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Abstract: Objective solutions of multi-objective optimization problems (MOPs) are required to
balance convergence and distribution to the Pareto front. This paper proposes a multi-objective
quantum-inspired seagull optimization algorithm (MOQSOA) to optimize the convergence and
distribution of solutions in multi-objective optimization problems. The proposed algorithm adopts
opposite-based learning, the migration and attacking behavior of seagulls, grid ranking, and the
superposition principles of quantum computing. To obtain a better initialized population in the
absence of a priori knowledge, an opposite-based learning mechanism is used for initialization. The
proposed algorithm uses nonlinear migration and attacking operation, simulating the behavior of
seagulls for exploration and exploitation. Moreover, the real-coded quantum representation of the
current optimal solution and quantum rotation gate are adopted to update the seagull population.
In addition, a grid mechanism including global grid ranking and grid density ranking provides a
criterion for leader selection and archive control. The experimental results of the IGD and Spacing
metrics performed on ZDT, DTLZ, and UF test suites demonstrate the superiority of MOQSOA
over NSGA-II, MOEA/D, MOPSO, IMMOEA, RVEA, and LMEA for enhancing the distribution and
convergence performance of MOPs.

Keywords: multi-objective optimization problem; Pareto front; quantum computing; seagull opti-
mization algorithm; grid ranking

1. Introduction

Optimization is an indispensable and important application area in engineering ap-
plications and scientific research. Practical problems usually require the optimization of
several objectives simultaneously, and these problems can be described as multi-objective
optimization problems (MOPs). Unlike single-objective optimization problems, multi-
objective optimization problems aim to find the optimal vectors in the decision space,
known as the Pareto optimal solution (PS). Each objective of the PS cannot be better without
the other objectives deteriorating. All the objective vectors of the PS form the Pareto optimal
front (PF). Multi-objective optimization is one of the most difficult and popular problems
in recent evolutionary computing research. Multi-objective optimization algorithms are
designed to solve two key problems: (1) “How to search solutions whose objective vectors
are on or near PF”; (2) “How to search solutions whose objective vectors are distributed as
widely as possible along the PF.”

Evolutionary computing has been widely used to solve MOPs with great success in
many engineering problems. In recent years, many multi-objective optimization algorithms
have been introduced by scholars. In particular, evolutionary computation and swarm
intelligence algorithms have been introduced to solve MOPs through a process known as
evolutionary multi-objective optimization, such as the fast and elitist multi-objective genetic
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algorithm (NSGA-II) [1], the improving strength Pareto evolutionary algorithm for multi-
objective optimization (SPEA2) [2], the multi-objective optimization evolutionary algorithm
based on decomposition (MOEA/D) [3], and the non-dominated neighbor-based immune
algorithm (NNIA) [4]. In addition, particle swarm optimization (PSO) is a type of swarm
intelligence optimization algorithm. It has advantages such as fast convergence speed
and strong robustness, and it has been successfully applied to solve single-objective opti-
mization problems. Many scholars attempt to use the PSO algorithm to solve complicated
and large-scale MOPs. Since the multi-objective particle swarm optimization algorithm
(MOPSO) [5] was first proposed by Han, F.; Chen, many other improved Deep leaning
model with MOPSO have been developed [6–8]. Cui et al. [9] proposed the multi-objective
particle swarm optimization algorithm based on a two-archive mechanism (MOPSO_TA) to
perform well in terms of convergence and diversity, simultaneously. Abdel-Basset et al. [10]
improved and extended the whale optimization algorithm (WOA) to solve such multi-
objective optimization problems (MIWOA). To solve increasingly complex multi-objective
optimization problems in engineering practice, Wu et al. [11] proposed a multi-objective
lion swarm optimization based on a multi-agent (MOMALSO). Zheng et al. [12] presented
a dynamic multi-objective particle swarm optimization algorithm based on adversarial
decomposition and neighborhood evolution (ADNEPSO) dealing with dynamic problems.
Gu et al. [13] presented a random forest-assisted adaptive multi-objective particle swarm
optimization (RFMOPSO) algorithm for expensive constrained combinatorial optimiza-
tion problems.

Nowadays, multi-objective optimization algorithms are common for various real-
world problems. Evolutionary computation and swarm intelligence algorithms have
become important methods for optimization in the electronics field, such as for the optimal
integration of electrical units in distribution networks [14], energy management strategies
for range-extended electric vehicles [15], RFID network planning [16], multi_object fuse
detection [17]. Multi-objective optimization algorithms also play a key role in cloud com-
puting [18,19] supplier selection [20], and other combinatorial optimization problems [21].

Solving a multi-objective optimization problem generally leads to a set of Pareto non-
dominated solutions. The optimization algorithm needs to find solutions as close as possible
to the Pareto front while generating a solution set to cover the entire Pareto front as far as
possible. Hence, multi-objective optimization algorithms need to balance the convergence
of the algorithm with the distribution of Pareto optimal solutions. However, many multi-
objective optimization algorithms are prone to local optimization, leading to unbalanced
convergence and distribution problems. In order to counterpoise the convergence and
distribution of Pareto optimal solutions, this paper proposes a multi-objective quantum-
inspired seagull optimization algorithm (MOQSOA) to optimize the convergence and
distribution of solutions in multi-objective optimization problems. This is particularly
applicable in electronics fields such as: circuit design, electronics component arrangement,
cost optimization, etc. MOQSOA is a hybrid algorithm combining a quantum-inspired
search algorithm and the seagull optimization algorithm (SOA). Quantum-inspired search
algorithms have adopted the principles and concepts of quantum mechanics including
superposition, quantum gates, standing waves, and collapse, and are easy to find in local
convergence in global searches. In addition, the SOA performs well in local searches, which
helps maintain the balance between exploration and exploitation.

The contributions of this paper are summarized as follows. Firstly, an improved
opposition-based learning strategy is used for the initialization of the seagull population to
preserve distribution. Secondly, the current optimal solution is selected from the archive
with global grid ranking and receives a real-coded quantum representation considered
as a linear superposition of two probabilistic states, i.e., the positive and deceptive states.
Thirdly, seagull individuals are updated with nonlinear migration, attacking operations,
and quantum rotation gates for exploration and exploitation. In addition, the archive of
non-dominated solutions is controlled with grid density ranking. The experimental results
demonstrate the competitive performance of the proposed algorithm.
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The remainder of the paper proceeds as follows: Section 2 surveys the theoretical
background of multi-objective optimization problems, seagull optimization algorithm, and
quantum computing. Section 3 details the proposed multi-objective quantum-inspired
seagull optimization algorithm. Section 4 compares and discusses the performance of the
proposed algorithm with several state-of-the-art metaheuristic algorithms. Finally, Section 5
draws the main conclusions and points out some possible future work.

2. Related Work
2.1. Multi-Objective Optimization Problems

Multi-objective optimization problems (MOPs), which involve more than one conflict-
ing objective, can be described as follows [22]:

minF(X) = ( f1(X), f2(X), f3(X) · · · fm(X))T X = (x1, x2, · · · , xn)
T

Y = F(X)
fi : Ω → Rn (i = 1, 2, · · · , m)

(1)

where the vector x claims the decision space X, the objective function vector F(X) includes m
(m≥ 2) objectives, Y ⊂ Rm represents the objective space, and f : Rn → Rm is the objective
mapping function.

Pareto dominance: Given two vectors x, y ∈ Rn and their corresponding objective
vectors F(x), F(y) ∈ Rm, x dominates y (denoted as x ≺ y) if and only if ∀i ∈ (1, 2, . . . , m),
fi(x) ≤ fi(y) and ∃j ∈ (1, 2, . . . , m), fi(x) < fi(y).

Pareto optimal solution: A decision vector x ∈ Rn is said to be Pareto optimal if and
only if @y ∈ Rn : y ≺ x.

Pareto optimal set: The set of Pareto optimal solutions (PS) is called a Pareto optimal
set if: PS = {x ∈ Rn|@y ∈ Rn, y ≺ x}.

Pareto optimal front: The Pareto optimal front (PF) is defined as: PF = {F(x)|x ∈ PS}.

2.2. Seagull Optimization Algorithm

The seagull optimization algorithm (SOA) [23] is a novel swarm optimization al-
gorithm, proposed by Dhiman and Kumar in 2019, which simulates the migration and
attacking behavior of seagulls. An extension of the SOA has been developed in terms of
MOPs by introducing dynamic archive, grid, and leader-selection mechanisms [24,25].

Seagulls typically live in villages. They are able to locate and attack prey with their
own knowledge. Migration and attacking actions are the most important actions of seagulls.
They travel in groups during migration. Seagulls change their initial positions in order to
prevent collisions. Seagulls will fly in a group in the direction of the fittest seagull with the
best likelihood of survival. Other seagulls will update their initial positions based on the
fittest seagull. Seagulls frequently attack migrating birds over the sea when they migrate
from one place to another. They perform a spiral-shaped movement during attack.

The SOA mainly uses migration and attacking operations to simulate the migration
and attacking behaviors of seagulls. The migration operation simulates how the group of
seagulls move from one position to another with the exploration capability of the SOA. The
attacking operation simulates how groups of seagulls hunt their prey with the exploitation
capability of the algorithm.

2.3. Quantum Computing

Quantum computing is the combination of quantum mechanics in physics and com-
puter science, and is an emerging theory of computing. Quantum-inspired evolutionary
computing (QIEC) is a method based on concepts and principles from quantum mechanics.
Narayanan and Moore [26] firstly combined evolutionary computation (EA) and quantum-
inspired computation to solve traveling salesman problems (TSPs). After that, a series
of EAs inspired by quantum computation appeared, such as the quantum-inspired evo-
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lutionary algorithm (QEA) [27,28] and the quantum-inspired immune clonal algorithm
(QICA) [29]. These kinds of algorithms are characterized by quantum bits and quantum
gates. The quantum gates are used to change the quantum bits and generate new solutions
through observing.

A quantum bit, known as qubit, is the smallest unit of information stored in quantum
computing. A qubit may be in state “0” or state “1”, or in a superposition of the two states.
The state representation of a qubit in the Dirac notation can be given as:

|ψ〉 = α|0〉+ β|1〉 (2)

where α and β are complex numbers indicating the probability amplitudes of the respective
states. |α|2 and |β|2 denote the probability of observing a qubit in state “0” and state
“1”, respectively. The normalization of the states, resulting in unity, can be written as
|α|2 + |β|2 = 1.

Compared with classical bits, quantum bits can be in any superposition of two eigen-
states of “0” and “1”. Moreover, the superposition amplitudes of the two states can interfere
with each other during quantum operation, which is called quantum interference. The
principle of quantum superposition suggests that the system in a superposition of all of its
possible states is described by probability density amplitudes. Additionally, all states can
be processed in parallel to optimize the objective function.

A qubit individual consisting of a string of m qubits can be described as follows:[
α1 α2 . . . αm
β1 β2 . . . βm

]
(3)

where |αi|2 + |βi|2 = 1, i = 1, 2, · · · , m. Therefore, a quantum individual of length m is
capable of representing 2m states simultaneously based on probability. Because a quantum
individual can represent the superposition of several quantum bit states, a small popula-
tion of quantum individuals can correspond to a large population of individuals under
conventional representation.

Layeb [30] presented a new hybrid natural algorithm called the quantum-inspired
harmony search algorithm (QIHSA) based on the harmony search algorithm (HSA) and
quantum computing (QC). Another kind of quantum-inspired computation called the
quantum particle swarm optimization algorithm (QPSO) was proposed by Sun et al. [31–34],
inspired by the behavior of particles in a potential field. Particles are bounded by an
attractor. Meanwhile, they appear anywhere in the space with different probability densities.
Via setting potential well and solving the Schrödinger equation, a new style of search space
is built. Based on this point, Li et al. [35] proposed an improved cooperative quantum-
behaved particle swarm optimization method for solving real parameter optimization
and obtained a good performance. QPSO was an improvement over the particle swarm
algorithm based on the principles of quantum mechanics, which has better convergence
properties than the ordinary particle swarm optimization algorithm [36].

In recent years, the combination of quantum computing and multi-objective problems
has been studied and a number of new quantum multi-objective optimization algorithms
have been proposed. Guo et al. [37] proposed a novel quantum-behaved particle swarm
optimization algorithm with a flexible single-/multi-population strategy and a multi-
stage perturbation strategy. At the first stage, the main target of the perturbation is to
broaden the search range. The second stage applies the univariate perturbation to raise
the local search accuracy. You et al. [38] presented a novel algorithm called DMO-QPSO,
combining the quantum-behaved particle swarm optimization (QPSO) algorithm with
the MOEA/D framework in order to make the QPSO able to solve MOPs effectively. Fan
et al. [39] established a bi-level optimization model based on the quantum evolutionary
algorithm and multi-objective programming to solve the problem of regional integrated
energy systems. Hesar et al. [40] proposed a quantum-inspired multi-objective harmony
search algorithm to solve multi-objective optimization problems. In this algorithm, a new
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quantum mutation strategy is proposed, which is a combination of harmony improvisation
operators and a quantum adaptive rotation gate. Dayana et al. [41] presented a Quantum
Firefly Optimization-based Multi-Objective Secure Routing (QFO-MOSR) protocol for
Fog-based WSN.

The QPSO algorithm has been applied in many real-life multi-objective problems due
to the numerous variants of QPSO proposed. These methods have been successfully used
to solve combinatorial optimization problems, such as scheduling problems [42,43], load
forecast [44], routing optimization [45], disease diagnosis [46], and optimal design [47]. In
addition, algorithms based on QPSO play important roles in other multi-objective problems,
including multi-carrier communication [48] and system control [49].

When solving a multi-objective optimization problem, it is expected that the obtained
solutions can fully reflect the entire Pareto front. However, it frequently occurs that solu-
tions are only concentrated near a part of the Pareto front when solving practical problems.
The key to resolving the issue is to deal with the balance of the convergence and distribution
of Pareto optimal solutions. To address the above issue, this paper suggests a hybrid algo-
rithm called the multi-objective quantum-inspired seagull optimization algorithm, termed
MOQSOA, for multi-objective problems. In the MOQSOA, opposition-based learning is
applied for initialization to preserve distribution. The current optimal solution is selected
with global grid ranking, and receives a real-coded quantum representation considered as a
linear superposition of positive and deceptive states. Additionally, individuals are updated
with nonlinear migration, attacking operations, and quantum rotation gates.

3. The Multi-Objective Quantum-Inspired Seagull Optimization Algorithm

The main concept of the multi-objective seagull optimization algorithm (MOSOA)
is based on the natural behavior of seagull populations. Four components have been
used to develop the extension of the SOA in terms of MOPs: an archive controller, a grid
mechanism, a leader-selection mechanism, and an evolutionary operator.

The evolutionary strategy explored in the seagull optimization algorithm is similar
to most swarm intelligence algorithms. The deceptive nature of local optimal solutions,
the loss of diversity, and weak causality present in the algorithm cause the algorithm to
potentially fall into premature convergence. In this paper, a multi-objective quantum-
inspired seagull optimization algorithm is presented for MOPs. The proposed algorithm
combines opposite-based learning, the migration and attacking behavior of seagulls, grid
ranking, and the superposition principles of quantum computing. The OBL mechanism
is used to initialize the seagull population to obtain a better initialized population in
the absence of a priori knowledge. To maintain a better balance between exploitation
and the exploration of searching for global optimal solutions, the real-coded quantum
representation of the current optimal solution and quantum rotation gate was adapted.
Moreover, it contained the nonlinear migration and attacking operations of the SOA for
exploration and exploitation. In addition, a grid mechanism with the global grid ranking
(GGR) and the grid density ranking (GDR) provided a criterion for leader selection and
archive control. The framework of the MOQSOA is shown in Figure 1, and the procedure
of QDGWO and its main steps can be summarized as shown in Algorithm 1.
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3.1. Initialization with Opposition-Based Learning

In the absence of a priori knowledge, initialization by random roulette in traditional
evolutionary algorithms reduces the probability of sampling better regions in population-
based algorithms. However, opposition-based learning (OBL) [50] can obtain more suitable
initial candidate regions without a priori knowledge, thus increasing the probability of
detecting better regions and promising potential to improve the fitness.

The opposite point of OBL can be defined as follows:
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Algorithm 1 Multi-Objective Quantum-Inspired Seagull Optimization Algorithm (MOQSOA)

Input: Seagull population P
Output: Archive non-dominated optimal solutions.
Initialize P with opposition-based learning.
Calculate the corresponding objective values for each search agent.
Find all the non-dominated solutions and initialize these solutions to the archive of non-dominated optimal solutions.
Select the current optimal solution with global grid ranking and grid density ranking methods.
Encode the current optimal solution by real-coded quantum representation.

while (t < Maxiter) do
for each search agent do

Update the position of current search agent by nonlinear seagull migration and attacking operations.
end for
Apply mutation and crossover operators on these updated search agents.
Calculate the objective values for all search agents.
Find the non-dominated solutions from the updated search agents.
Update the obtained non-dominated solutions to the archive.
if archive is full then

Remove one of the most crowded solutions in the archive with the grid density ranking method.
Add the new solution to the archive.

end if
Adjust search agent if any one goes beyond the search space.
Calculate the objective values for each non-dominated solution in the archive.
Select the current optimal solution with global grid ranking and grid density ranking methods.
Conduct quantum update operation depending on whether the current optimal solution has changed or not.
t← t + 1

end while
return archive of non-dominated optimal solutions
end MOQSOA

P(x1, x2, · · · , xD) is given as a point in the D-dimensional space where x1, x2, · · · , xD
are real numbers and xi ∈ [ai, bi], i = 1, 2, · · · , D. Then, its opposite point is defined as
^
P(

^
x 1,

^
x 2, · · · ,

^
x D) where

^
x i = ai + bi − xi (4)

MOQSOA firstly divides the population into two parts. Then, one part is generated
by random initialization and the other part is generated by OBL. Later, the dominated
solutions in the two parts are deleted, and the deleted individuals are replaced by random
strategies. This specific process can be shown in Figure 2, and the main steps are shown
as follows:

Step 1: The initial population PN is divided into two parts, named as P1 and P2. The
individuals in the half population P1 are randomly generated;

Step 2: The opposite points of individuals in P1 are generated based on OBL and are
added to P2;

Step 3: After completing the construction of P2, P1 and P2 are combined;
Step 4: The dominated solutions are deleted in P1 ∩ P2;
Step 5: The deleted individuals are replaced by random strategies to generate the final

initial population P∗.
The improved OBL strategy in the proposed algorithm is more suitable for multi-

objective optimization problems. On the one hand, the improved OBL strategy can obtain a
better initialized population because the dominated solutions between the original individ-
uals and the opposite individuals have been removed. On the other hand, the distribution
of the population can be guaranteed, because the original solution and its opposite solution
are completely symmetric in the decision space. There must be a solution closer to the opti-
mal solution between the original solution and its opposite solution, so the OBL strategy
can improve the distribution of the initial population without a priori knowledge.
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3.2. Selection of Current Optimal Solution

The grid mechanism is a very efficient mechanism for characterizing and maintaining
convergence and distribution. In addition, the grid mechanism can be utilized to show
not only the superiority and inferiority between solutions, but also the differences in the
objective values between optimal solutions and other solutions. In this paper, the global
grid ranking (GGR) [22] is utilized to enhance the convergence of the algorithm, and the
grid density ranking (GDR) is used to improve the distribution of the solutions.
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The GGR represents the sum of the number of individual grid coordinates that are
superior to other individuals in each objective. GGR is denoted as:

GGR(xi) =
Nm

∑
d=1

count(Gd(xi) < Gd(xj)) (5)

where xi and xj are the two candidate solutions in the population which satisfy i 6= j;
Gd(xi) is the grid coordinates of xi in the dth objective; Nm denotes the number of problem
objectives; and count(·) is the function to count the number to meet the conditions of
(·). The larger the value of GGR(xi) is, the more individuals are dominated by xi in the
sub-objectives.

The GDR is mainly used to view the crowding level around a candidate solution. A
large GDR value indicates that the candidate solution is densely distributed with other
solutions. GDR is generated by:

GDR(xi) = count(
Nm

∑
d=1
|Gd(xi)− Gd(xj)| < M) (6)

where xi and xj are the two candidate solutions in the population which satisfy i 6= j;
Gd(xi) is the grid coordinates of xi in the dth objective; Nm denotes the number of problem
objectives; M is the number of current objectives; and count(·) is the function to count the
number to meet the conditions of (·).

In a MOP, comparing new solutions with the existing solutions in a given search space
is a key problem. The MOQSOA uses grid ranking to help compare the merits of solutions
and select the best candidate solution. For candidate solutions in the archive, the algorithm
prioritizes the candidate solution with a larger GGR value (i.e., dominating more solutions
in the sub-objectives). Additionally, if the GGR values of several solutions are same, the
solution with a smaller GDR value (i.e., lower crowding level) is preferred as the current
optimal solution to guide the position updating of other individuals. If there are multiple
solutions with the largest GGR values and the same GDR values, a roulette wheel is used
to select a solution among these for the current optimal solution.

3.3. Real-Coded Quantum Representation of Current Optimal Solution

The deceptiveness of local optimal solutions is one of the main factors leading to
premature convergence. The evolutionary strategy of the optimization algorithm tries to
receive the gradient information by the direction of convergence. The reliability of the
gradient information directly determines the effect of global convergence. A positive global
optimal solution can accelerate the search process, while a deceptive local optimal solution
prevents the exploration of the global optimum.

In this paper, the current optimal solution is considered as a linear superposition
of two probabilistic states, i.e., the positive and deceptive states inspired by QEA. In the
evolutionary process, every seagull individual makes its own judgment on the question
of whether to accept the current optimal solution as the global optimum. If the ith seagull
believes that the current optimal solution is a positive global optimal solution, then it will
take the current optimal solution as the direction of convergence. Otherwise, it rejects and
randomly chooses another individual as the direction of convergence.

At the beginning, it is assumed that the probability that the current optimal solution is
positive or deceptive is equal. After several iterations, the positive probability of current
optimal solution is enhanced if no changes have occurred, whereas if the current optimal so-
lution is updated, the probability needs to be reset. The MOQSOA consists of two quantum
operations, namely, the real-coded quantum representation of the current optimal solution
and the quantum rotation gate for updating the probability amplitudes of two states.

The real-coded quantum representation [51] of an individual has been developed
through the study of QEA [27]. In a binary-coded QEA, the qubit is used to represent



Electronics 2022, 11, 1834 10 of 26

a linear superposition of state “0” and state “1” in a probabilistic manner. Similarly, a
real continuous number is assumed to be in a deterministic state or a random state. In
this paper, qubits are used to represent the global optimal solution and wave functions to
calculate specific values.

A qubit can be represented by a state “0” (denoted as |0〉), or a state “1” (denoted as
|1〉), or a linear superposition of both. The states of a qubit can be given by:

|ψ〉 = α|0〉+ β|1〉 (7)

where α and β represent the probability magnitudes of the two states, respectively, and
satisfy α2 + β2 = 1. |α|2 is the probability that the quantum bit is observed in state “0”, and
|β|2 is the probability that the quantum bit is observed in state “1”.

In quantum theory, a quantum state can be completely described by a wave function
w(x, t), which is a composite function of coordinates and time. Additionally, |w(x, t)|2 is
called the probability density, which implies the probability of the quantum state occurring
at the appropriate location and time. Therefore, a normal wave function is introduced to
calculate the observed values of real-coded quantum representation as:

|w(xi)|2 =
1√

2πσi
exp

[
− (xi − µi)

2

2σ2
i

]
, i = 1, 2, . . . , n (8)

where µi is the expectation and σi is the standard deviation. Here, Equation (8) is used to
generate the position of a quantum individual after quantum observation, µi is the mean
position of the individual, and σi expresses the distribution range of the probability cloud
around the mean position.

In this paper, the probability amplitude of the positive for the current optimal solution
Pt

gb is defined as α, while the probability amplitude of the deceptive is defined as β. Since

the two probability amplitudes satisfy α2 + β2 = 1, the real-coded quantum representation
of the current optimal solution can be expressed as:

Pt
gb ,

[
xgb,1 xgb,2 · · · xgb,n
α1 α2 · · · αn

]
(9)

where n is the problem dimension, αi is the probability amplitude by which the optimal
solution component is considered positive, and t is the current iteration.

3.4. Nonlinear Seagull Migration Operation

During migration, seagulls will move from their initial positions to the next positions
within the group. The migration operation simulates this position movement process of
the seagull population during exploration. The main concept of the MOQSOA is based
on the SOA migration and attacking behaviors. Therefore, in the exploration phase, the
seagull position movement process satisfies the following three steps: avoiding collisions,
approaching the optimal neighbor’s direction, and moving to the optimal search agent.

In order to avoid collisions with surrounding seagulls, an additional variable A is
employed to adjust the seagull’s position:

Cs = A× Ps(t) (10)

where Cs represents the direction of the search agent for no collisions with other search
agents, Ps represents the current location of the search agent, t is the current iteration,
and A indicates the migration behavior of the seagull in the search space. In the basic
seagull optimization algorithm, the size of A is linearly decreased from parameter fc to 0 in
the iteration:

A = fc −
fc · t
tmax

(11)
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where the value of fc is set to 2 in the basic seagull optimization algorithm [23].
However, in the actual optimization process, the search process shows a nonlinear

curve downward trend. Therefore, if the control variable A simulates the migration process
of the seagull population in a purely linear decreasing manner, the actual search ability of
the algorithm is affected. Therefore, this paper adopts a nonlinearly varying control variable
A, which is more appropriate to the migration process of the actual seagull population:

A = fc(2ω − 1) (12)

ω = e1− tmax
tmax−t (13)

where the value of fc is set to 2, t is the current iteration, and tmax is the maximum number
of iterations.

The nonlinear variable A can accelerate the convergence ability of the algorithm by
rapidly decreasing in the early stage, and can improve the search accuracy of the algorithm
by slowly decreasing in the later stage.

After ensuring that no collisions occur between seagulls, the seagull agents approach
the best seagull. Here, each seagull individual makes an independent judgment on whether
to recognize the current optimal solution as the global optimal solution (positive) or not
(deceptive). If the seagull believes that the current optimal solution is a positive global
optimal solution, it will take the position of the current optimal solution as the direction of
convergence. Otherwise, it randomly chooses the direction of convergence.

Since a real-coded quantum representation is used to express the current optimal
solution, the convergence direction of each agent is generated by:

Ms = B×
(

P̂gb(t)− Ps(t)
)

(14)

where Ms denotes the convergence direction of individuals toward the best seagull, and B
is varied as:

B = 2× A2 × rand(0, 1) (15)

P̂gb =
[
x̂gb,1 x̂gb,2 · · · x̂gb,n

]
is the observed position of the current optimal solu-

tion. It is calculated as:

x̂gb,i = rn

[
xgb,i, σ2

i (|ψi〉)
]
(xi,max − xi,min) (16)

where rn

[
xgb,i, σ2

i (|ψi〉)
]

denotes a random number generated according to the wave func-

tion Equation (8), xgb,i is the expectation, and σ2
i (|ψi〉) is defined as:

σ2
i (|ψi〉) =

{
1− |αi|2, if |ψi〉 = |0〉
|αi|2, if |ψi〉 = |1〉

(17)

where αi is the probability amplitude that the optimal solution component is considered to
be positive. The observation of |ψi〉 adheres to the following stochastic process:

|ψi〉 =
{
|0〉, if ru ≤ |αi|2

|1〉, if ru > |αi|2
(18)

where ru is a uniform random variable between 0 and 1.
The schematic diagram of a seagull agent approaching the current optimal individual

is shown in Figure 3. If the seagull individual recognizes the current optimal solution
as the global optimal solution (positive identification), the observed position generated
according to the wave function of Equation (8) will be in the vicinity of the current optimal
individual, while if the seagull individual doubts the current optimal solution (deceptive
identification), the individual randomly chooses its own search direction.
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Figure 3. Schematic diagram of a seagull agent approaching the current optimal individual.

Finally, after calculating the direction of convergence for each agent, the seagulls
update the position toward this direction:

Ds = |Cs + Ms| (19)

where Ds is the direction of migration for the seagulls composited by the direction for no
collision (Cs) and the direction of the movement toward the best seagull (Ms).

3.5. Seagull Attacking Operation

Seagulls frequently attack other birds over the sea when migrating. They can maintain
altitude during migration and constantly change their angle of attack and speed in flight.
When it is necessary to launch an attack, the seagulls descend in a spiral through a three-
dimensional space and move through the air by constantly changing their angle and
radius. The attacking operation simulates the attacking process of the seagull population
for exploitation.

The motion of the seagulls in the three-dimensional space is described as follows:

x = r× cos(k)
y = r× sin(k)

z = r× k
r = u× ekv

(20)

where k is a random number in the range [0, 2π], and r is the spiral radius controlled by u
and v, which are usually taken as 1.

Combining the migration and attacking operations of the seagull, the overall seagull
position is updated by:

Ps(t) = (Ds × x× y× z) + P̂gb(t) (21)

To obtain a better exploration and exploitation capability, the mutation and crossover
operators, which are the same as those in NSGA-II [1], are employed in the MOQSOA.

3.6. Quantum Update Operation

The main update strategy in the QEA is the quantum rotation gate (QRG) [13]. The
QRG is adopted as a quantum operator to update the probability amplitudes toward
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the direction with better fitness. The probability amplitudes updated from QRG are
calculated by:

αi(t + 1) =
[
cos(∆θ) − sin(∆θ)

][ αi(t)√
1− [αi(t)]

2

]
(22)

where ∆θ is the rotation angle, which is equivalent to the step size that determines the rate
of convergence toward the current best solution.

Unlike the traditional update strategy of QEA, the QRG in this paper is an operator
that enhances the probability amplitude of the positivity of the current optimal solution.
For a given current optimal solution Pt

gb, the probability amplitude of positivity and

deceptiveness will be initialized to αi = βi =
√

2/2, i = 1, 2, . . . , n. After iteration, if the
current optimal solution remains optimal, the probability magnitude of positivity αi will be
increased by QRG, which means that the current optimal solution Pt

gb will be more likely to
be considered as the global optimal solution. Otherwise, the probability amplitudes will be
re-initialized to remain vigilant to the deceptiveness of the local optimal solution.

To prevent the premature convergence of the quantum bits from falling into |0〉 or |1〉
(cannot escape the state by itself), a constant ε close to 0 is applied for correction in this
paper. The specific correction can be given by:

αi(t + 1) =


√

ε,
αi(t + 1),√

1− ε,

if αi(t + 1) <
√

ε

if
√

ε < αi(t + 1) <
√

1− ε

if αi(t + 1) >
√

1− ε

(23)

3.7. Archive Controller

All obtained Pareto optimal solutions are saved in a storage space called the archive.
The archive controller decides whether to include a particular solution in the list or not. The
algorithm compares the obtained objective values of the new solution with the individuals
in the archive. The archive is updated with the following rules.

- If the archive is empty, the current solution will be accepted;
- If the new solution is dominated by an individual in the archive, then this solution

should be discarded;
- If solutions in the archive are dominated by the new solution, then they are discarded

from the archive. Additionally, the new solution will be accepted;
- If the new solution is not dominated by external solutions in the archive, then the

particular solution should be accepted and stored within the archive. If the archive is
full, then the solution with the largest GDR value is removed and the new solution
goes into the archive for storage.

3.8. Algorithm Complexity

The MOQSOA employs strategies such as the seagull operator and real-coded quan-
tum representation for finding the optimal solutions, and the computational complexity of
the algorithm mainly comes from the archive controller of the non-dominated solutions.
During the iteration, the complexity of comparison between the non-dominated solutions
in the archive is O(mN2). Additionally, the complexity of the grid ranking mechanism
is O(mN2), where m is the number of objectives and N is the number of population size.
Therefore, the complexity of the MOQSOA is O(mN2). The complexity of the MOQSOA is
equivalent to the NSGA-II, MOPSO, SPEA2 and other multi-objective algorithms.

4. Experimental Results and Discussion

In this section, the performance metrics and benchmark test functions sets used in the
experiments are described. Then, the proposed MOQSOA is compared with three well-
known and three state-of-the-art MOEAs named NSGA-II [1], MOEA/D [3], MOPSO [5],
IMMOEA [52], RVEA [53], and LMEA [54] in order to evaluate the performance.
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4.1. Experimental Setting

To evaluate the performance of the proposed algorithm, IGD [55] and Spacing [55]
metrics were selected for the quantitative assessment of the performance of the optimization
algorithms. The IGD metric measures the average distance from the point in the Pareto
front to the nearest solution in the approximate front obtained by the algorithm to access
the convergence and distribution of the solutions. The smaller the IGD value is, the
better the convergence and distribution of the solutions obtained by the algorithm are. The
Spacing metric measures the range variance of the neighbor solutions in the non-dominated
solutions by comparison with the solutions converged to the true Pareto front. The smaller
the SP value is, the better the distribution of the solutions obtained by the algorithm.

To evaluate the efficiency of the proposed MOQSOA, the proposed algorithm was
validated with standard benchmark test problems including ZDT [56], DTLZ [57], and
UF [58]. The characteristics of these test problems are shown in Table 1.

Table 1. Characteristics of benchmark test problems.

Test Problems Properties Number of Objectives

ZDT1 Convex 2
ZDT2 Concave 2
ZDT3 Disconnected 2
ZDT4 Convex 2
ZDT6 Concave 2

DTLZ1 Linear 3
DTLZ2 Concave 3
DTLZ3 Concave 3
DTLZ4 Concave 3
DTLZ5 Concave 3
DTLZ6 Concave 3
DTLZ7 Disconnected 3
DTLZ8 Linear 3
DTLZ9 Concave 3

UF1 Convex 2
UF2 Convex 2
UF3 Convex 2
UF4 Concave 2
UF5 Disconnected 2
UF6 Disconnected 2
UF7 Linear 2
UF8 Concave 3
UF9 Disconnected 3

UF10 Concave 3
All experiments were conducted with Matlab R2016b and PlatEMO v2.9 [59] running on an Intel Core i7-4790
CPU @ 3.60 GHz and Windows 7 Ultimate Edition.

In the experiment, the size of the population and archive were set to 100. The maximum
number of iterations in all cases was set to 1000. The parameters of the algorithms used in
the experiments are presented in Table 2.

Thirty independent runs were executed for each test problem to avoid randomness.
Moreover, the Wilcoxon signed-rank test [60] was adopted to compare the results obtained
by the MOQSOA and the six compared algorithms in Tables 3 and 4. The test used a
significance level α = 0.05, and “+”, “−”, and “=” indicate that the algorithm is superior,
inferior, or equal to the MOQSOA, respectively.
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Table 2. Parameters of the algorithms in the experiment.

Algorithm Parameter Value

NSGA-II Crossover probability pc 0.8
Mutation probability pm 0.1

MOEA/D Number of neighbors T 10
Probability of selecting parents pp 0.9

Distribution index Di 30
Differential weight 0.5

MOPSO Number of grids nGrid 10
Inertia weight w 0.5

Personal coefficient c1 1
Social coefficient c2 2

IMMOEA K 10
RVEA α 2

fr 0.1
LMEA nSel 5

nPer 50
nCor 5

4.2. Evaluation Performance

The IGD metric results of the benchmark test functions for the MOQSOA, three well-
known classical algorithms (NSGA-II, MOEA/D, and MOPSO), and three state-of-the-art
algorithms (IMMOEA, RVEA, and LMEA) are presented in Table 3, including mean values
and standard deviations. The best values of the IGD metric are in bold. The Pareto front of
each algorithm for ZDT3, ZDT4, DTLZ2, and DTLZ5 are shown in Figures 4–7.

From the statistical results of the IGD metrics in Table 3, it can be seen that the
MOQSOA performed well on problems ZDT1, ZDT2, ZDT4, ZDT6, DTLZ1, DTLZ8, and
DTLZ9, and achieved the best values for these test problems. On problems DTLZ2, DTLZ3,
DTLZ5, and DTLZ6, although the best values of the indicators were obtained by the
LMEA algorithm, the performance of MOQSOA was not significantly different from LMEA
according to the results of the Wilcoxon signed-rank test, and was significantly better than
the results obtained by the other algorithms on these problems.

LMEA performed better on problems ZDT3 and UF4-UF10, but MOQSOA also showed
a good performance and the results obtained rank in the top three when comparing all
algorithms. For the IGD metric, the MOQSOA obtained a mediocre performance only on
problems DTLZ4 and UF1-UF3. The Pareto fronts of each algorithm in Figures 4–7 also
showed the excellent performance of MOQSOA.

Comparing the performance of the IGD metrics for the two-objective and three-
objective test problems, it can be seen that the MOQSOA outperformed NSGA-II, MOEA/D,
MOPSO, IMMOEA, and RVEA on the two-objective test problem, and was basically equal
to the LMEA algorithm. Additionally, for the three-objective test problem, the advantage
over NSGA-II, MOEA/D, MOPSO, IMMOEA, and RVEA was obvious, but the algorithm
was still slightly inferior to LMEA.

The Spacing metric results obtained for each algorithm on the benchmark test functions
are presented in Table 4, where mean values and standard deviations of the results have
been tabulated. Additionally, the best values of the Spacing metric for each test problem
are shown in bold.
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Table 3. IGD metric results.

Function Metrics NSGAII MOEA/D MOPSO IMMOEA RVEA LMEA MOQSOA

ZDT1
Average 4.8116 × 10−3 (−) 4.6968 × 10−3 (−) 4.8735 × 10−3 (−) 7.9935 × 10−3 (−) 5.5528 × 10−3 (−) 5.1070 × 10−3 (−) 4.1101 × 10−3

Std 2.06 × 10−4 3.14 × 10−4 1.77 × 10−4 1.12 × 10−4 9.19 × 10−4 5.00 × 10−4 7.28 × 10−5

ZDT2
Average 4.8719 × 10−3 (−) 5.4469 × 10−3 (−) 5.2469 × 10−3 (−) 1.1104 × 10−2 (−) 7.2369 × 10−3 (−) 4.6753 × 10−3 (−) 3.8136 × 10−3

Std 1.81 × 10−4 4.94 × 10−4 3.24 × 10−4 1.67 × 10−4 1.74 × 10−3 1.51 × 10−4 5.67 × 10−5

ZDT3
Average 5.2780 × 10−3 (+) 1.4329 × 10−2 (−) 5.5320 × 10−3 (+) 1.2438 × 10−2 (−) 7.9570 × 10−3 (−) 1.0940 × 10−2 (−) 6.4169 × 10−3

Std 2.39 × 10−4 2.67 × 10−3 2.12 × 10−4 5.25 × 10−4 1.88 × 10−4 2.69 × 10−3 1.39 × 10−4

ZDT4
Average 5.1081 × 10−3 (−) 7.2439 × 10−3 (−) 4.8082 × 10−3 (−) 4.8076 × 10−3 (−) 5.4592 × 10−3 (−) 4.7664 × 10−3 (−) 4.1890 × 10−3

Std 6.53 × 10−4 1.69 × 10−3 3.00 × 10−4 9.77 × 10−5 1.44 × 10−3 3.22 × 10−4 2.64 × 10−4

ZDT6
Average 3.6160 × 10−3 (−) 4.3208 × 10−3 (−) 4.2740 × 10−3 (−) 9.4301 × 10−1 (−) 3.3918 × 10−3 (−) 3.3078 × 10−3 (−) 3.0046 × 10−3

Std 1.20 × 10−4 3.92 × 10−3 2.73 × 10−4 4.10 × 10−2 2.25 × 10−4 3.60 × 10−5 2.18 × 10−4

DTLZ1
Average 2.7850 × 10−2 (−) 2.0565 × 10−2 (=) 2.7105 × 10−2 (−) 1.2940 (−) 2.0558 × 10−2 (=) 2.1025 × 10−2 (=) 2.0557 × 10−2

Std 2.03 × 10−3 1.07 × 10−5 5.59 × 10−4 6.58 × 10−2 6.79 × 10−5 2.55 × 10−4 1.92 × 10−4

DTLZ2
Average 6.8830 × 10−2 (−) 5.4464 × 10−2 (=) 6.9818 × 10−2 (−) 7.9795 × 10−2 (−) 5.4465 × 10−2 (=) 5.3844 × 10−2 (=) 5.4465 × 10−2

Std 3.19 × 10−3 1.65 × 10−5 3.22 × 10−3 3.65 × 10−3 1.28 × 10−5 2.76 × 10−4 1.34 × 10−4

DTLZ3
Average 6.297 × 10−2 (−) 5.5516 × 10−2 (=) 3.8831 × 10−1 (−) 2.8865 (−) 5.5358 × 10−2 (=) 5.4197 × 10−2 (=) 5.4711 × 10−2

Std 4.49 × 10−3 1.32 × 10−3 5.40 × 10−1 5.21 × 10−1 1.15 × 10−3 4.76 × 10−4 1.23 × 10−4

DTLZ4
Average 6.7988 × 10−2 (+) 5.4464 × 10−2 (+) 7.1277 × 10−2 (+) 7.7431 × 10−2 (+) 5.4465 × 10−2 (+) 9.6411 × 10−2 (+) 3.7873 × 10−1

Std 4.16 × 10−3 4.87 × 10−4 1.60 × 10−3 3.48 × 10−3 4.01 × 10−4 7.37 × 10−2 2.81 × 10−1

DTLZ5
Average 5.4096 × 10−3 (=) 3.3904 × 10−2 (−) 6.3037 × 10−3 (−) 2.0947 × 10−2 (−) 6.2925 × 10−2 (−) 4.6503 × 10−3 (=) 5.0756 × 10−3

Std 6.67 × 10−5 1.63 × 10−5 9.93 × 10−5 3.35 × 10−3 2.09 × 10−3 5.79 × 10−5 1.90 × 10−4

DTLZ6
Average 5.8399 × 10−3 (−) 3.3926 × 10−2 (−) 6.7322 × 10−3 (−) 3.9896 (−) 1.1591 × 10−1 (−) 4.4731 × 10−3 (=) 4.9789 × 10−3

Std 6.36 × 10−5 3.15 × 10−5 8.78 × 10−4 7.10 × 10−2 6.35 × 10−4 9.76 × 10−5 3.38 × 10−5

DTLZ7
Average 8.0964 × 10−2 (+) 1.5431 × 10−1 (=) 9.0199 × 10−2 (+) 3.2745 × 10−1 (−) 1.0659 × 10−1 (+) 5.8854 × 10−2 (+) 1.6107 × 10−1

Std 4.70 × 10−3 2.15 × 10−4 1.30 × 10−2 5.03 × 10−2 2.21 × 10−3 4.52 × 10−4 1.62 × 10−1

DTLZ8
Average 4.4234 × 10−2 (=) NaN NaN NaN 5.8818 × 10−2 (−) NaN 4.3927 × 10−2

Std 3.83 × 10−3 NaN NaN NaN 1.43 × 10−3 NaN 2.44 × 10−3

DTLZ9
Average 5.9530 × 10−3 (−) NaN NaN 4.4744 (−) 2.6833 × 10−2 (−) NaN 5.1492 × 10−3

Std 4.08 × 10−4 NaN NaN 6.01 × 10−2 1.19 × 10−3 NaN 4.92 × 10−4

UF1
Average 9.7093 × 10−2 (=) 2.6021 × 10−1 (−) 7.8469 × 10−2 (+) 6.7741 × 10−2 (+) 8.2189 × 10−2 (+) 1.6381 × 10−2 (+) 1.4502 × 10−1

Std 3.41 × 10−3 1.08 × 10−1 7.31 × 10−2 6.25 × 10−3 5.02 × 10−3 3.87 × 10−3 4.59 × 10−2

UF2
Average 3.2343 × 10−2 (+) 8.2332 × 10−2 (−) 2.3067 × 10−2 (+) 5.4120 × 10−2 (=) 7.2716 × 10−2 (−) 1.5039 × 10−2 (+) 5.3761 × 10−2

Std 3.81 × 10−3 4.43 × 10−2 3.00 × 10−3 3.78 × 10−2 7.74 × 10−3 1.34 × 10−3 2.03 × 10−2

UF3
Average 1.8641 × 10−1 (+) 3.1030 × 10−1 (=) 1.1567 × 10−1 (+) 1.1030 × 10−1 (+) 3.1836 × 10−1 (=) 1.6484 × 10−1 (+) 2.8865 × 10−1

Std 1.19 × 10−2 4.77 × 10−2 2.14 × 10−2 1.60 × 10−2 2.26 × 10−3 5.07 × 10−3 1.40 × 10−2
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Table 3. Cont.

Function Metrics NSGAII MOEA/D MOPSO IMMOEA RVEA LMEA MOQSOA

UF4
Average 4.9113 × 10−2 (=) 8.3692 × 10−2 (−) 4.5962 × 10−2 (=) 6.6832 × 10−2 (−) 9.5207 × 10−2 (−) 3.7822 × 10−2 (+) 4.6945 × 10−2

Std 1.75 × 10−3 3.42 × 10−3 2.79 × 10−3 4.24 × 10−3 2.04 × 10−3 5.38 × 10−4 1.89 × 10−3

UF5
Average 3.9011 × 10−1 (−) 5.8082 × 10−1 (−) 6.7952 × 10−1 (−) 6.6328 × 10−1 (−) 3.4518 × 10−1 (=) 2.1331 × 10−1 (+) 3.2603 × 10−1

Std 1.19 × 10−1 8.90 × 10−2 1.64 × 10−1 9.79 × 10−2 8.50 × 10−2 3.20 × 10−2 9.33 × 10−2

UF6
Average 1.2527 × 10−1 (+) 4.9777 × 10−1 (−) 4.3455 × 10−1 2.6280 × 10−1 (=) 1.2725 × 10−1 (+) 3.1444 × 10−1 (−) 2.6237 × 10−1

Std 1.25 × 10−2 4.34 × 10−1 8.01 × 10−2 1.39 × 10−1 9.55 × 10−3 1.26 × 10−2 1.35 × 10−1

UF7
Average 1.7075 × 10−1 (=) 4.3857 × 10−1 (−) 6.2768 × 10−2 (+) 1.5326 × 10−1 (=) 1.3181 × 10−1 (=) 1.1450 × 10−1 (=) 1.4492 × 10−1

Std 1.56 × 10−1 1.87 × 10−1 7.63 × 10−2 1.55 × 10−1 1.70 × 10−1 6.78 × 10−2 1.32 × 10−1

UF8
Average 2.7066 × 10−1 (−) 3.2370 × 10−1 (−) 2.6221 × 10−1 (−) 2.7670 × 10−1 (−) 3.3376 × 10−1 (−) 1.5603 × 10−1 (+) 2.1688 × 10−1

Std 7.49 × 10−2 3.07 × 10−2 7.18 × 10−2 3.10 × 10−3 5.66 × 10−3 1.60 × 10−2 7.29 × 10−2

UF9
Average 2.6615 × 10−1 (=) 3.4263 × 10−1 (−) 2.8580 × 10−1 (−) 3.0671 × 10−1 (−) 3.6412 × 10−1 (−) 9.0845 × 10−2 (+) 2.3198 × 10−1

Std 9.57 × 10−2 8.27 × 10−3 2.09 × 10−2 1.22 × 10−1 1.89 × 10−2 3.04 × 10−2 5.95 × 10−2

UF10
Average 4.3683 × 10−1 (=) 7.9220 × 10−1 (−) 5.5064 × 10−1 (−) 2.9879 × 10−1 (+) 6.5234 × 10−1 (−) 4.6990 × 10−1 (=) 4.3228 × 10−1

Std 5.88 × 10−2 1.35 × 10−1 3.59 × 10−2 5.14 × 10−3 2.11 × 10−1 3.90 × 10−2 1.41 × 10−1

+/− / = 6/11/7 1/16/5 7/14/1 4/16/3 4/14/6 9/6/7

Table 4. Spacing metric results.

Function Metrics NSGAII MOEA/D MOPSO IMMOEA RVEA LMEA MOQSOA

ZDT1
Average 6.8090 × 10−3 (−) 5.3019 × 10−3 (−) 7.7359 × 10−3 (−) 1.4474 × 10−2 (−) 9.7893 × 10−3 (−) 1.3206 × 10−2 (−) 5.3225 × 10−3

Std 5.22 × 10−4 4.93 × 10−4 7.03 × 10−4 6.41 × 10−3 5.08 × 10−4 3.48 × 10−3 6.57 × 10−4

ZDT2
Average 7.5232 × 10−3 (−) 5.0442 × 10−3 (=) 7.7292 × 10−3 (−) 9.2439 × 10−3 (−) 7.1899 × 10−3 (−) 5.0437 × 10−3 (=) 4.4243 × 10−3

Std 8.84 × 10−4 5.62 × 10−4 4.86 × 10−4 4.41 × 10−4 2.32 × 10−3 1.07 × 10−3 1.27 × 10−4

ZDT3
Average 7.4689 × 10−3 (+) 1.9846 × 10−2 (=) 7.8757 × 10−3 (+) 3.3663 × 10−2 (−) 1.1866 × 10−2 (+) 1.2563 × 10−2 (=) 1.3825 × 10−2

Std 6.95 × 10−4 2.08 × 10−3 7.14 × 10−4 9.87 × 10−4 9.30 × 10−4 2.53 × 10−3 3.47 × 10−5

ZDT4
Average 7.1956 × 10−3 (+) 5.6232 × 10−3 (+) 7.1330 × 10−3 (+) 7.4260 × 10−3 (+) 9.7327 × 10−3 (+) 1.4311 × 10−2 (−) 1.0226 × 10−2

Std 5.70 × 10−4 1.18 × 10−3 5.23 × 10−4 5.01 × 10−4 3.54 × 10−4 1.59 × 10−3 6.01 × 10−4

ZDT6
Average 5.6569 × 10−3 (−) 3.2179 × 10−3 (=) 7.6746 × 10−3 (−) 5.3819 × 10−2 (−) 2.3782 × 10−3 (−) 3.7229 × 10−3 (−) 2.1262 × 10−3

Std 5.31 × 10−4 2.58 × 10−4 4.97 × 10−4 1.60 × 10−2 7.91 × 10−5 4.36 × 10−4 3.36 × 10−4

DTLZ1
Average 2.1135 × 10−2 (+) 3.7899 × 10−5 (+) 2.2926 × 10−2 (+) 2.2280 (−) 1.6424 × 10−4 (+) 1.8593 × 10−2 (+) 3.1105 × 10−2

Std 1.33 × 10−3 7.94 × 10−5 1.98 × 10−3 8.39 × 10−1 6.07 × 10−4 1.74 × 10−3 1.15 × 10−3

DTLZ2
Average 5.7049 × 10−2 (+) 5.7179 × 10−2 (+) 6.0138 × 10−2 (+) 8.6819 × 10−2 (=) 5.7164 × 10−2 (+) 2.7904 × 10−2 (+) 8.4078 × 10−2

Std 4.56 × 10−3 4.49 × 10−5 6.81 × 10−3 3.42 × 10−3 6.08 × 10−5 2.99 × 10−3 3.39 × 10−3
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Table 4. Cont.

Function Metrics NSGAII MOEA/D MOPSO IMMOEA RVEA LMEA MOQSOA

DTLZ3
Average 1.4015 × 10−1 (−) 5.6364 × 10−2 (+) 8.4753 × 10−2 (=) 5.5285 (−) 5.4953 × 10−2 (+) 3.0975 × 10−2 (+) 8.3840 × 10−2

Std 1.47 × 10−1 1.51 × 10−3 3.47 × 10−2 1.63 3.93 × 10−3 1.06 × 10−3 2.00 × 10−3

DTLZ4
Average 5.4198 × 10−2 (−) 5.7166 × 10−2 (−) 6.3045 × 10−2 (−) 7.1517 × 10−2 (−) 5.7146 × 10−2 (−) 5.8702 × 10−2 (−) 3.2762 × 10−2

Std 4.46 × 10−3 1.01 × 10−4 4.18 × 10−3 5.65 × 10−3 2.37 × 10−4 5.31 × 10−2 4.08 × 10−2

DTLZ5
Average 8.8231 × 10−3 (+) 1.3776 × 10−2 (=) 1.1250 × 10−2 (=) 5.2354 × 10−2 (−) 1.2206 × 10−1 (−) 7.9189 × 10−3 (+) 1.2907 × 10−2

Std 1.53 × 10−4 8.58 × 10−5 2.95 × 10−4 2.41 × 10−3 1.43 × 10−2 4.14 × 10−4 6.24 × 10−4

DTLZ6
Average 1.1714 × 10−2 (=) 1.2549 × 10−2 (=) 1.1354 × 10−2 (=) 4.6209 × 10−1 (−) 1.0722 × 10−1 (−) 7.0155 × 10−3 (+) 1.2237 × 10−2

Std 5.38 × 10−4 6.61 × 10−5 4.92 × 10−5 9.05 × 10−2 1.32 × 10−3 1.25 × 10−3 2.05 × 10−4

DTLZ7
Average 6.3775 × 10−2 (+) 1.9627 × 10−1 (−) 7.6841 × 10−2 (=) 2.5247 × 10−1 (−) 1.1524 × 10−1 (−) 5.9592 × 10−2 (+) 8.2865 × 10−2

Std 9.14 × 10−3 9.65 × 10−4 4.31 × 10−3 3.51 × 10−2 1.25 × 10−3 7.30 × 10−3 2.81 × 10−2

DTLZ8
Average 3.6512 × 10−2 (=) NaN NaN NaN 3.3160 × 10−2 (=) NaN 3.8990 × 10−2

Std 9.12 × 10−3 NaN NaN NaN 5.54 × 10−3 NaN 4.24 × 10−3

DTLZ9
Average 8.4354 × 10−3 (−) NaN NaN 8.7077 × 10−2 (−) 3.0606 × 10−2 NaN 7.1642 × 10−3

Std 6.68 × 10−4 NaN NaN 2.46 × 10−2 5.96 × 10−3 NaN 1.29 × 10−3

UF1
Average 2.3718 × 10−3 (=) 3.5533 × 10−3 (−) 1.5285 × 10−2 (−) 2.4196 × 10−2 (−) 2.3252 × 10−2 (−) 1.6681 × 10−2 (−) 2.4022 × 10−3

Std 2.35 × 10−3 5.10 × 10−3 2.12 × 10−2 2.77 × 10−2 6.39 × 10−3 3.62 × 10−3 1.53 × 10−3

UF2
Average 5.2999 × 10−3 (+) 8.4767 × 10−3 (+) 5.9590 × 10−3 (+) 1.0650 × 10−2 (+) 1.1906 × 10−2 (=) 1.3808 × 10−2 (=) 1.4313 × 10−2

Std 7.03 × 10−4 5.03 × 10−3 3.62 × 10−4 8.10 × 10−4 8.61 × 10−4 4.06 × 10−3 1.12 × 10−2

UF3
Average 2.0528 × 10−2 (−) 2.5562 × 10−3 (+) 1.1321 × 10−2 (−) 1.0894 × 10−2 (−) 6.5446 × 10−4 (+) 4.3037 × 10−2 (−) 4.7750 × 10−3

Std 1.75 × 10−2 5.03 × 10−3 1.11 × 10−2 1.92 × 10−3 7.68 × 10−4 1.45 × 10−2 6.76 × 10−3

UF4
Average 6.6588 × 10−3 (=) 9.0938 × 10−3 (−) 7.2809 × 10−3 (=) 1.1696 × 10−2 (−) 1.8483 × 10−2 (−) 1.0004 × 10−2 (−) 6.9043 × 10−3

Std 8.69 × 10−4 1.51 × 10−3 5.88 × 10−4 1.18 × 10−3 5.22 × 10−3 1.44 × 10−3 6.55 × 10−4

UF5
Average 2.7938 × 10−2 (=) 4.5153 × 10−4 (+) 1.4962 × 10−2 (+) 6.5039 × 10−2 (−) 6.7016 × 10−2 (−) 1.4595 × 10−1 (−) 2.7739 × 10−2

Std 2.15 × 10−2 9.05 × 10−4 1.29 × 10−2 4.55 × 10−2 4.03 × 10−2 8.47 × 10−2 2.45 × 10−2

UF6
Average 6.5459 × 10−2 (−) 5.4275 × 10−2 (−) 1.0577 × 10−2 (−) 2.4009 × 10−2 (−) 2.3187 × 10−1 (−) 9.4877 × 10−2 (−) 5.8230 × 10−3

Std 6.07 × 10−2 7.86 × 10−2 1.83 × 10−2 1.45 × 10−2 2.95 × 10−1 4.76 × 10−2 5.38 × 10−3

UF7
Average 2.5451 × 10−3 (+) 4.0496 × 10−3 (+) 7.8085 × 10−3 (−) 1.2477 × 10−2 (−) 1.6111 × 10−2 (−) 3.7577 × 10−2 (−) 6.0753 × 10−3

Std 1.89 × 10−3 7.63 × 10−3 5.71 × 10−3 2.76 × 10−3 8.23 × 10−3 3.28 × 10−2 6.67 × 10−3

UF8
Average 1.3926 × 10−1 (=) 2.1788 × 10−1 (−) 1.0950 × 10−1 (=) 1.5689 × 10−1 (−) 2.6998 × 10−1 (−) 6.3257 × 10−2 (+) 1.2436 × 10−1

Std 1.65 × 10−2 7.52 × 10−2 2.95 × 10−2 3.80 × 10−2 5.11 × 10−2 5.47 × 10−3 3.87 × 10−2

UF9
Average 1.0959 × 10−1 (−) 8.7028 × 10−2 (−) 9.9912 × 10−2 (−) 6.0917 × 10−1 (−) 1.2816 × 10−1 (−) 6.4226 × 10−2 (+) 7.6352 × 10−2

Std 1.96 × 10−2 1.70 × 10−2 2.67 × 10−2 1.72 × 10−1 5.27 × 10−3 6.94 × 10−3 1.44 × 10−2

UF10
Average 2.1199 × 10−1 (−) 2.8860 × 10−3 (+) 1.7352 × 10−1 (−) 3.2344 × 10−1 (−) 5.5619 × 10−1 (−) 9.4595 × 10−2 (+) 1.3956 × 10−1

Std 9.62 × 10−2 2.66 × 10−3 2.98 × 10−2 3.67 × 10−2 4.79 × 10−1 7.18 × 10−2 1.61 × 10−1

+/− / = 8/10/6 9/8/5 6/10/6 2/20/1 6/16/2 9/10/3
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Compared to the other algorithms in Table 4, the MOQSOA exhibited a better perfor-
mance with the Spacing metric. Specifically, for problems ZDT2, ZDT6, DTLZ4, DTLZ9,
and UF6, the MOQSOA achieved the best values. For problems ZDT1, DTLZ8, UF1, and
UF4, although the best values of the indicators were obtained by NSGA-II, MOEA/D,
and RVEA, the results obtained by the MOQSOA did not differ significantly from the
optimal values according to the Wilcoxon signed-rank test, which reflects the advantage
of the proposed algorithm in the distribution of the solutions. In addition, for problems
DTLZ5-DTLZ7, UF3, UF5, and UF7-UF10, the LMEA and MOEA/D algorithms performed
better, but the MOQSOA also showed a good performance and the obtained results ranked
in the top three when comparing all algorithms. For the Spacing metric, the MOQSOA only
underperformed on problems ZDT3-ZDT4, DTLZ1-DTLZ3, and UF2.

When comparing the performance of the Spacing metric for the two-objective and
three-objective test problems, it can be seen that the MOQSOA performed better in the
distribution of the solutions than MOPSO, IMMOEA, and RVEA on the two-objective
test problem, and was basically equal to NSGA-II and MOEA/D. Additionally, for the
three-objective test problem, the advantage over MOPSO, IMMOEA and RVEA was more
obvious, but the algorithm was still slightly inferior to LMEA.

Through statistics and the analysis of the experimental results, it has been proven that
the proposed MOQSOA has good performance in dealing with multi-objective optimization
problems. The MOQSOA significantly improved the convergence and distribution of solu-
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tions in the test problems compared to the other multi-objective optimization algorithms.
Specifically, the convergence of the MOQSOA was significantly enhanced compared to the
classical multi-objective optimization algorithms, and the distribution of the solutions was
improved compared to the novel multi-objective optimization algorithm. In addition, the
MOQSOA can balance the convergence and the distribution of solutions well.

4.3. The Influence of Strategies
4.3.1. The Influence of Real-Coded Quantum Representation

Inspired by the QEA, the proposed MOQSOA treats the current optimal solution as a
linear superposition of two probabilistic states with real-coded quantum representation.
Each seagull individual makes its own judgment on whether to accept the current optimal
solution as the global optimum during the iterations. To demonstrate the effectiveness of
this strategy, the proposed MOQSOA was compared with the MOSOA [24] that adopts
the basic seagull optimization algorithm by IGD metrics and Spacing metrics on the test
functions ZDT1, ZDT2, ZDT3, ZDT6, DTLZ4, DTLZ6, and UF6. The population size and
the maximum capacity of the archive were set to 100, the maximum number of iterations
was set to 1000, and each algorithm was implemented for 30 independent runs. The means
and standard deviations are presented in Table 5. The Wilcoxon signed-rank test [60] was
performed. The results are shown in Table 5 with a significance level of α = 0.05, and “+”,
“−”, and “=” indicate that the MOSOA is superior, inferior, or equal to the MOQSOA,
respectively.

Table 5. Results influenced with real-coded quantum representation.

Function Metrics MOSOA
IGD

MOQSOA
IGD

MOSOA
Spacing

MOQSOA
Spacing

ZDT1
Average 4.0025 × 10−3 (=) 4.1101 × 10−3 5.1220 × 10−3 (=) 5.3225 × 10−3

Std 6.55 × 10−5 7.28 × 10−5 3.26 × 10−4 6.57 × 10−4

ZDT2
Average 3.8531 × 10−3 (=) 3.8136 × 10−3 4.7874 × 10−3 (=) 4.4243 × 10−3

Std 3.04 × 10−5 5.67 × 10−5 2.14 × 10−4 1.27 × 10−4

ZDT3
Average 7.4483 × 10−3 (−) 6.4169 × 10−3 1.4084 × 10−2 (=) 1.3825 × 10−2

Std 5.28 × 10−4 1.39 × 10−4 1.78 × 10−4 3.47 × 10−5

ZDT6
Average 3.9728 × 10−3 (−) 3.0046 × 10−3 2.2837 × 10−3 (=) 2.1262 × 10−3

Std 3.59 × 10−4 2.18 × 10−4 1.11 × 10−5 3.36 × 10−4

DTLZ4
Average 5.1377 × 10−1 (−) 3.7873 × 10−1 3.1023 × 10−2 (=) 3.2762 × 10−2

Std 4.46 × 10−1 2.81 × 10−1 4.54 × 10−2 4.08 × 10−2

DTLZ6
Average 6.3906 × 10−3 (−) 4.9789 × 10−3 1.2702 × 10−2 (=) 1.2237 × 10−2

Std 2.06 × 10−5 3.38 × 10−5 2.85 × 10−4 2.05 × 10−4

UF6
Average 3.6369 × 10−1 (−) 2.6237 × 10−1 8.1922 × 10−3 (−) 5.8230 × 10−3

Std 1.95 × 10−1 1.35 × 10−1 5.45 × 10−3 5.38 × 10−3

+/− / = 0/5/2 0/1/6

Based on the results, as shown in Table 5, it can be seen that for problems ZDT3,
ZDT6, DTLZ4, DTLZ6, and UF6, the IGD values obtained by MOQSOA were better than
those of the MOSOA. In contrast, for problems ZDT1 and ZDT2, the performance of the
MOQSOA was not significantly different from the performance of the MOSOA. As for
the Spacing metric, the MOQSOA did not differ significantly from the MOSOA on the
majority of problems according to the Wilcoxon signed-rank test. The experimental results
illustrate that, by adding real-coded quantum representation for current optimal solution,
the MOQSOA is able to improve the convergence of the algorithm without affecting the
distribution of the solutions, and shows better performance.

Generally, the real-coded quantum representation strategy helps to improve the algo-
rithm in searching for global optimal solutions and identifying local optimal stagnation.
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4.3.2. The Influence of Nonlinear Migration Operation

Instead of adopting the linear descent approach for the additional variable A in
the migration operation in the basic SOA, the proposed MOQSOA uses a nonlinearly
varying variable A to match the migration process of the actual seagull population better,
as well as accelerate the convergence and improve the search accuracy of the algorithm.
To demonstrate the effectiveness of this strategy, the proposed MOQSOA was compared
with the MOQSOA that adopts the linear descent method of the control variable A in
the basic SOA (denoted as MOQSOA-LD) on test problems ZDT1, ZDT3, and DTLZ6.
Additionally, the experiment metrics were the IGD metrics of the 200th, 500th, and 1000th
generations. The population size and the maximum capacity of the archive were set to 100,
the maximum number of iterations was set to 1000, and each algorithm was implemented
for 30 independent runs. The means and standard deviations are presented in Table 6. The
Wilcoxon signed-rank test [60] was performed. The results are shown in Table 5 with a
significance level of α = 0.05, and “+”, “−”, and “=” indicate that MOQSOA-LD is superior,
inferior, or equal to MOQSOA, respectively.

Table 6. Results influenced with nonlinear migration operation.

Function Metrics MOQSOA-LD
200th Iteration

MOQSOA
200th Iteration

MOQSOA-LD
500th Iteration

MOQSOA
500th Iteration

MOQSOA-LD
1000th Iteration

MOQSOA
1000th Iteration

ZDT1
Average 5.7792 × 10−3 (−) 4.1651 × 10−3 3.8902 × 10−3 (=) 3.8901 × 10−3 3.8882 × 10−3 (=) 3.8881 × 10−3

Std 3.70 × 10−4 1.16 × 10−4 8.27 × 10−5 1.18 × 10−6 5.25 × 10−8 8.11 × 10−8

ZDT2
Average 9.7120 × 10−3 (−) 6.6238 × 10−3 6.4306 × 10−3 (=) 6.4205 × 10−3 6.4202 × 10−3 (=) 6.4162 × 10−3

Std 4.52 × 10−3 1.61 × 10−4 2.00 × 10−5 1.07 × 10−5 2.72 × 10−6 7.51 × 10−6

DTLZ6
Average 5.0310 × 10−3 (=) 4.9659 × 10−3 5.0066 × 10−3 (=) 4.9540 × 10−3 4.9813 × 10−3 (=) 4.9534 × 10−3

Std 4.28 × 10−5 7.84 × 10−5 9.53 × 10−5 3.38 × 10−5 5.38 × 10−5 8.62 × 10−5

+/− / = 0/2/1 0/0/3 0/0/3

Based on the results illustrated in Table 6, it can be seen that the MOQSOA generally
performs better than MOQSOA-LD for problems ZDT1, ZDT3, and DTLZ6 at the 200th
generation. Although the effect produced by the nonlinear migration strategy is no longer
apparent in the later stage of iteration, this strategy can improve exploitation in the early
stage of iteration.

As a summary, the abilities of exploitation and convergence are emphasized due to the
employed real-coded quantum representation and nonlinear migration operation strategies,
which help the proposed MOQSOA to obtain a better performance for different kinds of
problems.

5. Conclusions

Multi-objective optimization algorithms need to balance convergence with distribution.
However, many multi-objective optimization algorithms are prone to local optimization,
leading to unbalanced convergence and distribution problems. In order to counterpoise
the convergence and distribution of Pareto optimal solutions in MOPs, a multi-objective
quantum-inspired seagull optimization algorithm, termed MOQSOA, was proposed in
this paper. The proposed algorithm combined opposite-based learning, the migration
and attacking behavior of seagulls, grid ranking, and the superposition principles of
quantum computing. To obtain a better initialized population in the absence of a priori
knowledge, an OBL mechanism was used to initialize the seagull population. Furthermore,
it contained the nonlinear migration and attacking operations of the SOA. To maintain
a better balance between exploitation and exploration when searching global optimal
solutions, the proposed algorithm adapted the real-coded quantum representation of the
current optimal solution and quantum rotation gate. In addition, the grid mechanism with
GGR and GDR provided a criterion for leader selection and archive control. To evaluate
the performance of the proposed algorithm in this paper, NSGA-II, MOEA/D, MOPSO,
IMMOEA, RVEA, and LMEA were selected as comparative algorithms. The results of the
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tests performed on the ZDT, DTLZ, and UF test suites demonstrated that the MOQSOA
was able to enhance the distribution and convergence performance of MOPs.

The proposed MOQSOA showed effectiveness and efficiency in the MOP benchmark
test problems. However, there is still a lot of potential future work that deserves to be
studied in depth. One desirable future investigation is to solve specific real-life difficult
engineering problems with the proposed algorithm, such as circuit designing, electronic
component arrangement, cost optimization, automatic navigation, and sustainable energy
systems. Additionally, it is worthy studying how to determine whether an optimal solution
is positive or deceptive more scientifically. In addition, the potential capability of the MOQ-
SOA to solve many objective optimization problems should be demonstrated. Moreover, it
will be interesting to investigate how to use the principles of quantum computing in other
multi-objective optimization algorithms.
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