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Abstract: In recent years, human–drone interaction has received increasing interest from the scientific
community. When interacting with a drone, humans assume a variety of roles, the nature of which
are determined by the drone’s application and degree of autonomy. Common methods of controlling
drone movements include by RF remote control and ground control station. These devices are often
difficult to manipulate and may even require some training. An alternative is to use innovative
methods called natural user interfaces that allow users to interact with drones in an intuitive manner
using speech. However, using only one language of interacting may limit the number of users,
especially if different languages are spoken in the same region. Moreover, environmental and
propellers noise make speech recognition a complicated task. The goal of this work is to use a
multilingual speech recognition system that includes English, Arabic, and Amazigh to control the
movement of drones. The reason for selecting these languages is that they are widely spoken in
many regions, particularly in the Middle East and North Africa (MENA) zone. To achieve this goal, a
two-stage approach is proposed. During the first stage, a deep learning based model for multilingual
speech recognition is designed. Then, the developed model is deployed in real settings using a
quadrotor UAV. The network was trained using 38,850 records including commands and unknown
words mixed with noise to improve robustness. An average class accuracy of more than 93% has been
achieved. After that, experiments were conducted involving 16 participants giving voice commands
in order to test the efficiency of the designed system. The achieved accuracy is about 93.76% for
English recognition and 88.55%, 82.31% for Arabic and Amazigh, respectively. Finally, hardware
implementation of the designed system on a quadrotor UAV was made. Real time tests have shown
that the approach is very promising as an alternative form of human–drone interaction while offering
the benefit of control simplicity.

Keywords: speech recognition; UAV; deep learning; human–drone interaction; natural user interfaces

1. Introduction

Unmanned aerial vehicles (UAVs), or drones, are robots that fly autonomously without
a human pilot on board [1]. They were originally used solely for military applications, but
are now also increasingly being used for civilian purposes impacting our lives in extremely
beneficial ways. Drone technology is steadily becoming more prevalent and its utility
has been demonstrated in a number of recent applications in various fields. Drones were
used to inspect and monitor compliance with restrictions during the Covid-19 outbreak,
as well as to deliver food, medications, and other supplies to isolated places. With the
use of drones becoming more common, a disruptive shift in the way we use technology
is expected, which is being supported by an intensive research activity. One important
aspect in the design, development and integration of such flying engines is how to interact
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with them. Developing effective and easy-to-use systems for human–drone interaction
(HDI) is a challenging task if we consider the technical, social, and regulatory aspects,
and the growing range of potential users and activities for which drones are designed.
Traditional remote controllers employ two joysticks for flight control, one for pitch and roll
and the other for throttle and yaw. This method requires the constant use of both hands,
which might be challenging. The drone’s camera is controlled via additional wheels and
buttons. Moreover, in tough or stressful situations (such as windy places), the absence of
intuitive controls increases the mental burden of the pilot, thereby compromising safety
and efficiency. Another difficulty is the difference in position and orientation between the
drone and its pilot, which can make it difficult to align the camera feed from the drone
with the pilot’s surroundings. When the drone is far away or out of direct line of sight,
it might be difficult to determine its position and orientation as well as the direction its
camera is facing.

The type of interaction depends on the application at hand. Methodologies for human–
computer interaction (HCI) and human–terrestrial-robot interaction cannot be used directly
for HDI because of the flying complexity inherent in drone technology. A plethora of
solutions for HDI have been proposed in the literature and alternative control strategies
using gesture and speech were proposed. A review of the state of the art in the context of
human–drone interaction can be found in [2]. The authors discuss the main open issues and
challenges currently highlighted and reported in research projects and papers. The papers
were categorized on the basis of the following dimensions: the drone role, the context of
use, indoor vs outdoor usage and the interaction mode. Speech control problems were
addressed by many works [3,4]. However, the use of English as the only language for
control limits the number of users. Furthermore, improving speech recognition in noisy
environment (particularly propeller noise) remains a major challenge.

This paper presents an experimental framework for UAVs control using an automatic
multi-lingual speech recognition (AMLSR) system based on a deep learning model. In the
Middle-East and North Africa (MENA) zone, people speak different languages, basically
Arabic and Amazigh. The idea was to use voice commands to interact with a drone using
words spoken in English, standard Arabic and Amazigh. To this end, a convolutional
Neural Network has been designed and built using the Google speech commands dataset
for English and customized datasets for Arabic and Amazigh. Then, 18 possible commands
interpreted as instructions for the UAV were collected. The commands are considered as
six classes of actions that the UAV can execute from three different languages.

The proposed method contributes to the state of the art by enhancing the English-
based speech recognition system. Multilingual recognition is more advantageous because it
provides users with additional options and is not limited to a single category. Additionally,
the designed method improves the multilingual recognition for all users, regardless of
their native language. Additionally, environmental and propeller noise robustness is
addressed. In all languages, instruction utterance recognition is unaffected by signal noise.
Consequently, high rates of recognition accuracy were attained during tests. Experiments
were conducted using a hardware implementation in real time. To this end, a graphical
user interface was created to facilitate human–drone interaction. Due to the big training
dataset, English language commands were better understood during testing. Arabic and
Amazigh were also detected with a high success rate. In general, the developed framework
accommodates users from the MENA region fairly well, regardless of their native language
and environmental noise. Based on the state of the art in relevant literature, this study
introduces several contributions:

• Faster and more efficient voice control recognition. Other interfaces, such as gesture
control, delay the system, thereby limiting its utility.

• Multilingual ASR system (English, Arabic, and Amazigh) that enables a broad spec-
trum of users to interact with the UAV with simplicity.

• Voice recognition with high accuracy of over 93% using deep learning.
• Quadrotor UAV hardware implementation and real-time testing of the designed system.
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• Graphical user interface to reduce the user’s workload, simplifying the command
and interaction with the UAV, and decreasing the impact of background noise on
speech recognition.

The paper is organized as follows: First, a review of related work is provided in
Section 2. After that, Section 3 describes the proposed framework that suggests two stages,
namely the design of a CNN model for AMLSR and the deployment of the model in a
physical environment. Experimental results and real time tests and discussions can be
found in Section 4. Section 5 presents the hardware implementation and the graphical
user interface. Comparative study and discussion are described in Section 6. Finally, a
summary of main results and future work are given in Section 7.

2. Related Works

Human–drone interaction (HDI) is an active and growing field of study that focuses
on the evaluation and understanding of interaction distance as well as the development of
novel use cases. The methodology and best practices for conducting user research in the
HDI field are presented in [5]. This research proposes a taxonomy for HDI user studies that
analyzes the various approaches found in the literature about human–drone interaction.
Existing human–robot and human–computer interaction approaches must be adapted for
drone research, as the complexity of flight introduces additional elements. To this end, a
road map to further examine autonomous drones and their integration in human areas,
as well as to investigate future interaction strategies, with the goal of establishing HDI
best practices is presented in [6]. In [7] the authors examine the relationship between
autonomy and User Experience (UX) at various perceived workload levels. This work aims
to consider both technical and UX-related factors when developing the next generation of
assistive flying robots.

Nowadays, it is common to see more people with no prior knowledge of the subject
owning a drone, either to accomplish a specific purpose or for entertainment purposes.
As drone technologies became more pervasive and affordable, researchers began to shift
interface design towards modern user interfaces that no longer restrict drone control to a
remote controller or a ground control station. These innovative techniques, also known as
natural user interfaces (NUI), enable users to interact with drones via gesture [8], speech [9],
touch [10], and even using brain–computer interfaces (BCIs) [11]. These methods have been
evaluated in [12]. Most results appear to imply that the implementation of a NUI facilitates
human drone interaction. Most findings suggest that implementing a NUI facilitates
human–drone interaction. In addition, as the roles and operations of military UAVs have
expanded, along with the need for UAV group control, the traditional “mouse–keyboard”
single-mode NUI technology has proven incapable of meeting the requirements of future
unmanned warfare. The authors of [13] created a new multi-mode UAV interactive system
based on cutting-edge virtual reality and artificial intelligence hardware and software.

According to studies on natural user interfaces [12], speech is used as a method of
interaction by 38% of American users and 58% of Chinese users. The Natural Language
Processing (NLP) task of real-time computational transcription of spoken language is
known as automatic speech recognition (ASR). The authors of [14] provide an overview
of the various techniques and approaches used to perform the task of speech recognition.
The research provides a thorough comparison of cutting-edge techniques currently being
used in this field, with a particular emphasis on the various deep learning methods. In [15],
the authors present a statistical analysis of the use of deep learning in speech-related
applications, whereas authors of [16] present two cases of successful speech recognition
implementations based on Deep Neural Network (DNN) models. The first is a DNN model
created by Apple for its personal assistant Siri, and the second is region-based convolutional
recurrent neural network (R-CRNN) designed by Amazon for rare sound detection in home
speakers. The work described in [17] provides a conceptual understanding of CNN, as well
as its three most common architectures and learning algorithms. DNN has shown great
promise in speech recognition systems with multiple languages. In [18], the authors propose
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a deep learning speech recognition algorithm that combines speech features and speech
attributes in the context of English speech. In [19], a combination of deep belief network
(DBN) and Deep Bidirectional Long Short-Term Memory (DBLSTM) with Connectionist
Temporal Classification (CTC) output layer to create an acoustic model on the Farsdat
Persian speech data set is proposed. A contribution to the Amazigh language is also
provided in [20]. The paper investigated and implemented an automatic speech recognition
system in an Amazigh-Tarift-based environment. In [21], the authors investigate the use of
cutting-edge end-to-end deep learning approaches to build a robust diacritised Arabic ASR
for the Arabic language. These approaches rely on the Mel-frequency Cepstral Coefficients
and the log Mel-Scale Filter Bank energies as acoustic features.

Speech control is widely used in a variety of applications. The work in [22]. details
the research and application of human–computer interaction technology based on voice
control in UAV ground control stations. Moreover, authors of [23] propose a system for
locating and rescuing victims buried beneath debris. A speaker installed on the UAV
causes victims to react, and their voices are recorded to detect them. In [24], the authors
investigate a speech-based natural language interface for defining UAV trajectories. To
determine the effectiveness of this interface, a user study comparing its performance to that
of a conventional mouse-based interface is also presented. However, previous works were
able to control UAVs via speech, but voice recognition accuracy was insufficient. In [9],
the authors designed a speech control scheme for UAVs based on Hidden Markov Model
(HMM) and Recurrent Neural Networks (RNN) to address this issue. HMM is utilized to
identify error commands and RNN is utilized to train the sets of UAVs commands, with
the subsequent command predicted based on the training result. The recognition rate of
incorrect commands is as high as 61.90%, while the overall error rate is reduced to 1.43%.
A further enhancement can be found in [25] with Speech Recognition Engine based on
Convolutional Neural Network (CNN), a Voice Command Controller for Fixed Wing UAV.
According to the classification report, the model achieved a quantitative evaluation with an
average of 87% for precision and 83% for recall. An alternate approach to speech recognition
for robotics applications based on a combination of spectrograms, MEL and MFCC features,
and a deep neural network-based classification is presented in [26]. The algorithm’s overall
validation accuracy is as high as 97%, whereas the testing accuracy of the system is 95.4%.
Since this is a classification algorithm, results have been presented using custom datasets for
voice classification. In [27], the authors presented a multi-modal evaluation dataset for UAV
control, comprised of spoken commands and associated images that represent the visual
context of what the UAV sees when the pilot utters the command. For previous works,
even with high-rate accuracy, robustness over noise was not considered. In [28], the authors
conducted a discriminant analysis of voice commands in the presence of an unmanned
aerial vehicle with four rotating propellers, in addition to measuring background sound
levels and speech intelligibility. For male speakers, classification of speech commands
based on mel-frequency spectral coefficients showed a promising classification rate of
76.2%. Deep Xi, a deep learning approach to a priori SNR estimation proposed in [29], is
capable of producing speech enhancements of higher quality and intelligibility than recent
deep learning speech enhancement approaches. The method was evaluated using both
real-world nonstationary and colored noise sources, at multiple SNR levels. The problem
with previous publications is that voice recognition is performed on board. To receive
verbal commands, the drone must be close to the user (no more than two to three meters
away). Users are restricted to collocated interaction.

3. Proposed Framework

To achieve human–drone interaction using natural language, a two-stage framework
is proposed. Overall, as can be seen on the block diagram shown in Figure 1 below, the
first stage aims to develop a system that can recognize commands spoken in three different
languages namely Arabic, English, and Amazigh using a deep learning model. During this
stage, various data are first collected from many sources, then they are preprocessed during
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a data preparation phase. Then a deep learning model is designed, built, and fine-tuned
using training and validation sets. The performance of the developed deep learning model
for automatic Multi-Lingual Speech Recognition (AMLSR) is evaluated using a test set. In
the second stage the developed (AMLSR) system is deployed to control the movements of a
quadrotor UAV. During this stage, input audio commands are acquired, preprocessed, and
fed to the AMLSR system. If the command is recognized, the corresponding instruction is
sent directly to the quadrotor UAV; otherwise, the command is rejected.

Figure 1. Block diagram of the proposed two-stage framework.

3.1. First Stage: AMLSR System Design
3.1.1. Data Collection and Preparation

During this first step, data records are first collected from the Google Speech Com-
mands Dataset for English language, and from our personnel records for Arabic and
Amazigh languages. The English dataset contains 65,000 one-second clips for 30 different
words spoken by thousands of different subjects including the desired commands like up
and stop, as well as other objects like numbers and names categorized as unknown words.
The other language clips were recorded with phones and laptops in realistic environments.
Each record has a sampling frequency of 16 KHz, in (.wav) format, including 12 commands
(six for each) and unknown words. Table 1 summarizes the record characteristics for our
personnel database.
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Table 1. Clips characteristics in Arabic and Amazigh databases

Parameters Arabic Database Amazigh Database

Sampling Frequency 16 KHz 16 KHz
Audio Format .wav .wav

Speakers 12 (5 M + 7 F) 12 (5 M + 7 F)
Number of commands 6 6

Number of unknown words 20 20
Size of commands 5220 960

Before extracting features, it is important to ensure that the network is robust enough to
deal with background noise. Background noise has been mixed into the instruction records
to achieve this. A variety of types from various sources are employed, and the background
samples in the various data sets are highly correlated. Figure 2 shows an example of the
signal to noise ratio (SNR) of one of the commands (Akker (On-Am)) correlated with white
noise. The obtained SNR level is −8.61 dB, showing the noisy conditions in which the
experiments are done.

In this work, six possible commands with three possible languages under various
conditions and spoken by different speakers are considered. Hence, there is more than one
command for a specific action, as summarized in table Table 2. For example the action “up”
can be carried out by saying the word “Aala” in Arabic or “Oussawen” in Amazigh. The
collected data undergo a preparation phase where audio records represented as speech
waveforms are transformed into spectrograms before being used in the training, validation,
and testing of the machine learning model as shown on Figure 3.

Table 2. Commands in English, Arabic and Amazigh.

English Commands Arabic Commands Amazigh Commands Actions

Up Aala (Up-Ar) Oussawen (Up-Am) Increase altitude
Down Asfal (Down-Ar) Oukser (Down-Am) Decrease altitude
Right Yamine (Right-Ar) Ayfouss (Right-Am) Move to the right
Left Yassar (Left-Ar) Azelmad (Left-Am) Move to the left
On Ichtaghil (On-Ar) Akker (On-Am) Turn motors on
Off Tawakef (Off-Ar) Ekhsi (Off-Am) Turn motors off

Figure 2. Signal to noise ratio (SNR) for Akker (On-Am).
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Figure 3. From audio signals to spectrograms.

3.1.2. Deep Learning Model for AMLSR

The command recognition problem is cast as a multi-class classification task. Various
architectures have been designed and implemented in convolutional neural networks
(CNNs) to handle this task. Ref. [30] presented LeNet-5 as the first development of CNNs
that demonstrates impressive results for solving handwritten digit recognition problem.
AlexNet [31], is another CNN architecture similar to LeNet-5, but with a more complex
network and more parameters to learn. Simonyan and Zisserman in [32] have designed the
VGG-16 network that is well-known for its consistent design and which has been successful
in a variety of fields. Finally, GoogleNet is a model proposed by [33]. The main goal was to
create a model with a lower budget that could reduce the amount of power needed, the
number of trainable parameters employed, and the amount of memory used. The number
of trainable parameters in the network was drastically reduced by the model.

As shown on Figure 4, the process of developing AMLSR is divided into two stages:
training and testing. First, the database that includes UAVs instructions is collected from
different users records that speak the desired languages. The dataset is then separated into
test, validation and training. The neural network is trained using the extracted features of
training data to set the model parameters. Finally, the obtained model is evaluated using
the test data.
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Figure 4. Deep Learning Model for AMLSR.

As illustrated in Figure 5, the architecture of the developed CNN includes:

• 5 convolution layers: each layer acts as a feature extractor.
• 5 By normalizing the outputs of intermediary layers during training, batch normal-

ization attempts to reduce the internal covariate shift in a network. This accelerates
the training process and enables faster learning rates without increasing the risk of
divergence. Batch normalization does this by normalizing the output of the preceding
hidden layer using the mean and variance of the batch (mini-batch). For an input
mini-batch β = x1:m, we learn parameters γ and β via [34]:

µβ =
1
m

m

∑
i=1

xi

σ2
β =

1
m

m

∑
i=1

(xi − µβ)
2

x̂i =
xi − µβ√

σ2
β + ε

yi = γx̂i + β

(1)

• 5 ReLu Layer: The rectified linear unit (ReLU) is a simple, fast activation function
typically found in computer vision. The function is a linear threshold, defined as:

f (x) = max(0, x) (2)

• 4 max pooling layers: As the name suggests, the max pooling operation chooses the
maximum value of neurons from its inputs and thus contributes to the invariance
property. Formally, for a 2d output from the detection stage, a max pooling layer
performs the transformation in order to downsample the feature maps (in time and
frequency) [34].

hl
i,j = max

p,q
hl−1

i+p,j+q (3)

where the function h is generally known as a kernel or filter transformation, p and q
denote the coordinates of the neuron in its local neighborhood and l represents the
layer. In k − max pooling, k values are returned instead of a single value in the max
pooling operation.

• Dropout Layers: Applying dropout to a network involves applying a random mask
sampled from a Bernoulli distribution with a probability of P. This mask matrix is
applied elementwise (multiplication by 0) during the feed-forward operation. During
the backpropagation step, the gradients for each parameter and the parameters that
were masked in the gradient are set to 0 and other gradients are scaled up by 1

1−P .
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• Fully connected Layer: allows us to perform classification on the dataset.
• Softmax Layer: we find it just after the fully connected layer in order to predict classes.

The output unit activation function is the softmax function [35]:

yr(x) =
exp(ar(x))

∑k
j=1 exp(aj(x))

(4)

where 0 ≤ yr ≤ 1 and ∑k
j=1 yj = 1

• Weighted Classification Layer: For typical classification networks, the classification
layer usually follows a softmax layer. In the classification layer, trainNetwork takes
the values from the softmax function and assigns each input to one of the K mutually
exclusive classes using the cross entropy function for a 1-of-K coding scheme [35]:

loss = − 1
N

N

∑
n=1

K

∑
i=1

witniln(yni) (5)

where N is the number of samples, K is the number of classes, wi is the weight for class
i, tni is the indicator that the nth sample belongs to the ith class, and yni is the output
for sample n for class i, which in this case, is the value from the softmax function.
In other words, yni is the probability that the network associates the nth input with
class i.

• numC: controls the number of channels in the convolutional layers. It’s worth men-
tioning at this stage that the network’s accuracy is linked to its depth. Increasing the
number of filters (numC) or adding identical blocks of convolutional, batch normaliza-
tion, and ReLu layers may improve overall performance. Once the network is created,
its training can be started.

Figure 5. Deep neural networks architecture.

3.2. Second Stage: AMLSR System Deployment

The aim of this stage is to conduct real time tests of the designed system using
hardware implementation. First, a graphical user interface is designed to simplify the
interaction between the users and the UAV. The interface is designed with the multi-lingual
recognition system to detect and recognize user instructions. Next, the instructions are send
to the UAV by mean of a communication link to be executed. The transmission/reception
system allows the users to control the drone for a range of 1Km. All experiments were made
under a quadrotor UAV equipped with all the necessary sensors as shown in Figure 6.



Electronics 2022, 11, 1829 10 of 19

Figure 6. Quadrotors used during test.

4. Implementation Setup, Results and Discussion

This section includes two main parts. In the first part, the implementation details and
results of the AMLSR system’s performance evaluation will be presented and discussed.
Then, the second part will be devoted to the hardware implementation for the deployment
of the system.

4.1. AMLSR System Testing Results

In order to build the CNN, the data set has been split into:

• Training set: 80% of the data set was used to fit the model by identifying the set of
weights and biases that, on average, cause the least loss across all input examples.
The most difficult step in building any machine learning model, particularly a deep
learning model, is training the model, which necessitates massive data sets and
computational power. It is, indeed, an optimization task as it seeks to minimize the
loss associated with incorrect predictions.

• Validation set: 10% of the data examples was used to fine tune the model’s hyperpa-
rameters and provide an unbiased evaluation of the model fit on the training set.

• Test set: 10% of the data examples was used to evaluate the model performance.

The material environment in which the work was done is characterized by the follow-
ing features: Windows 10 Professional operating system, Intel Core i7-ES1650 3.50 GHz
processor, 64 GB DDR4 RAM, and NVIDIA GeForce GTX 1050Ti GPU.

Figure 7 represents the training with the English, Arabic, and Amazigh databases.
For the training phase, the Adam optimizer is used with a mini batch size of 128. Trained
for 30 epochs and with learning rate reduced by a factor of 10 after 20 epochs. The most
well-known and discussed metrics in deep learning are accuracy and loss. The goal of
the training process is to reduce the loss. In the training process, loss is frequently used
to find the best parameter values for the model. Accuracy is a metric used to assess the
performance of a classification model. It is most commonly expressed as a percentage. It is
less difficult to interpret than loss. Most of the time, we would see an increase in accuracy
as the loss decreases (as shown in Figure 7), but accuracy and loss have different definitions
and measure different things. They frequently appear to be inversely proportional, but no
mathematical relationship exists between them.
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Figure 7. Neural network training progress.

The continuous blue line represents the accuracy achieved on the training data, while
the dashed black line, which represents the accuracy achieved on the validation data, is
updated less frequently. The validation set is used to ensure that the network is sufficiently
abstracting what it learns from the training data, giving an indication on whether the
training of the model is progressing well. The training error is about only 1% while the
validation error reached 9%. The total validation accuracy is 91.31% , which means that the
model is highly accurate and can be used for the desired application.

4.2. Performance Measures and Evaluation

The network’s performance on test data can also be evaluated using a confusion
matrix as shown in Figure 8. As the target variable is multinomial, we are dealing with a
multi-class classification problem. It has 20 levels, 18 of which are related to the spoken
words “up”, “down”, “right”, “left”, “on” and “off” in the three languages, and two to
the classes “unknown” and “background”. As a result of the testing phase, a 20 × 20
confusion matrix was derived, from which several performance measures were considered
to evaluate the performance of the proposed CNN model for multilingual recognition of
spoken commands. The ONE-vs-ALL strategy was used to calculate the values of the
performance measures, with each level being considered as the positive class at a time
and the others as the negative class. The performance measures that are considered in the
experimental study are:

• Recall: This metric assesses how confident we can be that the model will find all
spoken words related to the selected positive class. In other words, it indicates the
proportion of true positives that are correctly classified. Recall is calculated for each
target level (li) as follows:

Recall(li) =
TP(li)

TP(li) + FN(li)
i = 1..20 (6)
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• Precision: This metric helps in assessing how confident we can be that a spoken
command identified as having a positive target level actually has that level. In other
words, it indicates the proportion of predicted positives that are actually positive.

Precision(li) =
TP(li)

TP(li) + FP(li)
i = 1..20 (7)

• F1-measure (or F1 score): The F1 measure, which is the harmonic mean of precision
and recall, provides an alternative to assessing the misclassification rate and aids in
concentrating on minimizing both false positives and false negatives equally.

F1score(li) = 2 × Precision(li)× Recall(li)
Precision(li) + Recall(li)

i = 1..20 (8)

• Average class accuracy (ACA): Because the data set is imbalanced, using raw clas-
sification accuracy to evaluate overall performance can be misleading. Instead, we
propose using the harmonic mean to calculate the average class accuracy, as shown in
the equation below:

ACAHM =
1

1
20 ∑20

i=1
1

Recall(li)

(9)

Figure 8. Obtained confusion matrix.

As indicated in Figure 9, the model’s average class accuracy was 0.93, indicating its
promising potential. Figure 9 also shows the obtained results in terms of recall, precision,
and recall for each of the classes under consideration. Precision and recall metrics had
values ranging from 0.7 to 1 and above 0.8, respectively. F1 scores, on the other hand, vary
from 0.8 to 1. Despite the size of the English dataset, the results show poor performance for
English words as compared to Arabic and Amazigh words. This can be explained by the
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completely distinct word pronunciation, as well as the presence of a considerable portion
of unknown English words.

Figure 9. Performance measures and results.

4.3. Real Time Tests of the Proposed AMLSR

After training and evaluating the network, the test phase of the AMLSR system is
performed. First the audio signal is extracted from the users in real time. The spectrogram
is generated and transferred to the network in order to recognize the desired command.

The data was collected from 16 persons divided into two categories: the first one
formed from Amazigh native speakers and the second composed of Arabic native speakers.
Figure 10 shows speakers’ age and gender distribution.

Figure 10. Speakers categories (A) Gender distribution. (B) Age distribution.

Overall, Figure 11 depicts the AMLSR model’s achieved performance following this
test phase. The AMLSR system performed reasonably well, with 93.76% for English word
recognition, 88.55% for Arabic word recognition, and 82.31% for Amazigh word recognition,
respectively. This time, English terms were easily identified because there was no unknown
word introduced in the test set, and non-native speakers, unlike native speakers, have an
accentuated and clear pronunciation of these English words.
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Figure 11. Achieved performance during test phase for each data set.

5. Hardware Implementation for AMLSR Deployment

The UAV used for the real time test is a quadrotor drone manufactured in our labora-
tory for academic purposes. The drone can support an additional payload of 500 g in order
to execute different kind of missions. It is equipped with an Atmel processor on-board
connected to different sensors such as the Inertial measurement unit for attitude estimation,
GPS for positioning and ultra-sound for obstacles detection. Radio communication and
data transmission is assured via TX/RX module with a 1 km transmit rang. Furthermore,
communication with the interface is granted via USB. The quadrotor drone has a flight
autonomy of approximately ten minutes depending on its usage.

The main goal of creating the graphical interface is to reduce the user’s workload
by simplifying command and interaction with the UAV. The interface was created so that
a single operator could communicate with the UAV and issue the required movement
commands using the proposed languages. In addition, as shown in Figure 12, the following
factors were taken into consideration when developing the design:

• The interface is able to automatically detect the available UAVs.
• The interface displays the information related to the motors rotation speed as PWM

signals. This information is displayed with different-colored text in order to help the
operator to avoid overload.

• The detected command is displayed as ‘Text’ with the language of the user.
• The interface is offered in a variety of languages depending on the user’s language.

English is primarily suggested.
• The interface displays visual alerts in reaction to various events that may occur during

the system’s functioning.

In the implemented system, once a command is transmitted to the UAV, it is carried
out until another command is delivered. As a result, to stop the UAV’s engine, an explicit
instruction for the action “stop” is required. For safety and to avoid collisions, the UAV
will automatically stop when it reaches 0.1 m above the ground.
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Figure 12. Graphical interface for AMLSR system.

6. Comparative Study and Discussion

Figure 13 shows that being a native speaker has an impact on the recognition rate.
For example, in category 1, Amazigh words were recognized better than English and
Arabic terms, whereas Arabic words were recognized best in category 2. However, because
Arabic commands are less complex than Amazigh commands, the results for Arabic words
appear to be better than those for Amazigh terms in both categories. Furthermore, English
recognition works well with both categories because the commands are short and easy
to pronounce. Because Amazigh commands have many syllables, users must correctly
pronounce the word in order to be recognized. The fact that Amazigh is a language with
several dialects, therefore the accent changes from person to person, explains category
1 errors in Amazigh command. Finally, there was considerable ambiguity in the multi-
lingual test between the terms “left”, “asfel”, and “ayfouss”. Moreover, even in a noisy
environment, the results are very encouraging.

This work can be considered as the first attempt that uses the most commonly spoken
languages in the MENA region, including standard Arabic, English, and Amazigh to
develop an AMLSR system for HDI. Table 3 compares our work to some similar studies
in the ASR related-literature based on the following criteria: Languages used for ASR,
speech signal (SS) representation used, average accuracy, robustness, and system hardware
implementation. Several features can be considered to design an ASR system, including
the Mel-frequency cepstral coefficients (MFCC) and spectrograms.

Table 3. Comparison with similar studies

Criteria [36] [28] [3] [4] AMSLR

Used Languages En, Ar En En, Sp En En, Ar, Am
Used representation MFCC MFCC GCS API Spectrograms Spectrograms
Average Accuracy 89.85% 76.2% 96.67% 79% 93.76%

Robustness Not Considered Considered Considered Considered Considered
System Hardware Implementation No Yes Simulation Yes Yes
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(a)

(b)

(c)

(d)

Figure 13. Accuracy results on test data for different spoken words: (a) English, (b) Amazigh,
(c) Arabic, and (d) Multilingual.
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Considering the entire hardware implementation, the prototype’s performance was
quite promising. However, our system is limited to a small set of commands. A more
extensive instruction dictionary is needed. Furthermore, additional instructions to manage
the drone’s position and camera should also be considered. The developed system must ac-
count for communication disruptions and environmental limits in order to avoid collisions
and obstacles.

Extending the dataset while ensuring good class-balance in target feature distribution
is required to improve the ASR system. To avoid the burden of further data collection
and labelling, a Self-Supervised Learning (SSL) approach, as described in [37], could be
used for this purpose. Semi-supervised learning can also be investigated. Furthermore,
one of the most recent aspects to be explored is multitask language learning as it could
improve speech interaction with drones [38]. Another component that might be included
to explain the predictions produced by algorithms, as stated in [39], is the explainability
of the settings. Moreover, the system can be extended to handle audiovisual interaction
techniques, in which the drone can predict the user’s movements using an integrated
camera and background invariant detection [40]. As the altitude of drones changes, this
last strategy must be supplemented with multiscale object detection [41].

7. Conclusions

The goal of this work was to develop a speech recognition system that can be used
to interact with unmanned aerial vehicles using words spoken in English, Arabic, and
Amazigh. As a first step, the architecture of a CNN has been defined, and the data required
for training, validation, and testing has been collected and pre-processed. A rate of more
than 90% accuracy was achieved. A quadrotor drone was built and used during the model’s
deployment in a real environment. A user interface has also been designed to make it simple
to control the engine. This step of the system evaluation involved a sample of 16 people
of various ages and genders. The AMLSR system performed well in terms of recognition
accuracy, with an accuracy of 93.76% for English interaction, 88.5% for Arabic interaction,
and 82.31% for Amazigh interaction. The AMLSR system was able to understand the user’s
voice instructions with an average accuracy of 88.2% during tests. The proposed prototype
can be improved in a variety of ways as part of future work plans. It would be interesting
to investigate other DL models and to expand the database in order to improve efficiency.
As suggestions, we propose creating a website where a large number of people can record
commands in order to cover other existing dialects. Furthermore, the graphical interface
could be improved to show more aspects such as UAV attitude sphere, battery health, and
so on. We may even enter a lexical field to broaden the command dictionary to include all
possible words used for control and even a navigation tool.
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