and acceleration values of either standard driving cycles (SDCs) or real
driving cycles (RDC). Given those values, the neural network predicts the future velocity
and acceleration for one time step ahead, which will be used to compute the load powers of
the two electrical motors. The load powers of these motors will be sent into the EMS, which
will distribute the load power between the battery, the fuel cell, and the ultracapacitor
using deep reinforcement learning (DRL).

2.2. Input Data

For the input, both SDCs and RDCs were used. Particularly, the worldwide har-
monized light vehicles test cycles (WLTC) and the urban dynamometer driving schedule
(UDDS) were used. Despite their ease of use, they do not represent the reality well enough;
so they were mainly used for model validation and performance evaluation purposes. On
the other hand, RDCs overcome these limitations because of the higher degree of complex-
ity associated to them. There are personal elements, such as the driver’s behavior, which is
hard to model because of its time-varying nature. There are also factors that do not depend
on the driver, such as the weather conditions (snowstorm, heavy rain, flooding), traffic
signals and traffic conditions (construction and accidents may slow down the traffic). The
RDCs data, collected by an On-Board Diagnostics (OBD)-II dongle connected to one of
the author’s vehicles, are the same as the data used in Hong et al. [29]. The four RDCs
employed in this paper are shown in Figure 2.
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Figure 1. Procedure of reinforcement learning-based EMS.

(a) RDC1; (b) RDC2;

(c) RDC3; (d) RDC4;

Figure 2. Speed and acceleration over time of the different time series collected by Hong et al. [29].

2.3. Neural Network for Velocity Forecast

The problem that the neural network is trying to solve can be modeled as a univariate
time series; that is, there is only one time-varying variable, which is the velocity of the
vehicle. Despite the existing challenges related to time series forecast, it is an important
field of study because knowing the future allow us to better plan short-term and long-term
goals. Particularly, in our work, we predict the velocity to optimally allocate the available
resources so that the energy storage components may achieve maximum efficiency, their
lifetime may be maximized and the vehicle may not run out of electricity during the trip.

Based on the previous work of Hong et al. [29], which used the same RDC dataset as
this present paper and evaluated different time series and deep learning models for velocity
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prediction (seasonal auto regressive integrated moving average (SARIMA), recurrent neural
network (RNN), gated recurrent unit (GRU) and long short-term memory (LSTM)), we
decided to use the attention-based LSTM model with step size T = 5 and hidden state size
m = 32 proposed by the authors, as it outperformed the other models that were tested.

2.4. Vehicle System Overview

The vehicle is mainly composed of the HESS and the mechanical components shown
in Figure 3. The HESS is composed of three energy sources (battery/ultracapacitor/fuel
cell), and the HEV has two complementary propulsion machines.

Figure 3. HESS architecture.

2.5. Power Split Optimization for the Propulsion Machines

The mechanical model of the vehicle may be computed by Equations (1)–(14), and its
parameters are given in Table 1. The acceleration values needed for the equations come
from Section 2.3 by differentiating the forecast velocity values. Such acceleration values
are then used to compute the total force Ft acting on the vehicle, given by (1), consisting of
the rolling resistance Frr, the aerodynamic drag Fd, the grading resistance Fgr and the Fla.
Given the total force, the load power and the power loss for each motor may be computed
according to the motor efficiencies. Then, combining all the Equations (1)–(14) with the
power split optimization procedure proposed by [19], the optimal power split and losses
for the two motors may be computed.

In this paper, the motors chosen are the Toyota Camry MG1 [30] and the UQM
PowerPhase 125 [31]. Their parameters are shown in Table 2 and their efficiency curves
may be seen in Figure 4. Finally, Figure 5 shows the output of the method (load power and
losses) for the two motors for the four RDCs shown in Figure 2.

Ft = Frr + Fad + Fgr + Fla (1)

Frr = Crmg cos(α) (2)

Cr = a0 + a1 · v + a2 · v2 + a3 · v3 + a4 · v4 ++a5 · v5 (3)

Fad =
1
2

ρACdv2 (4)

Fgr = mg sin(α) (5)

Fla = δma (6)

Tt = Ft × rw (7)

Pt = Ft × v (8)

ωw =
v

rw
(9)

τ =
rwh · Ft

Gr
(10)
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ωm =
v

rwh
Gr (11)

PLoad = τωm (12)

Ploss,i(t) =

{
ω(t) · τi(t) · (1− ηi(t)) if τi(t) ≥ 0
ω(t) · τi(t) · (

1−ηi(t))
ηi(t)

if τi(t) ≤ 0

}
, i = {1,2} is the motor index

(13)
Efficiency(η) = lookup2d(Torque(Nm), Speed(rpm)) (14)

Table 1. Mechanical model parameters.

Parameters Description Values

m Mass of the vehicle (kg) 1650
rwh Wheel radius (m) 0.33602
g Gravity acceleration (m/s2) 9.81
ρ Air density 1.2
A Front area of vehicle (m2) 2.12344
α Angle of driving surface (rad) 0
a0 Rolling resistance coefficient 8.8 · 10−3

a1 Rolling resistance coefficient −6.42 · 10−5

a2 Rolling resistance coefficient 9.27 · 10−6

a3 Rolling resistance coefficient −3.3 · 10−7

a4 Rolling resistance coefficient 6.68 · 10−11

a5 Rolling resistance coefficient −4.46 · 10−11

Cd Aerodynamic drag coefficient 0.24
Gr Gearbox ratio 5.5

Table 2. Parameters of the motors.

Motor Parameters Values

Toyota Camry MG1

Motor peak power rating (kW) 105
Motor peak torque rating (Nm) 270

Top rotational speed (rpm) 14,000
Motor mass (kg) 41.7

UQM PowerPhase 125

Motor peak power rating (kW) 125
Motor peak torque rating (Nm) 300

Top rotational speed (rpm) 8000
Motor mass (kg) 41

(a) (b)

Figure 4. Efficiency maps: (a) Motor 1; (b) Motor 2. Adapted from [30,31].
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(a) RDC1 and motor 1 (b) RDC1 and motor 2

(c) RDC2 and motor 1 (d) RDC2 and motor 2

(e) RDC3 and motor 1 (f) RDC3 and motor 2

(g) RDC4 and motor 1 (h) RDC4 and motor 2

Figure 5. Load power and losses for the two motors and the four RDCs: (a) load power and loss
for motor 1 and RDC1; (b) load power and loss for motor 2 and RDC1; (c) load power and loss for
motor 1 and RDC2; (d) load power and loss for motor 2 and RDC2; (e) load power and loss for
motor 1 and RDC3; (f) load power and loss for motor 1 and RDC3; (g) load power and loss for motor
1 and RDC4; (h) load power and loss for motor 2 and RDC4.

2.6. Electrical Model of the Hybrid Energy Storage System (HESS)

The battery and the ultracapacitor packs adopted are based on the ones proposed
by [19]. They are composed of, respectively, multiple K2 High Capacity Lithium iron phos-
phate (LiFePO4) 22650P battery cells [32] and multiple Maxwell BCAP1500
ultracapacitors [33]. Their basic models are given, respectively, by Figures 6 and 7; the
parameters are given by Tables 3 and 4, and the equations used to compute the parameters
are given by Equations (15)–(22) and (23)–(29).

Finally, the fuel cell (FC) and the DC/DC converter were modelled based on the
system proposed in [20]. The DC has a maximum output of 35kW, the parameters for the
FC are given in Table 5 and the FC stack’s efficiency and power loss may be computed
according to Equations (30) and (31).
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Two inverters for two propulsion machines were modelled based on the datasheet [34].
These inverters are insulated gate bipolar transistors (IGBTs) with a based pulse width
modulated (PWM) inverter. We assumed that inverter efficiency is 97%.

Figure 6. Basic model of the battery.

Figure 7. Basic model of the ultracapacitor.

Table 3. Battery parameters.

Parameters Description Values

R Internal resistance 9 mΩ
Ns Number of serial cells 94
Np Number of parallel branches 36
VT Battery voltage (V) 300

Rn, n = 1, 2, . . . , Ns Equivalent resistance of serial cells 846 mΩ
RT Total equivalent resistance 23.5 mΩ

Vcell Cell voltage (V) 3.2
Ecell Maximum energy stored in a cell (Wh) 8.32
Ccell Capacity of a cell (Ah) 2.6
ET Total energy stored (kWh) 28.2
CT Total capacity (Ah) 93.6

SOCbat SOC of the battery -
ibat Current of the battery -

VT = Ns ·Vcell (15)

Rn = Ns · R; n = 1, ..., 94 (16)

RT =
Rn

Np
(17)

Ecell = Vcell · Ccell (18)

CT = Ccell · Np (19)
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ET = Ecell · Np · Ns (20)

ibat =
VT −

√
V2

T − 4RT

2RT
(21)

SoCbat = SoCbat,prev +
β
∫

ibatdt
CT

(22)

Table 4. Ultracapacitor parameters.

Parameters Description Values

R Internal resistance 0.47 mΩ
Ns Number of serial cells 222
VT Battery voltage (V) 600
RT Total equivalent resistance 103.34 mΩ

Ccell Capacitance of a cell (F) 1500
Vcell Cell voltage (V) 2.7
Ecell Maximum energy stored in a cell (Wh) 1.52
ET Total energy stored (kWh) 0.338
CT Total capacitance (F) 6.76

SOCUC SOC of the battery -
iUC Current of the battery -

VT = Ns ·Vcell (23)

RT = Ns · R (24)

CT =
Ccell
Ns

(25)

Ecell = 0.5 · Ccell ·V2
cell (26)

ET = Ecell · Ns (27)

iUC =
VT −

√
V2

T − 4RT

2RT
(28)

SoCUC = SoCUC,prev +
β
∫

iUCdt
CT

(29)

Table 5. FC and DC/DC converter parameters.

Parameters Description Values

Pnom, f c FC nominal power 8 kW

a1 Slope (if
Pf c

Pf c,nom
≤ 0.15) 2

b1 Intercept (if
Pf c

Pf c,nom
≤ 0.15) 0.4

a2 Slope (if
Pf c

Pf c,nom
≥ 0.15) −0.040625

b2 Intercept (if
Pf c

Pf c,nom
≥ 0.15) 0.620625

η f c FC efficiency Equation (30)
Pf c,loss Loss in the FC Equation (31)

ηinv Inverter efficiency 0.97
Pinv,loss Loss in the inverter Equation (32)

η f c = a ·
Pf c

Pf c,nom
+ b (30)

Ploss, f c = Pf c · (1− η f c) (31)
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Ploss,inv = Pinv · (1− ηinv) (32)

PPM = Pinv · ηinv (33)

3. Soft Actor–Critic (SAC) for HESS Power Split Optimization
3.1. Problem Overview

Reinforcement learning (RL) at its core involves an agent trying to learn decision
making and control by interacting with an environment. Such interaction happens through
actions taken by the agent, which can modify the environment and cause a state transition.
As every action has an impact on the environment, each yields rewards to encourage good
actions and discourage bad ones. The choice of action for each state depends on the policy
of the agent, which maps the states to the probabilities of choosing each action given a
specific state.

Therefore, the problem of power split optimization for the presented HESS can be
modeled as a deep reinforcement learning problem. As shown in the next sections, the
agent of our proposed model must learn the best policy possible to maximize the rewards
of the system as a whole. Moreover, as it is not possible to map all the possible state–action
pairs of the environment to their respective rewards, we use deep neural networks (DNN)
to approximate them. Finally, all the code related to the deep reinforcement learning-based
model was implemented using the Python programming language and the TensorFlow’s
TF-Agents framework.

3.2. Agent, Environment, Action and State

In our case, we have the HESS, which is the agent inside the HEV, which is the
environment. The HEV is supposed to move for a specified amount of time according to a
driving cycle while varying velocity, optimizing the fuel cell’s efficiency and minimizing
the battery power magnitude and variation. However, initially the HEV does not know
how to distribute the load power computed in Section 2.5 between the three different
energy storage systems (battery, ultracapacitor and fuel cell). The task of power split is
performed by the HESS, which must decide among infinite possible combinations of the
optimal battery, ultracapacitor and fuel cell powers. Each of the combinations chosen is
an action performed by the agent, which leads to a state transition. Thus, in this paper,
the state and the action spaces are given, respectively, by S = {Pload; SOCbat; SOCuc} and
A = {Pbat,%, PUC,%, PFC,%}. The actions are not absolute power values but continuous
values ranging from zero to one, which are transformed into percentages summing up to
one through the softmax function. For instance, if Pload = 10 kW and {Pbat,%, PUC,%, PFC,%}
= {0.8, 0.5, 0.2}, the softmax function outputs approximately {0.44, 0.32, 0.24}, which would
represent in absolute power values {Pbat, PUC, PFC} = {4.4 kW, 3.2 kW, 2.4 kW}.

3.3. Rewards and Penalties

The learning process of the agent is driven by rewards and penalties depending on how
good the agent’s actions are. In our case, the agent should ideally satisfy all the following
criteria (35)–(41), which are based on [20]. The parameters related to the constraints may
be found in Table 6, and the objective function to be optimized is shown in Equation (34),
where the coefficients (a) to (f) are positive penalty coefficients.

g = a · Pbat + b · PUC + c · PFC + d · SOC2
bat + e · SOC2

UC + f · η2
FC (34)

Pmin,bat ≤ Pbat(t) ≤ Pmax,bat (35)

Pmin,bat_di f f ≤ Pbat(t)− Pbat(t− 1) ≤ Pmax,bat_di f f (36)

Pmin,DC ≤ PDC(t) ≤ Pmax,DC (37)

Pmin,FC ≤ PFC(t) ≤ Pmax,FC (38)

Pmin,UC ≤ PUC(t) ≤ Pmax,UC (39)
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Pbat(t) + PFC(t)− PDC(t) = PM1(t) (40)

PUC(t) + PDC(t) = PM2(t) (41)

Table 6. Optimization constraints parameters.

Parameters Description Values

Pmin,bat Minimum battery power −30 kW
Pmax,bat Maximum battery power 30 kW

SOCmin,bat Minimum battery SOC 0.2
SOCmax,bat Maximum battery SOC 0.9
Pmin,bat_di f f Minimum battery power difference −9 kW
Pmax,bat_di f f Maximum battery power difference 9 kW

Pmin,DC Minimum DC/DC converter power −35 kW
Pmax,DC Maximum DC/DC converter power 35 kW
Pmin,FC Minimum FC power 0
Pmax,FC Maximum FC power 8 kW
Pmin,UC Minimum ultracapacitor power −30 kW
Pmax,UC Maximum ultracapacitor power 30 kW

SOCmin,UC Minimum ultracapacitor SOC 0.5
SOCmax,UC Maximum ultracapacitor power 1

Considering the constraints (35)–(41), terminal states were designed. The terminal
states and actions would be a SOCbat, SOCuc, Pbat, Puc and PFC smaller or greater than the
minimum or maximum values allowed according to Table 6. Thus, whenever the vehicle
reached an illegal state or tried to perform an illegal action, the environment was reset, and
the agent received a penalty proportional to the length of the driving cycle. As the length
of the driving cycles used were all less than 2000, the agent receives a penalty of 1000,
and the environment is reset. On the other hand, if the states and the actions chosen are
valid, the vehicle receives a reward according to r = SOC2

bat + SOC2
uc + η2

f c + g(x), where

g(x) = 1−
(

d
dmax

)p
is the output of the shaped reward function as explained below.

Reward shaping is a technique that involves changing the structure of a sparse reward
function to offer more regular feedback to the agent [35] and thus accelerate the learning
process. Figure 8 shows an example of a sparse and a shaped reward function.

(a) (b)

Figure 8. Reward shaping: (a) sparse reward function; (b) shaped reward function.

In our paper, we designed three different reward functions and one penalty function.
Equations (42)–(44) show the reward functions, and Equation (45) represents the penalty

function for different values of d and dmax of the equation g(x) = 1−
(

d
dmax

)p
. The value

of p was set to 0.4 after performing hyperparameter tuning.
All the four functions were activated depending on the SOC of the ultracapacitor to

encourage higher or lower power from the three energy sources. Their thresholds and
descriptions are shown in Table 7.
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g1(x) = 1−
(

Pmax,UC − PUC

Pmax,UC

)0.4
(42)

g2(x) = 1−
(

Pmax,FC − PFC

Pmax,FC

)0.4
(43)

g3(x) = 1−
(

Pmax,bat − Pbat

Pmax,bat

)0.4
(44)

g4(x) = −
(

1−
(

Pmax,UC − PUC

Pmax,UC

)0.4
)

(45)

Table 7. Shaped reward functions.

Function Threshold Description

g1(x) Activated when SOCUC > 0.65 or
(SOCUC > 0.65 and Pload < 0)

Encourages high UC power or
regenerative power

g2(x) Activated when SOCUC < 0.65 Encourages high FC power
g3(x) Activated when SOCUC < 0.65 Encourages high battery power
g4(x) Activated when SOCUC < 0.65 Encourages low UC power

3.4. Soft Actor–Critic (SAC)

The essence of solving a reinforcement learning problem lies in optimizing the trade-
off between exploration and exploitation. In contrast to supervised learning, in RL there
are no labels, and the agent must learn to satisfy all the rules of the environment simply by
exploration. During the training stage, the model will solely perform random actions and
gradually find an optimal balance between exploration and exploitation, thus the optimal
policy. On the other hand, during the testing stage, the model will only perform exploitation.
That is, it will act according to the optimal policy learned during the training stage.

The soft actor–critic (SAC) model [36] is an off-policy method that uses DRL to find
the optimal balance between exploration and exploitation by maximizing both the reward
and the entropy of the system. By maximizing the entropy, the model is encouraged to keep
exploring and thus assign similar probabilities to actions with similar action values and
not assign excessively large probabilities to a specific set of actions. On the other hand, by
maximizing the rewards, the model will strive toward finding the optimal policy. Therefore,
given the large action and state spaces of our model (see Figure 5 and Table 6), we believe
that the SAC model would be appropriate to learn the ideal power split algorithm for
the HESS.

The architecture chosen for our SAC agent is a two-network design without shared
features between them: one for the actor and one for the critic. Their parameters after
hyperparameter tuning are shown in Table 8.

Table 8. SAC agent parameters.

Parameters Values

Activation function ReLU
Discount factor 0.999
Learning rate 3× 10−4

Batch size 2048
Number of hidden layers 2

Number of hidden units per layer 256
Target smoothing coefficient 0.005

Target update interval 1
Gradient steps 1

Replay buffer size 1,000,000
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4. Experimental Results
4.1. SAC Agent Training Phase

The training phase of the SAC agent was performed using the WLTC class 3 data and
the parameters shown in Table 8. Figure 9 shows the rewards over 1,400,000 iterations,
while Figure 10 represents the average rewards over 10,000 steps. It may be seen that the
average rewards converge to the value of about 800.

Figure 9. Rewards obtained by the SAC agent.

Figure 10. Average rewards computed every 10,000 steps.

4.2. SAC Agent Evaluation with SDCs

To evaluate the proposed method, a rule-based power split technique was employed
in the HESS for the WLTC class 1 standard driving cycle. The power split rule changed
based on the sign of the load power. For positive load powers, ratios of {Pbat, PUC, PFC} =
{40%Pload, 40%Pload, 20%Pload} were used, and in the case of regenerative braking, ratios of
{Pbat, PUC, PFC} = {50%Pload, 50%Pload, 0%Pload} were used. The results are shown in the
Figures 11–13.

Both techniques have similar results in terms of power split, but it can be seen that
the rule-based technique struggles with managing the SOCs and the currents of the ultra-
capacitor and the battery. The initial SOCs are 0.9, but after the 1023 s of simulation, the
final SOCs of the ultracapacitor are about 62.8% and 46.9% for the DRL and rule-based
technique, respectively, as shown in Figure 13. The latter value is below the acceptable
value because the theoretically minimum allowed SOC for the ultracapacitor is 50%, as
shown in Table 6 due to the approximately linear discharge of the ultracapacitor.

Additionally, the SAC model is far more robust than the rule-based one. Figure 14
shows the SOCs of the battery and the UC when their initial values are 0.7. The SAC model
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is able to find the optimal power split while satisfying the constraints from Table 6, in
contrast to the rule-based technique.

Finally, the DRL model also has the advantage of being able to perform well in new
data without the need for retraining. It is shown in Sections 4.3 and 4.4 that the model can
obtain good results, even for different data on which it was never trained.

Figure 11. Battery, ultracapacitor and fuel cell powers by rule-based optimization.

Figure 12. Battery, UC and FC powers by DRL.

Figure 13. Comparison of SOCs obtained by rule-based and DRL technique when the initial SOCs
are 0.9.
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Figure 14. Comparison of SOCs obtained by rule-based and DRL techniques when the initial SOCs
are 0.7.

4.3. SAC Agent Evaluation with RDCs

As explained in Section 2.2, four RDCs were employed to evaluate the model. Table 9
shows the results obtained by the proposed method when prediction of the speed and load
power is not considered. First, it is interesting to analyze the SOCUC. Two initial values
were considered: 55% and 90%. In general, when the initial SOCUC = 55%, the model
could perform the optimal power split while respecting the constraints from Table 6, as
the minimum SOCUC did not go below 50%. Additionally, it may be seen that the model
focused on recharging the UC through regenerative braking, as the final SOCUC was greater
than the initial. On the other hand, when the initial SOCUC = 90%, the model allocated
more power to the UC instead of recharging it, as the final SOCUC of approximately 82% is
smaller than the initial SOCUC.

Second, considering that the minimum and maximum efficiencies ηFC are, respectively,
40% and 62.1%, the obtained results in the range of 55.8% to 57.3% were satisfactory. We
have also plotted the FC powers related to the RDC1 for SOCUC = 55% and SOCUC = 90%
in Figure 15 to better analyze the FC results. One thing to note is that there was no
significant difference between the plots. However, one would expect that the model would
allocate more power to the FC for low values of SOCUC to reduce the use of the UC and
prevent it from going below the minimum of 50%. This means that the model could be a
little bit further optimized to improve the power split method.

Third, compared to the Toyota Camry MG1-only structure, there is a significant
efficiency improvement when two motors are used. The high improvement of 17.6% is
achieved because the two motors are complementary.

Table 9. Model results without prediction step.

RDC
SOCUC SOCbat

Mean ηFC
Motors Efficiency

Initial Final Min Max Initial Final Min Max M1 Only M1 + M2 Improvement

1 55% 61.2% 50.7% 61.2% 55% 54.5% 54.5% 55% 55.8% 69.6% 79.8% 14.7%
90% 81.5% 77.3% 90% 90% 89.7% 89.6% 90% 56%

2 55% 62.7% 50.4% 62.7% 55% 54.5% 54.4% 55% 56.2% 73.8% 80.5% 9.1%
90% 82% 75.2% 90% 90% 89.7% 89.6% 90% 56.4%

3 55% 62.5% 50.2% 62.9% 55% 54.4% 54.3% 55% 57.3% 68.3% 80.3% 17.6%
90% 82% 75.3% 90% 90% 89.6% 89.5% 90% 57.3%

4 55% 61.3% 50% 61.5% 55% 54.5% 54.4% 55% 55.9% 70% 81.3% 16.1%
90% 81.5% 75.6% 90% 90% 89.7% 89.6% 90% 56.2%
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Figure 15. FC powers for different initial SOCUC for the RDC1.

4.4. Evaluation of the Prediction Method with RDCs

In this section, we evaluate the velocity and load power prediction method using
the model described in Sections 2.3 and 2.5, along with the SAC agent. Figures 16–18
show the results obtained. By analyzing the figures, it can be seen that the predicted
powers and SOCs are not too far from the actual ones. Additionally, Table 10 was made
to gain greater insights into the prediction method. It shows the mean absolute error
(MAE) between the predicted and actual values for 10 different parameters: speed, load
power, battery and ultracapacitor SOCs, fuel cell efficiency, battery and ultracapacitor
currents and battery, ultracapacitor and fuel cell powers. In general, the MAE is good
for the speed, SOCs and currents prediction. In the case of the load and energy sources
powers, the mean deviation was relatively high (around 5000 W) because the prediction
model is highly sensitive to differences in acceleration values. Analogously, the deviation
in the fuel cell efficiency is also relatively high (around 11% to 14%) because it is highly
sensitive to small changes in the fuel cell power values. For instance, there is a pair of points
(PFC,predicted, PFC,label) = (945.7W, 0) =⇒ (ηFC,predicted, ηFC,label) = (61.5%, 0) where the
big difference between the predicted and the actual efficiencies can be clearly seen.

Table 10. Model results with prediction step.

RDC
MAE

Speed (m/s) Pload(W) SOCbat SOCUC ηFC ibat(A) iUC(A) Pbat(W) PUC(W) PFC(W)

1 0.261 4708.9 0.03% 0.65% 11.3% 0.007 0.11 2778.9 1618.7 458.1
2 0.273 5818.7 0.02% 0.68% 13.1% 0.007 0.13 3476.6 2012.5 553.9
3 0.293 5634.5 0.01% 0.61% 11.4% 0.006 0.11 3456.5 1861.9 480.5
4 0.281 5641.1 0.02% 0.32% 14.3% 0.003 0.14 3318.3 1912.1 522

Average 0.277 5450.8 0.02% 0.56% 12.5% 0.006 0.13 3257.6 1851.3 503.7

Figure 16. Predicted battery, ultracapacitor and fuel cell powers by DRL.
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Figure 17. Actual battery, ultracapacitor and fuel cell powers by DRL.

Figure 18. Comparison of the predicted and actual SOCs obtained by DRL when the initial SOCs
are 0.9.

5. Conclusions

In this paper, a DRL-based method for real-time joint power split optimization for a
battery/UC/FC HEV was proposed. First, the TA-LTSM was responsible for predicting the
future velocity, which was converted to required load power through the mechanical model.
The load power was then optimally split between the two motors and also split between the
battery/UC/FC by the proposed SAC agent, which makes use of shaped reward functions
to accelerate the training process. Compared to traditional rule-based techniques, the
proposed method is robust to different initial SOC values and is able to satisfy the system
constraints. Moreover, the results show that the usage of two complementary motors greatly
increase the efficiency of the system. Finally, the average MAEs of the prediction step are
reliable; therefore, the method may be used to plan in advance the HESS power split.

In the future, a better model for the HEV, including auxiliary systems modeling (air
conditioning, lights, sound, power-assisted seats, windows) could be designed to compute
a more precise load power. Additionally, the velocity forecast method can currently predict
velocity only for the next time step. A better forecast method would be able to forecast the
velocity for more time steps, allowing the model to better allocate its resources.Finally, more
emphasis could be given to the optimization of the fuel cell to increase its efficiency and its
usage whenever the SOC of the ultracapacitor falls below the minimum operating value.
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