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Abstract: Ensuring that a vehicle can obtain its real location in a high-precision prebuilt map is one
of the most important tasks of the Autonomous Internet of Vehicles (AIoV). In this work, we show
that the resampling of the particle filter (PF) algorithm is optimized by using the prior information
of particles that shift real localizations to improve vehicle localization accuracy without changing
the existing PF process, i.e., the particle shift filter (PSF). The number of particles is critical to their
convergence efficiency. We perform quantitative and qualitative analyses of how to improve particle
localization accuracy while ensuring timeliness, without increasing the number of particles. Moreover,
the cumulative error of the particles increases with time, and the localization accuracy and robustness
decrease. Our findings show that the initial particle density is 159 particles/m3, and the cumulative
variance of the PSF particles is improved by 27%, 29%, and 82% at the x-, y-, and z-axes, respectively,
under the same conditions as the PF algorithm, while the calculation time only increases by 10.6%.
Moreover, the cumulative mean error is reduced by 0.74 m, 0.88 m, and 0.68 m at the x-, y-, and z-axes,
respectively, indicating that the localization error of the PSF changes less with time. All experiments
were performed using open-source software and datasets.

Keywords: localization; point cloud map; particle shift; Autonomous Internet of Vehicles

1. Introduction

Localization technology plays an important role in the Autonomous Internet of Vehi-
cles (AIoV). In general, precise vehicle localization can provide vehicles with centimeter-
level lane departure warnings, location-based services, and more [1]. Traditional local-
ization technologies such as global navigation satellite system (GNSS) localization and
real-time kinematic (RTK) localization are relatively mature, and are able to achieve highly
accurate localization. However, their performance will be influenced when satellite signals
are blocked by tunnels, houses, and forests [2,3]. At the same time, the strict driving safety
requirements of the AIoV entail higher requirements for localization accuracy, real-time
computing, and environmental adaptability. Furthermore, the energy system of the AIoV
is mainly powered by batteries, and vehicle localization should be based on the principle
of not adding additional sensors, so as to reduce the energy consumption of in-vehicle
equipment [4].

To overcome the above challenges, many researchers have collected data on traffic
infrastructure, generally observed in real driving environments, for vehicle localization.
High-precision map localization is achieved by matching maps with built-in-vehicle sensor
data. The sensors that is mainly used for the high-precision map localization are 3D-LiDAR.
The measurements obtained from 3D-LiDAR are matched with a high-precision map to
help in vehicle localization. Therefore, high-precision map localization algorithms based
on 3D-LiDAR have been widely studied. In the localization process of a high-precision
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map based on point clouds, real-time observation data from 3D-LiDAR are not the same as
map data due to the non-real-time character of a map and the noise of the sensors, which
causes a local optimum or a localization of non-convergence. This will affect the accuracy
of point cloud localization algorithms matched with maps.

At present, point cloud localization technologies mainly include map-matching al-
gorithms based on an iterative closest point (ICP) algorithm combined with normal dis-
tribution transform (NDT) and statistical algorithms such as PF, the unscented Kalman
filter (UKF), and the histogram filter (HF) based on Bayesian filtering. These two kinds
of algorithms usually use the matching degree of observation points and map data to
locate vehicles. When the ICP algorithm combined with NDT is used for locating objects,
initial pose information of the objects is needed to narrow the scope of localization, and the
observation data and the map data will then be iterated and matched. If the distance error
between the observation data and the map data becomes smaller after iterations and meets
a certain threshold, the pose of the observation data after matching is the localization result.
In [5], the NDT algorithm was used to achieve rough localization, and the ICP algorithm
was then used for map matching with higher accuracy to finish the localization. A method
of building a map by extracting the vertical features of a point cloud map was proposed
in [6]. This method uses the ICP algorithm to match angle features extracted in real time
with the vertical angle features of the map to achieve localization. Yoneda et al. [7] extracted
map features through the feature quantity of scanned data based on cluster distribution,
and used the ICP algorithm for localization. A method of matching and localization by
extracting rod-shaped objects features is proposed in [8]. Additionally, there are also map
matching algorithms based on features such as height [9] and road edge [10–13]. However,
those map-based matching algorithms usually need to extract the point cloud features,
and there are problems, such as the high sensitivity of the initial localization value to
noise, the time-consuming process of feature extraction and registration, and a poor lo-
calization accuracy. Therefore, it is hard to meet the AIoV requirements of high-precision
real-time localization.

The statistical method is usually divided into two processes: localization prediction
and update. In the localization prediction stage, the observation data are predicted through
an initial pose and system motion model. Subsequently, the matching degree between the
predicted observation data and the map is calculated to indicate its uncertainty. The higher
the mismatch degree is, the greater the uncertainty will be. Secondly, in the localization
update phase, the mean and variance of pose are updated by using the difference between
the real observation data and the predicted observation data as well as the matching degree
as the localization output. In [14,15], the inconsistency between high-precision point cloud
map data and point cloud data collected in real time is expressed by probability. The authors
converted the localization process into two steps, including prediction and a prediction
update, to obtain a better prediction of the uncertainty of localization. In the prediction
stage, the observation data are predicted through the initial pose and the system motion
model, and the matching degree between the predicted observation data and the map is
then calculated to show its uncertainty. The higher the mismatch degree is, the greater the
uncertainty will be. In the stage of the prediction update, the differential and matching
degree between the observation data collected in real time and the predicted observation
data is used to update the mean value and variance of the pose, and the updated mean value
and variance are then used as the localization output. Therefore, due to its excellent anti-
noise ability and robustness for various scenes, the localization algorithm based on filters
has been widely studied in autonomous driving localization [16,17]. Castorena et al. [16]
built a ground reflectivity map based on a point cloud and implemented localization by
an extended Kalman filter (EKF) localization algorithm. To achieve better precision and
comparable stability in the localization, Lin et al. [17] proposed a particle-aided unscented
Kalman filter (PAUKF) algorithm. They updated position measurement information based
on an onboard sensor and a high definition (HD) map. In [18], they enhanced the weights
of the particles by adding Kalman-filtered Global Navigation Satellite System (GNSS)
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information to improve autonomous vehicle localization. Feng et al. [19] used a UKF-
based SLAM algorithm to estimate a robot pose and feature map. Jia et al. [20] used the
Point-to-Line Iterative Closest Point (PL-ICP) to register the laser scan data of two adjacent
frames and combined this with the Rao-Blackwillised Particle Filter (RBPF) for localization.
For maximum performance, the localization algorithm based on a KF usually needs to be
in a linear Gaussian system [21], while a filtering localization algorithm and a PF algorithm
based on an HF algorithm can adapt to any nonlinear non-Gaussian system and have
higher localization accuracy. Compared with the KF algorithm and the HF algorithm,
the nonlinear change capability of the PF algorithm makes it able to adapt to both linear
and nonlinear systems without a specific posterior probability density function. Through
rod-shaped objects in a point cloud map and a reflectivity map, Blanco et al. [22] designed
a localization algorithm based on a PF algorithm through a pre-built high-precision map.
This algorithm updated particles according to the distance between each scanning point
and the map until convergence, and localization accuracy was significantly improved.
An improved particle filter algorithm based on an optimized iterative Kalman filter is
proposed in [23]. The algorithm used fewer particles for sampling, which reduced the
amount of computation and improved the real-time performance of the algorithm. In [24],
a map sharing strategy is proposed; in this strategy, each particle has only a small map
of the surrounding environment. However, due to the inconsistency between the high-
precision point cloud map and the point cloud data collected in real time, as well as the
randomness of the particle, the calculated value of the particle weight does not accurately
reflect the correctness of its localization. Thus, autonomous driving point cloud localization
technology based on a PF algorithm often shows deficiencies, such as slow convergence
and particle degradation, which seriously reduce localization accuracy. In order to solve the
problems of local optimization caused by the randomness of particles in the PF algorithm,
a localization algorithm framework based on prior information fusion is proposed in this
paper. The framework utilizes the prior information between the observation data and the
map to optimize the intermediate parameters of the algorithm, so as to make up for the
deficiency of the existing localization algorithm frameworks. According to the proposed
framework, an improved PF localization algorithm based on particle shift is proposed
to improve the localization accuracy. The contributions of this paper are summarized
as follows:

• This paper proposes a localization system framework based on prior information
fusion. The framework considers prior information where the observation data is
most similar to the map data of the real location of the vehicle in the point cloud
map, and constructs its relationship model with the state transition particle set of the
localization algorithm, which reduces the influence of occlusion and dynamic noise
on the positioning accuracy.

• To perfect the framework design, a particle shift filter localization algorithm is pro-
posed. We calculate the similarity between the transferred point cloud and the map
point cloud. We then resample the particles based on the similarity, and the particles
represented by the point cloud with higher similarity can be selected as the final
localization particles.

The rest of this paper is structured as follows. The localization algorithm framework
based on prior information fusion and the improved PF algorithm based on particle shift
are presented in Section 2. Section 3 discusses the verification process in the experiments
and analyzes the errors. Finally, the conclusion is provided in Section 4.

2. Problem Statement and System Framework
2.1. Problem Statement

The current popular point cloud localization system framework usually takes the
observation data, the point cloud map, and the initial localization data as input data. Sub-
sequently, statistical algorithms such as PF filtering can be performed in the localization
module, and localization estimation is carried out according to the matching degree, which
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is determined by the sum of corresponding point distances between the observation data
and the point cloud map. The smaller the sum of the distance is, the higher the matching
degree will be. However, in a real 3D environment, point cloud localization algorithms
usually judge the accuracy of the localization through the distance error between the point
cloud due to the complexity of automatic driving environments and the randomness of the
point cloud in the map. The distance error, as a scalar, can measure the matching degree
of two point clouds to a certain extent but cannot reflect their structural differences due
to initial localization errors and sensor errors, causing poor localization precision. To im-
prove the precision of localization, this paper proposes a localization system framework
based on prior information fusion. The framework considers the prior information where
the observation data is most similar to the map data of the real vehicle location in the
point cloud map, and constructs its relationship model with the localization algorithm.
Subsequently, the prior information is fused into the localization algorithm framework.
The system framework is shown in Figure 1.

The framework of the point cloud localization system based on prior information
fusion proposed in this paper includes two parts: localization processing and prior informa-
tion processing. The localization processing includes data input, localization, and output,
which is consistent with the current popular point cloud location processing framework.
The prior information processing includes a similarity calculations, particle shift, particle
selection, and fusion localization. First, the similarity calculation extracts the similarity
between the observation point cloud and the map from the input data. The particle shift is
used to find the particles close to the real localization in the particle update stage. Subse-
quently, particle selection is carried out based on the particle shift, such that the particles
used for positioning converge in the direction of greater similarity. Fusion localization is
achieved by particle resampling.

Input

Observation data

Point cloud map

Localization 

algorithm

Particale filter

Match

Particale filter

Match

Output

Pose

Similarity 

calculation

The prior information processing

The localization processing

Particle 

shift

Particle 

selection

Figure 1. System framework.

In the positioning state prediction stage, the particle filter needs to sample m particles
to form a particle pose set and then predict and transfer the state of particles to obtain a
new particle set. Subsequently, the weight of the particle is calculated, and the particle set
is resampled. The resampled particle set determines the final positioning output of the
particle filter algorithm. Therefore, if we can optimize the particle set after the transfer and
improve the convergence and accuracy of the particle set, the positioning output will be
improved. Therefore, the basic idea of the PSF is to calculate the similarity between the
transferred point cloud and the map point cloud. The higher the similarity is, the greater
the particle weight is. We then resample the particles based on the similarity, and the
particles represented by the point cloud with higher similarity can be selected as the final
localization particles. This allows particles used for localization to converge in the direction
of greater similarity and improves positioning accuracy.

In this paper, the PSF algorithm mainly includes a state transition and observa-
tion. Generally, a dynamic system can be represented by the state transition probability
p(x0:t|x0:t−1, u1:t) (prior probability) and the observation probability p(z1:t|x0:t, u1:t). In ad-
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dition, the reliability p(x0:t|z1:t, u1:t) (posterior probability) of the state x0:t of the current
dynamic system is estimated based on the historical observation z1:t and the past control
vector u1:t. According to Bayesian theory, the relationship between prior probability and
posterior probability is as follows:

p(x0:t|z1:t, u1:t) =

ηp(z1:t|x0:t, u1:t)p(x0:1|x0:t−1, u1:t) (1)

However, due to the influence of obstacles and noise, and since the change trend
of the particle set is nonlinear, there are many errors in the calculation of p(z1:t|x0:t, u1:t).
After particle resampling, in the process of particle renewal, it may cause particle degra-
dation and finally fall into a local optimum. Therefore, we seek to find the relation-
ship between the particles and the true value, recalculate and update the particles to
ensure the diversity of the particles, and achieve more accurate localization. Given
χ̄t =

{
x1

t , x2
t , · · · , xm

t
}
∼ p(x0:1|x0:t−1, u1:t), the particle set generated by the state tran-

sition, and χt =
{

x1
t , x2

t , · · · , xm
t
}

, another particle set generated by calculating the weight
and resampled, Wt =

{
w1

t , w2
t , · · · , wi

t, · · · , wm
t
}

is the particle weight. The output of
localization is as follows:

E(χt) =
1
m

m

∑
i=1

wi
tx

i′
t (2)

Cov(χt) = E((χt − E(χt))
2) (3)

where E(χt) represents the accuracy of the PF localization algorithm prediction. The closer
its value is to the true value, the smaller the error is, and the higher the localization accuracy
is. The variance indicates the degree of the convergence of the particles. The variance
and convergence of the particles are inversely proportional. As the variance reduces,
the particle-to-particle distance also decreases, and the localization becomes more stable.
According to the localization algorithm framework proposed in Figure 1, we seek to design
an optimization algorithm for the intermediate parameter χ̄t of the particle set, which can
obtain a smaller variance.

We denote each particle as a six-vector particle, with parameters containing three-
dimensional coordinates, the vehicle heading angle, the pitch angle, and the roll angle,
recorded as xi

t = (x, y, z, yaw, pitch, roll). In order to calculate the particle weight, it is
necessary to transfer the observation point cloud obtained by the LiDAR on the vehicle to
gain the observation point cloud in global coordinates. The particles can be shifted by

xi′
t = R× xi

t + t (4)

where R represents the rotation of the angular state of the vehicle, and t represents the
translation of the coordinates of the particles. The point cloud corresponding to the
particle is also transformed by the same rotation and translation to obtain the observation
point cloud in global coordinates. We then calculate the Euclidean distance between the
transferred point cloud and the map point cloud to judge the similarity between the two.
The sum of the distance between the observation point cloud and the map point cloud
reduces, the similarity increases correspondingly, and the weight also increases. Finally,
the point cloud with higher similarity is screened out through resampling it as the final
localization particle.

In order to optimize the particle set after the state transition, the convergence of the
particle set after weight calculation and particle resampling is higher; thus, localization
accuracy is improved.
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2.2. Similarity Calculation and Particle Shift

The particle shift process matches observation data to the map in the particle update
stage to make particles closer to the real localization. This is based on the following facts.

(1) Each particle is regarded as one possible localization point. The particle weight
indicates the similarity between the observation point cloud and the data around the
localization point. As a scalar, Euclidean distance is used in the convergence process
to measure the similarity between the particle and its true value.

(2) For the randomness of particles and the complexity of the traffic environment, the lo-
calization indicated by the particles with a high similarity is not true, but the particles
near the true value will be close to the true value.

In order to calculate the particle shift, this paper assumes that the state space is
continuous and that the real localization point is included in this space. Ideally, as the
localization accuracy increases, the similarity between the particles and the real state
increases, so the point-to-point corresponding distances between the observation particle
and the map are smaller. In this paper, the variable S represents the similarity, which is the
average inverse of the sum of the distance between the observation point cloud and the
map point cloud.

S = − 1
N

N

∑
j=1

∥∥∥pmap_closest − pj

∥∥∥2
(5)

where pj is a point in the observation point cloud, and pmap_closest denotes the nearest point
to pj. After the particles converge, the particles are transformed, and the value S of the
particles increases, such that the particles approach the true value. In order to calculate this
transformation, it needs to be converted into a least squares problem.

The observation point cloud is represented by the set P = {p1, p2, · · · , pN}, and the set
of the closest points corresponding to p in the map is represented by
Q =

{
p1map_closest, p2map_closest, · · · , pNmap_closest

}
. The centroid of the set p is represented

by up.

up =
1
N

N

∑
j=1

pj (6)

The centroid of the set Q is represented by upmap_closest.

upmap_closest =
1
N

N

∑
j=1

pjmap_closest
(7)

We define a transformation matrix as A = [R, t], where R is a 3× 3 rotation matrix,
and t is a translation matrix. R and t are obtained by minimizing the opposite of similarity
−S. The formula is described asR∗ = argmin

R

1
N ∑N

j=1

∥∥∥∥pjmap_closest
− (R× pj + t)

∥∥∥∥2

t = up − R∗ × upmap_closest

(8)

We then obtain a corresponding solution through singular value decomposition, i.e.,
a rotation transformation matrix. A shifting particle xi′

t = R∗ × xi
t + t is chosen with the S

value increased after transformation.

2.3. Particle Selection

After the particles shift, the point cloud with its closest observation point changes.
The similarity between the shifting particles and the true value may decrease. In order
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to solve the problem that particles may fall into local optimization after shifting, this
paper introduces a simulated annealing algorithm to select the shifted particles, optimizing
particle shift while maintaining particle diversity.

The flow chart of the particle shift selection algorithm based on the simulated anneal-
ing algorithm is shown in Figure 2. The observation point cloud carried by the shifted
particles is represented by the point set P′ = {p′1, p′2, · · · , p′N}, and the closest point set be-

tween the P′ point set and the map is represented by Q′ =
{

p′1map_closest, p′2map_closest, · · · ,

p′Nmap_closest

}
. The similarity after the particle shift is represented by S′.

S′ = − 1
N

N

∑
j=1

∥∥∥p′map_closest − p′ j
∥∥∥2

(9)

If S′ > S, the shifted particle is valid, and it will be added to the particle set χt.
If S′ ≤ S, we compare the value between S′/S and the probability p. If the S′/S > p, we
select this particle shift; otherwise, no particle shift is required, and the particle remains
unchanged. Through the above selection algorithm, the PSF algorithm can be further
prevented from falling into the local optimization, and the problem of particle degrada-
tion can be alleviated. The particle selection algorithm can be described in Algorithm 1.
χ̄t =

{
x1

t , x2
t , · · · , xm

t
}

is the particle set obtained through prediction in the PSF algorithm.
Wt =

{
w1

t , w2
t , · · · , wi

t, · · · , wm
t
}

is the weight calculated by similarity. zt represents the
point cloud collected by the vehicle in real time. map represents the high-precision point
cloud image. computeshi f t represents the particle shift calculation algorithm based on
Section 2.2. The output is the particle set changed by the particle shift algorithm.

Particle set

Calculate similarity S and weight 

w for particle x

Particle shift

Replace the original particles 

with shifted particles

Set of particles 

shift drift

S´>S N S´/S > random(0,1)

Y Y

Figure 2. The particle selection method.
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Algorithm 1 Particle Selection.

Input: χ̄t,zt, ut, map,Wt
Output: χ̄shi f t−t

1: begin
2: for i = i→ m do
3: wi

t = log(Si(xi
t, zt, ut, map))

4: xi′
t , wi′

t , Si′ = computeshi f t(xi
t, zt, ut, map)

5: if Si′ > Si then
6: xi

t = xi′
t and wi

t = wi′
t

7: else
8: if Si′/Si > Random(0, 1) then
9: xi

t = xi′
t and wi

t = wi′
t

10: else
11: do nothing
12: end if
13: end if
14: end for
15: return χ̄shi f t−t;
16: end

2.4. PSF Based on Prior Information

There are four steps in the PSF algorithm: sampling, particle shift, weighting, and
resampling. The algorithm makes the particles close to the real value with the shift of
particles in order to obtain a higher localization accuracy. Figure 3 shows the PSF algorithm
for localization combined with the high-precision point cloud map and the real-time
observation data. The steps of the PSF localization algorithm are as follows:

(1) In the initialization stage, the original particle pose is obtained by uniform sampling
in the possible localization area, and its weight is the same.

(2) In the state prediction stage of localization, the data Action is used to transfer the state
of the particles to obtain the particle pose after the transfer. Moreover, because the
particle set is discrete in practical applications, it is usually possible to directly use the
particles after the state transition to form a particle set without reducing the number
of particles, which is expressed as χ̄t =

{
x1

t , x2
t , · · · , xm

t
}
∼ p(x0:1|x0:t−1, u1:t).

(3) Since the particle set after the state transition is mixed with a high amount of noise,
the particle aggregation becomes divergent. Map and measurement data Scan are
used in the particle shift algorithm to shift the particles before the particles calculate
and update the weights. The updated particle set is more convergent to prevent
particle degradation. The obtained optimized particle set after the shift is denoted as
χ̄shi f t−t =

{
x1

shi f t−t, x2
shi f t−t, · · · , xm

shi f t−t

}
.

(4) The particle weight χ̄shi f t−t of the shift particle set is calculated.
(5) In the state update stage of localization, the weights of the shifted particles are normal-

ized, and the particles are then resampled according to the weights. A new particle set
χt is reconstructed.

(6) The cumulative mean and the variance of the output particle set χt are used as the
location estimation results. Starting again from Step (1), χt is then used as the the
original set of particle poses in the next iteration. We assume that the localization
result is obtained at time ti and that xi, yi, and zi are the mean values of the localization.
Taking the x-axis as an example, the localization error is as follows

∆ti = Eti − GTti (10)

where ∆ti represents the localization error on the x-axis at time ti. Eti is the mean of the
coordinates of n particles on the x-axis at time ti. i.e., Eti =

1
n ∑n

j=1(xj). GTti represents
the true value of the positioning on the x-axis at the current moment.
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The cumulative mean error is obtained by adding the localization error values ∆t1 ,
∆t2 , ..., ∆tn at all times. The cumulative mean error means the cumulative degree of
the localization error. The smaller the cumulative localization error is, the higher the
localization stability of the algorithm is. The formulation for the cumulative mean error is
given by

M =
n

∑
i=1

∆ti (11)

The cumulative variance represents the convergence performance of the particles in
the particle filter algorithm. The smaller the variance is, the closer the particle is to the real
localization, which means that the particle filter has a higher convergence performance.
The cumulative variance of the coordinates of n particles on the x-axis at time ti is defined as

MCov =
n

∑
i=1

Covti (12)

where Covti =
1
n ∑n

i=1(xi − Eti )
2.

Sampling Weighting
tc tW

ScanMapMap

Prior 

information 

processing

shift tc
- Resampling

tcAction

Figure 3. The PSF localization algorithm.

3. Experimental Results

In order to test the improved PF localization algorithm, this paper adopts the KITTI
dataset, which is used internationally as simulation data. The dataset S03 corresponds
to a suburban area, S05 corresponds to a residential area, and S07 corresponds to a town.
These three scenarios are used as test data. Meanwhile, Gaussian noise is added to the
ground truth of the three datasets to simulate the localization errors of the GNSS in reality.
The localization area is a space with a radius of 0.5 m. The computer used for the experiment
has 8 G of RAM, a Core (TM) i5-4200m CPU, a 2.5 GHz main frequency, a Windows 10
operating system, and the open resource library PCL1.72 for point cloud processing.

3.1. Qualitative Analysis

According to the proposed particle shift algorithm, the high-precision point cloud map
was first input and used as a reference for localization. All points in the point cloud map
were then constructed into a fast index map by KD-Tree, which was used for searching
the nearest points and calculating during the localization process. Based on the particle
shift algorithm, the value of the particle shift was found for higher particle convergence
and more accurate localization. The effect of particle shift is shown in Figure 4. The red
and blue points in the figure both represent particles, and the green points represent the
raw point cloud. Figure 4a is a visualization of particles after particle resampling based on
the particle filter localization algorithm, and Figure 4b is the visualization of particles after
the particle shift algorithm. Comparing the particle set in Figure 4a and the particle set in
Figure 4b shows that the shifting particle set is closer in space, which means the degree of
convergence of the particles is higher.
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(a) Resampled particles based on the PF (b) Resampled particles based on the PSF

Figure 4. Comparison with different particle filter algorithm for resampled particles.

3.2. Localization Error Analysis

We used the S07 dataset for testing. The initial localization was set as the origin of
the axis, and the rotation angle of each axis of the vehicle was 0. Uniform sampling was
conducted in the x and y planes of a circular region with a center radius of 1 m, where the
initial localization is the center. On the z-axis, however, the 3D-LiDAR was taken as the
center, and the region floating up and down 0.2 m was uniformly sampled n times. On
the three axes of yaw, pitch, and roll, Gaussian noise with a mean of 0 rad and a variance
of 1 rad2 was added to each, to sample them n times. Finally, the value after sampling
was taken as the initial value of the particles, and the number of samples was the number
of particles. The number of samples in the experiment was set to 200. In the process of
localization, Gaussian noise was added to the change in the vehicle pose at each moment to
simulate the control input obtained from the vehicle control module. Gaussian noise with a
mean of 0 m and a variance of 0.6 m2 was added to the control incremental coordinates of
the directions x, y and z, and Gaussian noise with a mean of 0 rad and a variance of 0.1 rad2

was added to the three rotation angles of yaw, pitch, and roll. These pose changes with
noises were used as the control state quantity ut in the PF for particle prediction. Figure 5
shows the output results of the comparison in the localization on the x, y, and z axes and
the heading angle yaw based on the PF algorithm and the PSF algorithm proposed in this
paper. x corresponds to different times, and y represents the error values of the directions
of each axis and the heading angles represented by the localization output and ground
truth of the two algorithms in each axis. In the x-, y-, and z-axes, the error between the PSF
is closer to 0 than that between the PF and the true value. In the heading angles, the error
of the localization result of the PSF algorithm is also smaller than that of the PF algorithm.

Figure 6 shows the cumulative comparison of localization errors between the PSF
algorithm and the ground truth and between the PF algorithm and the ground truth on
the x-, y-, and z-axes in the 100 localization outputs of this experiment. Through the
comparison, it was found that, in the directions of each coordinate axis, the cumulative
localization error of the PSF algorithm was lower than that of the PF algorithm. In the
x-axis, the cumulative error was reduced by 0.74 m, and the cumulative accuracy was
improved by 11%. In the y-axis, the cumulative error was reduced by 0.88 m, and the
cumulative accuracy was improved by 10%. In the z-axis, the cumulative error was reduced
by 0.68 m, and the cumulative accuracy was improved by 14%. The experimental results
achieve the purpose of improving the localization accuracy.
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comparison, it was found that, in the directions of each coordinate axis, the cumulative
localization error of the PSF algorithm was lower than that of the PF algorithm. In the
x-axis, the cumulative error was reduced by 0.74 m, and the cumulative accuracy was
improved by 11%. In the y-axis, the cumulative error was reduced by 0.88 m, and the
cumulative accuracy was improved by 10%. In the z-axis, the cumulative error was reduced
by 0.68 m, and the cumulative accuracy was improved by 14%. The experimental results
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Figure 6. Cumulative mean error.

Figure 7 illustrates a comparison experiment of 100 localization outputs on the x-,
y-, and z-axes between the localization cumulative variances of the PSF algorithm and
the ground truth and between those of PF algorithm and the ground truth. It was found
that the localization cumulative variance of the particle set after shifting was less than
the localization variance of the particle set without shifting. The cumulative localization
variances in the x-, y-, and z-axes were reduced by 3.13 m2, 3.14 m2, and 1.81 m2. Meanwhile,
the cumulative accuracy in the x-, y-, and z-axes was improved by 27%, 29%, and 82%. This
shows that the differences in particles in the particle set after shifting were smaller on each
axis. A large number of ground point clouds can provide a reliable matching reference in
the z-axis, so the variance of particles shifting in the z-axis was smaller, and the degree of
convergence was significantly higher than in the x- and y-axes.
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Figure 7. Cumulative variance comparison.

Figure 8a shows the trajectory of the localization algorithm obtained in this experiment,
in which “+-” represents the real vehicle trajectory, “*-” represents the localization trajectory
obtained by the PF algorithm, and “o-” refers to the trajectory obtained by the PSF algorithm.
The localization trajectories obtained by the PF algorithm and the PSF algorithm were
almost identical, and the deviation from the real vehicle trajectory was only 0.4 m. However,
the local trajectory map in Figure 8b shows that the trajectory obtained by the PSF algorithm
was closer to the ground truth, indicating that its localization accuracy was higher.

(a) Global trajectory errorparticles (b) Detail error

Figure 8. Localization trajectory.

Finally, we compared the localization time of the above two algorithms with different
numbers of particles under the same experimental environmen shown in Figure 9.
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Figure 9. Time-consumption comparison with different numbers of particles.

Although the calculation time for particle shift of the PSF algorithm is about 20 ms
longer than that of the PF algorithm, the time used to calculate particle shift is much
less than that of the PF algorithm itself. The experimental result shows that introducing
the particle shift algorithm into the PF algorithm not only does not significantly increase
the time of the particle-filter-based localization algorithm, but also improves its accuracy
and convergence.

4. Conclusions

This paper proposes a PSF localization algorithm framework based on prior informa-
tion fusion. First, the algorithm computes the prior information similar to the raw point
cloud data and the map data of the actual localization of the vehicle. Second, in the particle
update stage, the particle shift process matches the observation data to the map. Next,
the resampling of the PF algorithm is optimized by using the prior information to improve
vehicle localization accuracy. However, the PSF localization algorithm relies on the precise
location data of GPS and IMU in the initial stage of localization, so the application prospect
of our algorithm is weaker without the assistance of GPS and IMU. In the future, we plan
to design an algorithm that enables map-aided vehicle localization without any additional
assistance from GPS or IMU.
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