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Abstract: This paper proposes a non-cooperative unmanned aerial vehicle (UAV) signal detection
strategy based on a multichannel control signal with an energy detector (ED), wherein the sampling
point of the control signal on each subchannel is adjusted with environmental signal-to-noise (SNR) in
a semi-adaptive manner. In order to estimate the SNR in the environment, not only is a convolutional
neural network (CNN) applied in the proposed signal detection strategy, but a long shor-term
memory network (LSTM) network is also included; in terms of features, it combines deep features
and time-dimension features. The numbers of layers of the CNN and LSTM impact the performance
of the algorithm. The decision on the presence or absence of a control signal is made at the fusion
center (FC) based on the majority voting rule. This paper shows that the network with a two-
layer CNN and a two-layer LSTM can achieve high estimation accuracy of environmental SNR.
Simultaneously, the detection accuracy is improved by about 1 dB compared with the classical
multichannel detection schemes.

Keywords: UAV detection; ED; majority voting; SNR estimation

1. Introduction

Over the past few years, unmanned aerial vehicles (UAVs) have been widely used in
aerial photography, agriculture, plant protection, disaster relief, transportation, surveying
and mapping, etc. [1–4]. The advanced technology behind 5G [5] further gives an impetus
to the UAV industry. Cooperative UAVs bring great convenience to human life because
they are under the surveillance of UAV management organization. Generally, UAVs can
be categorized as cooperative UAVs and non-cooperative UAVs according to whether the
surveillance platform has the fight trajectory information or communication link with the
intruder. If there is no related information about a certain UAV, it is called a non-cooperative
UAV. Although cooperative UAVs and most non-cooperative UAVs are under the power of
their own controllers, collisions between non-cooperative UAVs and aircraft are increasing
in frequency, which has caused great losses. Accordingly, it is a critical issue to detect
surrounding UAVs in a non-cooperative manner, which has drawn increasing attention.

1.1. Related Work

Classical object detection methods include radar detection [6] and photoelectric
detection [7], which face great challenges when applied to UAV detection. Specifically,
the radar detection of UAV must deal with the low altitude, slow speed and small target
problems, making it difficult for radars to capture UAVs. Similarly, when the distance
between the UAV and photoelectric sensor is larger than 100 m, the UAV appears as several
pixels in the final elecxtro-optical image, especially in a hostile environment.
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Usually, both the flight control system and the image transmission system of the UAV
emit radio signals during the flight. Radio surveillance is used to detect and identify a
UAV by monitoring its control signal and image transmission signal. Compared with radar
detection and photoelectric detection, radio surveillance has four advantages. Firstly, it is
not limited by UAV size, UAV material or occlusions. Secondly, there is no electromagnetic
pollution in radio surveillance, and it can be used in long-term unattended UAV defense
missions. Thirdly, the cost of radio surveillance is relatively low. Fourthly, it can be installed
at a fixed point yet have a large range.

The surveillance scopes of photoelectric detection, radar detection and radio detection
are illustrated as Figure 1. Photoelectric detection is appropriate for UAV detection with
high accuracy, whereas its surveillance scope is the smallest. On the contrary, radio
detection works as a rough scheme of UAV detection, and it only determines the presence
or absence of a UAV. As a result, the surveillance scope of radio detection is the largest.
When a UAV comes, radio detection firstly judges the presence or absence of UAV. If the
UAV is detected, radars and photoelectric sensors start high-accuracy UAV detection. In
this work, we focus on radio signal detection based on semi-adaptive sampling of the
observed signal.
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The surveillance radii of radio detection, radar detection and photoelectric detection
are about 5 km, 500 m and 100 m, respectively. UAV a and UAV b denote the UAVs that
have not been detected by the UAV surveillance platform, i.e., non-cooperative UAVs. The
detection point of this paper in Figure 1 is trying to detect those non-cooperative UAVs
with the proposed strategy.

To ensure the secrecy and avoid interference of communication, the control signal
and image transmission signal of a UAV are frequency hopping (FH) signals with 2 MHz
bandwidth. Special frequency bands are reserved for the transmission of control sig-
nals and image transmission signals, such as 840.5–845 MHz for uplink remote-control
links; 1430–1444 MHz for downlink telemetry and information transmission links; and
2408–2440 MHz for the backup band in China. The central frequencies of the control and
image transmission signals tend to be concentrated at 2.4 and 5.8 GHz in other countries.
The key issue of radio-based UAV detection is how to detect a frequency hopping signal ef-
fectively. In the literature, FH signal detection schemes contain autocorrelation detection [8],
power cancellation detection [9], adaptive multichannel detection [10], etc. Autocorrelation
detection judges whether an FH signal exists based on a presupposed threshold from
correlation analysis. However, the overdependence on the empirical threshold limits its
application. Power cancellation detection works on the average power difference between
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FH signal and interference. Its main defect is the high misjudgment probability when mul-
tiple FH signals coexist. Adaptive multichannel detection establishes a detection model for
multiple sub-channels, and makes the final decision based on the fusion of local receivers.
Nevertheless, its low detection performance limits its applications in practical systems,
especially under strong noise conditions.

For a UAV signal detection scheme, environmental SNR estimation determines the
sensing threshold and adaptive sampling points. The sensing threshold and adaptive
sampling point determine the detection performance. Consequently, how to effectively
estimate environmental SNR is the key factor for the proposed UAV detection scheme. In
the literature, much work has been done on the issue of SNR estimation. A classical SNR
estimation scheme contains maximum likelihood estimation (ML) [11], spectrum analysis
estimation (SA) [12], etc. The main idea behind ML and SA is to evaluate the average power
of the received signal or noise, respectively. An expectation-maximization (EM) approach
was proposed in [13], where a good tradeoff is made between complexity and performance
for medium-to-high SNRs. In [14], the data-aided (DA) SNR estimation was proposed for
constant modulus modulations of time-variant flat Rayleigh fading channels, where the
time-variant fading channel is modeled by considering the Jake model and the first order
autoregressive (AR1) model.

With the great success of deep learning in natural image recognition, wireless signal
processing technology based on deep learning has received more and more attention [15].
In [16], an SNR estimation scheme was proposed based on deep learning (DL), where a
one-dimensional convolutional neural networks (CNN) is used for accurate SNR estimation.
However, the correlation of time series signal has not been considered. To improve SNR
estimation accuracy further, an SNR estimation scheme with CNN and long short-term
memory (LSTM) network was proposed in [17], where the input data are one-dimensional
and three-layer CNN and one-layer LSTM are utilized. Nevertheless, the influence from
the layers of both CNN and LSTM are not considered.

To sum up, UAVs are low-altitude, slow and small targets. As a result, it is difficult for
radars and photoelectric cameras to capture them far away. Radio detection can detect UAV
object from far away, and ED is widely used in radio detection due to its low complexity.
However, the detection performance declines rapidly when the environmental SNR is
relatively low, especially below −5 dB, in ED-based detection schemes. Moreover, when
the environmental SNR is relatively high, especially above 5 dB, the detection performance
of ED-based schemes is high, always on the verge of 100%. In this case, the same sampling
points as those of the low-SNR case are a waste of computing and storage resources, which
also lowers the detection sensitivity for the UAV signal.

1.2. Motivation and Main Contribution

Motivated by the performance degradation at lower SNR and resource waste at higher
SNR, this paper proposes an efficient, non-cooperative UAV signal detection scheme based
on semi-adaptive sampling of the received signal. This is a classical multichannel signal
detection issue [18]. For each subchannel, the environmental noise is assumed to be
independent with mean zero and obey a Gaussian distribution hypothetically. In addition,
the clean control signal on each subchannel is considered independent and to have a zero
mean. As a result, the average energy of the received control signal can be modelled to
follow the Gaussian distribution, and ED can be used to determine whether the control
signal exists for each subchannel. Differently from the adaptive detection threshold scheme
of ED, the sampling point of the received UAV signal on each subchannel adaptively
varies with environmental SNR, if the variation of sampling point can make the detection
performance high. Otherwise, the detection threshold adaptively varies with environmental
SNR for the last sampling point. Furthermore, this paper proposes an SNR estimation
network, where the features of the correlation between signal and noise are incorporated.
In view of the tradeoff between estimation performance and estimation complexity, the
proposed SNR estimation network contains a two-layer CNN and two layers of LSTM.
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Finally, the fusion center provides the status of the control signal based on a certain fusion
rule. The simulations indicate the proposed SNR estimation network outperforms the
state-of-art, and the effectiveness of the proposed non-cooperative UAV detection scheme
was validated.

2. System Model

In this section, we discuss the UAV signal detection system and formulate UAV signal
detection as a multichannel signal detection problem. This paper considers the situation
where a non-cooperative UAV is about to enter the observed area at a certain speed. The
monitoring point of the non-cooperative UAV may be on the ground or on a UAV. Once
the non-cooperative UAV enters the monitoring area, the radio detection equipment will
start to scan and receive the control signal of the target UAV: each subchannel receives the
control signal at the specific frequency and then determines whether it exists. The status of
non-cooperative UAV is determined by the joint decisions of multiple subchannel detection.

The flow diagram of UAV signal detection is illustrated in Figure 2. Firstly, the
observed signal of UAV is received by omnidirectional UWB antenna, and parallelly
processed by multiple radio frequency (RF) chains. Then, an SNR estimation scheme based
on a convolutional neural network (CNN) and a long short-term memory (LSTM) network
is used for the ED-based decision of multiple local bands. Finally, local decision results are
sent to the FC for the final decision based on fusion rules.
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Figure 2. The flow diagrams of UAV signal detection based on adaptive sampling and the intelligent
estimation of SNR.

Assume that observed signal yi(n) at the receiver of the i-th channel contains clean
signal si(n) and additive white Gaussian noise xi(n). Then,

yi(n) = hi(n)si(n) + xi(n) (1)

where hi(n) indicates the channel gain of the i-th channel and |hi(n)| follows a Nakagami
distribution. si(n) and xi(n) are independent and identically distributed random process
with mean zero and variance σ2

s−i and σ2
x−i, respectively.

According to [19], the false alarm and detection probability of the i-th channel are
given by

Pf−i = Q((
εi

σ2
x−i
− 1)

√
τi fs−i), (2)

Pd−i = Q((
εi

σ2
x−i
− γi − 1)

√
τi fs−i

2γi + 1
), (3)

respectively, where τi is the sensing duration at a sensing event, fs−i works as the sampling
frequency, i is the detection threshold, γi = σ2

s−i/σ2
x−i represents received signal-to-noise
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ratio (SNR) of the channel, Q(x) = 1− Φ(x) denotes the complementary distribution

function of a standard Gaussian Φ(x) and Q(x) = 1√
2π

∞∫
x

exp(− t2

2 )dt.

The observed FH signal y(n) with all the channels can be formulated as

y(n) =
M−1

∑
i=0

yi(n) (4)

where M denotes the number of hopping frequency number in a frequency hopping cycle
and the duration of a cycle is generally short.

Compared with other kinds of FH signal, the main characteristics of a UAV signal [20]
are summarized as follows.

(1) The bandwidth of each hop keeps stable.
(2) The residual time of each hop is the same.
(3) The signal energy of each hop does not change during the residence time basically, and

the signal energy of each hop is basically unchanged within the short sampling time.

As a result, the average energy of the received control signal at the i-th channel can be
modelled to follow a Gaussian distribution, and ED can be used to determine whether the
control signal exists.

3. Proposed Schemes

In this section, we present a UAV signal detection scheme based on multichannel
signal detection and provide the false alarm probability and detection probability.

3.1. UAV Signal Detection with Semi-Adaptive Sampling

According to [18], the optimal sampling point is the function of the radio environment
(γi, σ2

x−i) and sensing threshold (εi). Reference [18] also indicates that, for the given i, the
rise in sampling point can make up for the performance loss when the environmental SNR
is small.

Meanwhile, assume signal variance σ2
s−i is constant and noise variance σ2

x−i is variable.
When σ2

u−i > σ2
x−i, (Pd−i)A−CFAR > (Pd−i)CFAR under a certain fixed false alarm probability

for the proposed strategy [18].

3.2. SNR Estimation Based on a CNN and an LSTM Network

One critical issue of UAV signal detection with adaptive sampling is the accurate and
real-time estimation of environmental SNR. As a result, this subsection contributes to SNR
estimation with deep learning. A neural network model is considered based on CNN and
LSTM in this paper.

Note that classical SNR estimation schemes are inferior in accuracy and lower the
detection performance of non-cooperative UAV in return. Although reference [16,17] have
greatly improved the estimation accuracy based on a CNN module, the input data of [16,17]
were one-dimensional, and the correlation between signal and noise was not considered.
This paper proposes a two-dimensional CNN and LSTM network architecture based on [17]
and considers the influences of the layers of CNN and LSTM on detection performance.

Figure 3 exhibits the network architecture of the proposed SNR estimation scheme.
The received remote signal is framed and transformed into a two-dimensional signal by
Toplitz transformation. Thereafter, CNN is considered to extract deep features, and LSTM
is used for feature extraction in time sequences. Finally, the extracted features are combined
with a fully connected layer and the estimated SNR is obtained.
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Assume that the length of the observed signal y(n) at the receiver is L and the frame
length is R. The two-dimension Toeplitz matrix can be denoted as

y(n) =

y11(n) · · · y1R(n)
...

. . .
...

yR1(n) · · · yRR(n)

 (5)

where y1R(n) = yR1(n) denotes the correlation of the adjacent received signal.
Then, the CNN is applied to the two-dimensional Toeplitz matrix with convolution

kernel size 3 × 3 and convolution stride 1. The main motivation of Toeplitz transform is to
obtain the correlation of signal sequences so that more features can be incorporated into
the network. Denote the shared weights of convolution kernel as ω(n). The output matrix
after convolution operation can be written as

y(n) = g(ω(n)y(n) + b(n)), (6)

where g(·) denotes the activation function of CNN, ω(n) represents the convolution kernel
parameter and b(n) signifies the bias. Note that the rectified linear unit (ReLU) is considered
as the activation function in this paper due to its fast convergence and avoidable gradient
explosion and gradient disappearance. In addition, the pooling layer is removed in this
CNN network for possible feature loss.

LSTM is used in this paper to extract multidimensional features, including deep
features of input signal sequences and the features of a time series signal, for higher SNR
estimation accuracy. Let us define the current input, the last output of LSTM and the
last unit state as yt−1, Ut−1 and Ct−1. Additionally, the current output of LSTM and its
corresponding unit state are denoted as Ut and Ct, respectively.

According to Figure 4, the LSTM module mainly contains three parts: the forget gate,
input gate and output gate. The forget gate determines how much the unit state of the
previous moment Ct−1 is retained at the present moment Ct. Input gate determines how
much the current input yt can be retained to the current unit state Ct, and the output gate
determines how much the current unit state Ct can be outputted as the current output Ut.
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More specifically, the LSTM module mainly contains six procedures, as labeled in
Figure 4.
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(1) The output of forget gate ft can be described as

ft = g(W f yt−1 + Vf Ut−1 + b f ), (7)

where W f is the input weight of the forget gate, Vf is the weight of Ut−1 and b f
denotes the corresponding bias.

(2) The output of the input gate can be formulated as

it = g(Wiyt−1 + ViUt−1 + bi), (8)

where Wi is the input weight of the input gate, Vi is the weight of Ut−1 and bi denotes
the corresponding bias.

(3) The unit state of current input Ct can be written as

Ct = tanh(Wcyt−1 + VcUt−1 + bc), (9)

tanh(x) =
sinh(x)
cosh(x)

=
ex − e−x

ex + e−x , (10)

where Wc and Vc denote the corresponding weights, and bc is the bias.
(4) The unit state of current output Ct is defined as

Ct = ftCt−1 + itg(Ct). (11)

(5) The output of output gate ot can be exhibited as

ot = g(Woyt−1 + VoUt−1 + bo), (12)

where Wo is the input weight of the input gate, Vo is the weight of Ut−1 and bo denotes
the corresponding bias.

(6) The output of current LSTM Ut can be denoted as

Ut = ottanh(Ct). (13)

3.3. UAV Signal Detection Based on Estimation SNR and Fusion Strategies

In this part, we discuss the training and testing of the proposed network in detail. To
build the training set and test set, the required procedures were concluded as follows.

(1) The remote signal sequence of UAV is generated under different SNRs (from −10 to
10 dB) based on MATLAB platform.

(2) The remote signal sequence is divided into several short sequences with length 100.
(3) The short sequence with length 100 is transformed into two-dimensional data by

Toplitz transformation.
(4) The obtained two-dimensional data are divided into two parts, training set and test

training. The training set accounts for 70%, and the rest is the test set.

For the proposed SNR estimation network, the normalized mean square error (MSE) [21]
works as the loss function, and it is defined as

loss =
1

K0

K0

∑
i=1

(snri − snrpredict
i )

2

(snri)
2 , k0 ∈ [1, K0], (14)

where snri denotes the real SNR; snrpredict
i is the estimated SNR of the i-th channel; and K0

means the number of the estimated SNR for the proposed network at a time and K0 = M
in this paper.

The false alarm probability and detection probability are provided based on A-CFAR
at the FC. Three fusion schemes are considered, namely, the AND rule, the OR rule and
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the majority voting (MV) rule [19]. Assume the decision result of the i-th channel could be
expressed as D(i), where

D(i) =
{

1 signal exists
0 signal is out

. (15)

Consequently, when the AND rule is used, the false alarm probability and detection
probability could be described as

(Pf )AND = P(
M
∑

i=1
D(i) = M|H0 )

(Pd)AND = P(
M
∑

i=1
D(i) = M|H1 )

, (16)

where M denotes the number of channels.
When the OR rule is considered, the false alarm probability and detection probability

could be 
(Pf )OR = P(

M
∑

i=1
D(i) > 0|H0 )

(Pd)OR = P(
M
∑

i=1
D(i) > 0|H1 )

, (17)

When the MV rule is applied, the corresponding false alarm and detection probability
could be respectively denoted as

(Pf )MV =
M
∑

j=K
P(

M
∑

i=1
D(i) > K|H0 )

(Pd)MV =
M
∑

j=K
P(

M
∑

i=1
D(i) > K|H1 )

,

4. Simulation and Discussion

In this section, the simulations to validate the effectiveness of the proposed schemes
are reported. Firstly, the accuracy of the proposed SNR estimation is exhibited. After that,
the detection performance of the proposed method is shown and analyzed.

Note that the bit signal was randomly generated, and the corresponding baseband
signal was obtained after the modulation of Minimum Frequency Shift Keying (MSK).
Then the control signal of UAV was generated by MFSK modulation. The center frequency
was 2.4 GHz and frequency-hopping bandwidth was set to 9.8 MHz with bit rate 50 kb/s.
Additionally, the environmental SNR varied from −10 to 10 dB with step 1 dB. For each
SNR, the obtained control signal was framed and transformed into a two-dimensional
signal by Toeplitz transformation. Finally, the number of samples was 10,290, among which,
70% served as the training set and the rest were the test.

4.1. SNR Estimation Based on CNN and LSTM

To evaluate the SNR estimation precision, the absolute estimation error and relative
estimation error were investigated. Assume the estimated SNR and real SNR are denoted
as SNRestimated and SNRreal , respectively.

Figure 5 exhibits the relative error of SNR estimation for a fixed number of LSTM
layers in the situation, while CNN layers vary from 2 to 4. aCNN + bLSTM denotes a
a-layer CNN network and b-layer LSTM network, where a and b are positive integers
greater than 1.

The average relative error of SNR estimation is shown in Figure 5 with different
numbers of CNN layers. Similarly to the above analysis, the relative error of SNR estimation
with a four-layer CNN was even higher than that with a two-layer CNN. In view of
computation complexity, a two-layer CNN is the optimal choice for SNN estimation in the
proposed network architecture.
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Figure 6 exhibits the average relative error of SNR estimation with different numbers
of LSTM layers and a fixed number of CNN in our architecture. According to Figure 6, the
SNR estimation schemes based on deep learning are obviously superior to the classical
schemes (SA and ML). This result indicates that deep learning-based methods can obtain
higher quality features than classical ones and achieve higher evaluation accuracy of
environmental SNR in return. On the other hand, as the number of LSTM layers increases,
the relative error decreases at first and then keeps stable when the number of LSTM layers
is equal or greater than two. This indicates that a two-layer LSTM is a superb choice for
SNR estimation with two CNN layers.
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Figure 7 exhibits the absolute error of SNR estimation under the same conditions as
Figure 6. Simultaneously, Figure 8 gives the corresponding average absolute error of SNR
estimation. Figures 7 and 8 manifest the superiority of the proposed SNR estimation again,
especially when two-layer LSTM and two-layer CNN are considered.
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In Figure 9, the absolute error comparisons between the proposed SNR estimation and
the scheme in [17] are shown. In Figure 10, the absolute error of the proposed scheme is
lower than that of the scheme in [17] when the environmental SNR is higher than −8 dB.
This indicates that the SNR estimation accuracy of the proposed scheme is higher than that
of the scheme in [17] in most cases.
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To sum up, the SNR estimation architecture with a two-layer CNN and two-layer
LSTM can effectively extract significant features of the observed signal frames and the
correlated features in the time dimension, which leads to higher precision of SNR estimation
for the observed remote signal. The accurate evaluation of environmental SNR contributes
to adaptive sampling of remote signals and improves the detection performance of non-
cooperative UAVs as a consequence.

4.2. SNR Estimation Based on CNN and LSTM

In this subsection, simulations are reported that examined the performance of the
proposed scheme. The modulated signal of Minimum Shift Keying (MSK) [22,23] was
chosen as the test signal on the i-th subchannel with center frequency fc = 2.44× 109Hz
and sampling frequency fc = 6.0 × 109Hz. The frequency of test signal varied from
fc = 2.38× 109Hz to fc = 2.5× 109 Hz, and bandwidth was fc = 2.0× 106 Hz. A Rayleigh
channel is considered with a Doppler shift of 250 in the simulations.

In the simulation, the modulated signal based on MSK was generated, and then
Rayleigh fading and white Gaussian noise were added into the MSK signal. After the
sampling and energy normalization of the noise-only case and the signal-plus-noise case,
the detection and false alarm probability were obtained by the corresponding energy
comparisons with the presupposed threshold. The simulation considered the scenario
where a remote-control unit controls one non-cooperative UAV with a remote signal,
and the presence or absence of non-cooperative is determined by the detection of the
remote signal.

Figure 10 makes performance comparisons of CFAR and ACFAR on the i-th subchannel
when σ2

x−i was 1 (SNR = −10 dB), 1.02 and 1.05, for fixed σ2
s−i. In Figure 10, the detection

probability of A-CFAR is greater than that of CFAR for a given false alarm probability when
σ2

x−i = 1.02 and σ2
x−i = 1.05.

In the Figures 11 and 12, the AND rule, OR rule and MV rule are considered to
determine the presence or absence of remote signal at the FC while σ2

x−i is 1 (SNR = −10 dB),
1.02 or 1.05, for fixed σ2

s−i. From Figures 11 and 12, two conclusions are drawn. Firstly, the
detection performance was greatly improved by the proposed A-CFAR compared to the
classical CFAR. Secondly, the performance of A-CFAR with the MV rule was higher than
with the AND rule or OR rule. As a result, the detection of the non-cooperative UAV was
greatly improved with the proposed MV rule-based A-CFAR.
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Figure 12. Decision results with various fusion rules (σ2
x−i = 1.05, M = 3).

Note that the remote-control distance of a non-cooperative UAV varies from 1 to 10 km
according to UAV type [24]. As a result, the proposed detection scheme for a remote signal
is effective within the distance scope mentioned above in theory.

5. Conclusions

In this paper, a detection scheme for non-cooperative signal UAVs has been proposed
based on the detection of remote signals. Firstly, the closed-form solution of the optimal
sampling point has been obtained, which is a function of radio environment and sensing
threshold. Secondly, an adaptive detector has been provided: the sampling point of the
remote signal on each subchannel adaptively varies with environmental SNR within the
constrained scope. The final decision on whether the remote signal exists is made at the
FC by the majority voting of multiple frequency bands. In addition, a SNR estimation
scheme has been proposed, where a two-layer CNN network and a two-layer LSTM
network are utilized for the accurate estimation of environmental SNR. Simulation results
have validated the effectiveness of proposed method, wherein the detection accuracy was
improved by about 1 dB.
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have read and agreed to the published version of the manuscript.
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