
Citation: Yang, Z.; Chao, F.; Chen, X.;

Jin, S.; Sun, L.; Du, X. DroidFDR:

Automatic Classification of Android

Malware Using Model Checking.

Electronics 2022, 11, 1798. https://

doi.org/10.3390/electronics11111798

Academic Editor: Jemal Abawajy

Received: 6 April 2022

Accepted: 3 June 2022

Published: 6 June 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

DroidFDR: Automatic Classification of Android Malware Using
Model Checking
Zhi Yang 1,2 , Fan Chao 1,2,*, Xingyuan Chen 1,2,3,*, Shuyuan Jin 4, Lei Sun 1,2 and Xuehui Du 1,2

1 Zhengzhou Information Science and Technology Institute, PLA Information Engineering University,
Zhengzhou 450001, China; zynoah@163.com (Z.Y.); sun_lei21@126.com (L.S.); duxuehui0411@126.com (X.D.)

2 Henan Province Key Laboratory of Information Security, Information Engineering University,
Zhengzhou 450001, China

3 State Key Laboratory of Cryptology, Beijing 100084, China
4 School of Computer Science and Engineering, SUN YAT-SEN University, Guangzhou 510006, China;

jinshuyuan@mail.sysu.edu.cn
* Correspondence: chaofan0411@163.com (F.C.); chxy302@vip.sina.com (X.C.)

Abstract: Android faces an increasing threat of malware attacks. The few existing formal detection
methods have drawbacks such as complex code modeling, incomplete and inaccurate expression
of family properties, and excessive manual participation. To this end, this paper proposes a formal
detection method, called DroidFDR, for Android malware classification based on communicating
sequential processes (CSP). In this method, the APK file of an application is converted to an easy-to-
analyze representation, namely Jimple, in order to model the code behavior with CSP. The process
describing the behavior of a sample is inputted to an FDR model checker to be simplified and verified
against a process that is automatically abstracted from the malware to express the property of a family.
The sample is classified by detecting whether it has the typical behavior of any family property.
DroidFDR can capture the behavioral characteristics of malicious code such as control flow, data
flow, procedure calls, and API calls. The experimental results show that the automated method
can characterize the behavior patterns of applications from the structure level, with a high family
classification accuracy of 99.06% in comparison with another formal detection method.

Keywords: Android; malware detection; communicating sequential processes; formal method;
model checking

1. Introduction

The Android operating system, one of the most popular mobile platforms today,
accounts for more than half of the mobile platform market share. Despite this success,
Android devices continue to face significant security risks. The open ecosystem of Android
is convenient for application programming; however, it increases the number of vulnera-
bilities that can be exploited by malware. To conduct unlawful activities covertly without
the user’s knowledge, malware from different families can be infiltrated into the market
through various channels. Once installed, users may face various security threats such as
malicious payment, privacy theft, remote control, malicious spread, expense consumption,
system destruction, fraud and deceptive practices, and rogue behavior.

Android malware detection is a necessity. Common anti-virus software mainly uses a
fingerprint identification method, which is quick and simple [1]. Whether the software to be
analyzed is malicious is determined by searching and matching the unique characteristics
of known malicious code, such as classes, methods, and data. However, code obfuscation
attacks cannot be effectively prevented this way, because the fingerprints of malicious code
variants will be unrecognized because of the changes due to obfuscation.

Many existing studies have focused on machine learning-based detection methods [2–22],
which usually have good performance. In this approach, the features of known malicious

Electronics 2022, 11, 1798. https://doi.org/10.3390/electronics11111798 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11111798
https://doi.org/10.3390/electronics11111798
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-6890-6077
https://doi.org/10.3390/electronics11111798
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11111798?type=check_update&version=1

Electronics 2022, 11, 1798 2 of 27

code, such as application components, intent filters, permissions, and API calls, are first
extracted and then used to train a detection model, which is finally used to classify the
test samples. A disadvantage of machine learning is that it mainly extracts statistical
features, which cannot accurately capture the behavioral and structural characteristics of
software, such as function call relationship and control flow logic. These characteristics
are important for judgment in some cases. For example, some malware can steal user
text messages by intercepting and sending them; however, texting applications also have
the function of sending and receiving SMS. Without a behavioral correlation analysis it
is difficult to distinguish between benign and malicious applications by only collecting
statistical characteristics of whether to send and receive text messages. Another major
shortcoming of machine learning is its lack of interpretability. Although we can confirm
whether a program is malicious, we may not know its essential characteristics or working
principle; this makes it difficult to conduct subsequent evaluation and analysis.

The information flow analysis [23–34] is another type of mainstream method whereby
malicious behaviors, such as privacy theft, hijacking, and deception, are detected by
calculating the reachability of information flow to search for potential leaks and penetration
paths. Although this method analyzes the behavior of information flow, the tracking
overhead is considerable. It is also prone to path explosion and incorrect judgment, e.g.,
certain risky paths will not appear in practice because of the various control parameters
and conditions. The root cause is that the method typically does not consider or simplify
the influence of control flow when analyzing the reachability of the data flow.

Compared with the methods mentioned above, formal methods [35–41], are mathe-
matically based languages, techniques and tools for detection. They can model complex
program structures and capture the overall behavioral characteristics of malicious code.
There are few formal detection methods for Android malware, of which LEILA [41] is an
excellent one that can capture the call structure of important function call relation. However,
we consider LEILA to have some drawbacks, including complex code modeling, incomplete
and inaccurate expression of family properties, and excessive manual participation. We
make a more comprehensive abstraction of malware behavior with reference to LEILA.

On the basis of communicating sequential processes (CSP) [42], which are well-known
process algebra, we propose an effective method for the formal detection of Android mal-
ware, called DroidFDR. It converts an APK file into Jimple, an intermediate representation
in Soot [43], for easy analysis, and then formally models the code into a CSP process to
express the behavior pattern of the application. An automated algorithm for family prop-
erty extraction is conceived to abstract family-specific property from malware of the same
family. After the process that expresses the behavior of a sample to be tested is simplified,
it is inputted to the FDR tool [44] for model checking against the process that abstracts the
property of a family. Based on whether the sample has the property of any malware family,
the appropriate classification is made.

To summarize, the main contributions of this paper are:

1. Being first to model the Jimple code with CSP, whose few statements and simple
forms facilitate a quick and accurate formal modeling;

2. Capturing the characteristics of malicious code such as control flow, data flow, proce-
dure calls, and API calls, which makes it possible for a more comprehensive behavior
analysis with a higher accuracy;

3. An automatic property extraction algorithm for malware family, which significantly
improves the efficiency and avoids the possibility of human error;

4. Explaining the family behavior to reveal its working mechanism, thus supporting the
evaluation and analysis of malicious code.

The remainder of this paper is organized as follows. Section 2 presents discussions
in the context of existing studies. Section 3 briefly reports the preliminaries on DroidFDR.
Based on the system design given in Section 4, Section 5 introduces the modeling of different
Jimple statements into CSP processes. Section 6 presents a novel algorithm to automatically
extract the properties of malware families. Section 7 shows the principle of model checking

Electronics 2022, 11, 1798 3 of 27

in FDR. We present the results of the experiment and some analysis in Section 8. Finally,
Section 9 concludes the paper.

2. Related Work

The rapid increase in the number of malware has promoted research interest in de-
veloping security tools. Malicious behavior around Android mainly includes malicious
payment, privacy theft, remote control, malicious spread, expense consumption, system
destruction, fraud and deceptive practices, rogue behavior, etc. Although the Android
framework has some in-built security designs, such as sandbox isolation and permission
mechanisms, these are insufficient to prevent malware, which are increasingly hidden and
have sophisticated means of penetrating devices. Studies in the field of Android security
have focused on malware detection, mainly analyzing the characteristics of malicious be-
havior from aspects such as inter-component communication (ICC) mechanisms, reflection
mechanisms, callback mechanisms, and human–computer interaction.

With the development of artificial intelligence technologies, machine learning-based
malware detection is gradually being explored [2], with the support vector machine (SVM)
being one of the typical models used for classification [3–7]. The mostly used features for
this type of detection include application components, intent filters, permissions, API calls,
process calls, source codes, and annotations [8], etc. Deep learning-based detection has been
rapidly promoted because of the deep connection mining between features [9]. Detection
systems based on deep learning can be classified in terms of the type of features being
extracted: dynamic features [10–12], static features [13–16], and mixed features [17–20]. In
these studies, deep networks, such as deep neural network (DNN), convolutional neural
network (CNN), and deep belief network (DBN), have seen a wide range of applications.
To solve the model aging problem, SDAC [21] has evolved effectively by evaluating new
APIs’ contributions to malware detection according to the contributions of existing APIs.
Machine learning methods exhibit a good detection performance and are accurate as
well. However, most of the proposed ML-based methods are black-box. Given an app,
they only output a family identity or none to which the app belongs through complex
computing that can hardly be understood by humans. Interpreting what a classification
model has learned should be as important as the detection accuracy, since an explainable
detection can help researchers to inspect patterns in malware and gain a deeper insight
into its functionality. There are few studies in interpretable Android malware classification.
Drebin [3], XMal [13], and MAMBA [22], the state-of-the-art interpretable solutions, can
identify features contributing to the detection of malware and provide the semantics of
each feature. Moreover, XMal produces a semantic order of selected key features as a
behavioral explanation, while the order rule is made manually; something which is labor-
intensive and possibly prone to error. To explain the malicious behavior, MAMBA collects
rich information and knowledge about attack behaviors from the open-source intelligence
(OSINT); something which also requires a lot of manual support and maintenance.

Information flow analysis (IFA), which is an important method used to analyze soft-
ware, cannot detect malicious behavior by itself. It needs to be combined with security
policies to discover possible attacks such as theft, deception, and injection. TaintDroid [23]
is a dynamic system-wide information flow tracking tool that can simultaneously track
multiple sources of sensitive data. TaintDroid achieves high efficiency by integrating four
granularities of taint propagation, namely variable-level, message level, method level, and
file level. FlowDroid [24] performs a static taint analysis on an application. FlowDroid
adequately models Android-specific challenges, like the application lifecycle or callback
methods, which helps reduce missed leaks or false positives. FlowDroid performs taint
analysis within single components of Android applications. Amandroid [25] and IccTA [26]
perform an inter-component communication taint analysis to detect ICC-based privacy
leaks. Bianchi et al. [27] adopted a backward data-flow analysis to track the information
flow of GUI-related APIs and found dangerous system calls that were aimed at security
risks surrounding touchscreen interfaces such as click hijacking, and phishing attacks with

Electronics 2022, 11, 1798 4 of 27

a view overlay replacement. InputScope [28] uses a static taint analysis to mark user input
and monitor its propagation to identify user input validations that can expose hidden
secrets such as backdoors and blacklists. Path tracking [29], taint value graph analysis [30],
and hybrid analysis [31] are proposed to quickly detect malicious privacy leakage. IFA
itself does not provide an automatic judgment of whether the revealed information flow
path is malicious, and what kind of information disclosure is malicious needs to be speci-
fied by experts. Some machine learning-based detection methods apply information flow
as a feature for malware classification. Appcontext [32] can extract the source/sink [33]
of information flow to draw a feature vector and can distinguish between normal and
malicious behaviors with the SVM after using FlowDroid to track and analyze Android
programs. On this basis, Shen et al. [34] refined the feature vector of the information flow
path into multiple API call flows to learn to discover malicious privacy leakage during the
classification, while ICCDetector [5] was used to extract the ICC features of the malicious
code for classification. Although the combination of ML and IFA can realize automatic
classification, it still faces difficulties in explanation, that is, they cannot explain which
information flows are decisive for the result. The weights of information flow features and
the relationship between information flow features needs to be further studied.

Formal methods have been widely used in hardware circuit verification and security
protocol analysis. In addition, researchers have explored the role of formal methods in the
detection of Android malware. However, this type of work is relatively limited; studies
have mainly modeled the programs formally for model checking [35–41]. Song et al. [35]
leveraged a PushDown system to model the Smali code of Android applications, and
expressed malicious behavior through a computational tree logic or a linear temporal
logic, only to discover private data leakage in malware. Bai et al. [36] built a general
framework, namely DROIDPF, to verify Android applications against security properties.
Since DROIDPF focuses on common security vulnerabilities in applications, a state machine
model corresponding to each vulnerability needs to be established manually. Mercaldo et al.
published a series of research results around the detection and classification of malware
families. They detected families related to ransomware, update attacks, HummingBad,
and repackaging, separately in [37–40], based on which a general classification method
for malware families was proposed in [41]. The problems addressed in these studies
were solved through a consistent procedure: modeling of the Java bytecode based on
CCS [45], defining the selective mu-calculus formulae [46] to encode the temporal logic
properties of malware families [47], and obtaining the family classification through model
checking [48]. However, this method has problems such as complex code modeling,
incomplete and inaccurate expression of family properties, such as data flow, and excessive
manual participation. In particular, each interpretable malware behavior expressed in logic
formulae is pre-defined manually before use to verify whether a program is malicious,
which can be a rather complex task even for security experts. We continue this line of formal
methodology and address the challenges to that which LEILA declared. In DroidFDR, the
model-checking process is automated by formal tools through mathematical derivation.
The comparison of the related work above is shown in Table 1.

Electronics 2022, 11, 1798 5 of 27

Table 1. Comparison with related work.

Category Examples Features Interpretability Family
Classification

ML-based detection

[3]
Components, intent
filters, permissions,

API calls

Only provide the top features
that contribute to the

classification as a
behavioral explanation

Y

[13] Permissions,
API calls

Produce the semantic order of
selected key features, while the

order rule is made manually
Y

[22] API calls
Select explanation template from
OSINT, which also requires a lot

of manual support
Y

[5–7,10–
12,14,15,20,21]

One or more of
the features

of components,
intent filters,

intent, API calls

Not supported Y

[8,16–19]

One or more of the
features of

components, intent
filters, permissions,

API/function
calls, annotations

Not supported N

Information flow
analysis

[23–31] data flows Not supported N

[4,32,34] data flows Not supported Y

Formal methods

[41,47,48]
API calls,

control flows
function call

Output fine-grained behavior
descriptions, but express family

properties manually
Y

Ours

API calls,
control flows,
function call,

and data flows

Output fine-grained behavior
descriptions, and extract family

properties from
samples automatically

Y

3. Preliminaries
3.1. CSP

CSP is a process algebra used for specifying systems as a set of parallel state machines
that can sometimes synchronize on events. We briefly review the CSP herein, borrowing
heavily from Hoare’s book [42].

The basic operator is the prefix operator. If x is an event, and P is a process, then (x→P)
represents a process that engages in event x and then behaves like process P. For any CSP
process P, we can have a trace of events that P may accept.

The next important operator is “choice”, denoted by “|”. If x and y are distinct events,
then (x→P|y→Q) denotes a process that accepts x and then behaves like P or accepts y and
then behaves like Q.

The next class of operators relates to parallelism. The notation P||
A

Q represents P

running in parallel with Q, synchronizing on events in A. This means that a stream of
incoming events can be arbitrarily assigned to either P or Q, assuming that these events are
not in A. However, for events in A, both P and Q must accept them synchronously.

A variation of parallel composition is interleaving, denoted by P|||Q . In interleaving,
P and Q never synchronize; they operate independently. P|||Q is therefore equivalent to
P ||
{}

Q, which means that P and Q run in parallel and synchronize on the empty set.

Processes that run in parallel can communicate with one another over channels. A
typical channel c can carry various values v, denoted by c.v. This represents a sending
process that accepts the event c!v while a receiving process accepts the event c?x (where x is
thus far unbound) and sets x to v. Communication on a channel is possible only when the
sender and receiver processes are in their respective states simultaneously. If one process is
in the suitable state and the other is not, the ready process waits until its partner becomes
ready. If the channel has a compound name such as i.c, its values are respectively denoted
by i.c.v. Channel names are prefix-free, so this is never ambiguous.

Electronics 2022, 11, 1798 6 of 27

The next important CSP feature is concealment. For a process P and a set of symbols
C, the process P\C is P with symbols in C concealed. The events in C become inter-
nal transitions that cannot be observed by other processes through synchronization or
channel communication.

In addition, CSP provides some useful predefined processes such as STOP which
accepts no events.

The operational behavior of CSP processes can be considered a labeled state transition
system. Figure 1 shows the operational semantics of CSP when the process P can be
transferred from one state to another through the execution of event a, where the contents
above and below the horizontal line are hypothesis and conclusion, respectively, and the
bracket on the right represents an additional condition.

Electronics 2022, 11, x FOR PEER REVIEW 6 of 27

The next class of operators relates to parallelism. The notation QP
A
|| represents P

running in parallel with Q, synchronizing on events in A. This means that a stream of
incoming events can be arbitrarily assigned to either P or Q, assuming that these events
are not in A. However, for events in A, both P and Q must accept them synchronously.

A variation of parallel composition is interleaving, denoted by |||P Q . In interleav-
ing, P and Q never synchronize; they operate independently. |||P Q is therefore equiva-
lent to

{}
||P Q , which means that P and Q run in parallel and synchronize on the empty

set.
Processes that run in parallel can communicate with one another over channels. A

typical channel c can carry various values v, denoted by c.v. This represents a sending
process that accepts the event c!v while a receiving process accepts the event c?x (where x
is thus far unbound) and sets x to v. Communication on a channel is possible only when
the sender and receiver processes are in their respective states simultaneously. If one pro-
cess is in the suitable state and the other is not, the ready process waits until its partner
becomes ready. If the channel has a compound name such as i.c, its values are respectively
denoted by i.c.v. Channel names are prefix-free, so this is never ambiguous.

The next important CSP feature is concealment. For a process P and a set of symbols
C, the process P\C is P with symbols in C concealed. The events in C become internal
transitions that cannot be observed by other processes through synchronization or chan-
nel communication.

In addition, CSP provides some useful predefined processes such as STOP which
accepts no events.

The operational behavior of CSP processes can be considered a labeled state transi-
tion system. Figure 1 shows the operational semantics of CSP when the process P can be
transferred from one state to another through the execution of event a, where the contents
above and below the horizontal line are hypothesis and conclusion, respectively, and the
bracket on the right represents an additional condition.

Figure 1. Operational semantics of CSP.

3.2. Soot
Soot is a Java bytecode optimization framework developed by the Sable research

group from McGill University. Its original objective was to help analysts gain a better un-
derstanding and faster execution of Java programs. So far, Soot has played an important
role in the field of program analyses such as class files parsing, points-to analysis, null-
pointer analysis, data-flow analysis, call graph construction, and control-flow graph ex-
traction. A new custom analysis can also be built on the basis of the Soot framework.

To better serve different analyses, Soot provides four intermediate representations
with different levels of abstraction for Java bytecode: Baf, Jimple, Shimple, and Grimp.
Jimple is the main intermediate representation of Soot, which is a typed, stackless three-
address representation suitable for most analyses and optimization. Jimple will eliminate
redundant parts of the original code, e.g., variables or assignments never used. The key to
convert the original code into Jimple is the linearization of expressions and the naming of
variables, because each Jimple statement only refers to at most three variables or con-
stants. There are more than 200 types of statements in Java bytecode, whereas Jimple has
only 15 statements; therefore, converting code into Jimple can make an analysis more con-
venient and efficient.

——————————————————

a P a P

—————————————————————————

a P | b Q a P

——————————————————————

Q a Q’

P || Q a
P a P’

Choice

Prefix Concurrency
P’|| Q’

——————————————————————

Q b Q’

P || Q a
P a P’

interleaving
P’|| Q

[a ≠ b]

Figure 1. Operational semantics of CSP.

3.2. Soot

Soot is a Java bytecode optimization framework developed by the Sable research group
from McGill University. Its original objective was to help analysts gain a better understand-
ing and faster execution of Java programs. So far, Soot has played an important role in
the field of program analyses such as class files parsing, points-to analysis, null-pointer
analysis, data-flow analysis, call graph construction, and control-flow graph extraction. A
new custom analysis can also be built on the basis of the Soot framework.

To better serve different analyses, Soot provides four intermediate representations
with different levels of abstraction for Java bytecode: Baf, Jimple, Shimple, and Grimp.
Jimple is the main intermediate representation of Soot, which is a typed, stackless three-
address representation suitable for most analyses and optimization. Jimple will eliminate
redundant parts of the original code, e.g., variables or assignments never used. The key to
convert the original code into Jimple is the linearization of expressions and the naming of
variables, because each Jimple statement only refers to at most three variables or constants.
There are more than 200 types of statements in Java bytecode, whereas Jimple has only
15 statements; therefore, converting code into Jimple can make an analysis more convenient
and efficient.

3.3. Jimple

As an example, Figure 2 shows the source code of a Java program and its Jimple
representation obtained by Soot conversion. As shown in Figure 2a, the method example
belongs to the class Test, and it calls the method bar of the class Foo for calculation. Figure 2b
presents the Jimple code generated by Soot for this method. From a formal viewpoint,
Jimple can be considered a language that combines Java source code and Java bytecode. In
terms of the declaration and assignment of variables, the statement-based structure that
belongs to Java source code can be identified, while Jimple is similar to Java bytecode in
terms of the control flow and method invocation.

Electronics 2022, 11, 1798 7 of 27

Electronics 2022, 11, x FOR PEER REVIEW 7 of 27

3.3. Jimple
As an example, Figure 2 shows the source code of a Java program and its Jimple

representation obtained by Soot conversion. As shown in Figure 2a, the method example
belongs to the class Test, and it calls the method bar of the class Foo for calculation. Figure
2b presents the Jimple code generated by Soot for this method. From a formal viewpoint,
Jimple can be considered a language that combines Java source code and Java bytecode.
In terms of the declaration and assignment of variables, the statement-based structure that
belongs to Java source code can be identified, while Jimple is similar to Java bytecode in
terms of the control flow and method invocation.

(a) Java source code (b) Jimple representation

Figure 2. Different representations of an example program: (a) Java source code; (b) Jimple repre-
sentation.

Unlike the Java source code, the method header (Line 1) in Jimple only displays the
types of parameters, without the names. The Jimple variables strictly follow the definition-
use pattern in that the definitions of all the variables to be used below are given at the
beginning of the method body (Lines 2–5), and no more definition statements will appear
thereafter. Subsequently, the reference this of the current class and the parameters of the
method are assigned to the corresponding variables, whose types are explicitly declared
(Lines 6–7). Notably, all the classes and types involved, whether defined or used, appear
in the form of a complete class hierarchy to which they belong. For example, the complete
type of $r3 is java.io.PrintStream (Line 5). Thus, the types of variables are clear; this is
particularly important for program analyses.

Jimple is a three-address intermediate representation, i.e., at most three variables or
constants can appear in a statement. However, Java statements are concise, and there is
no limit to the number of variables in one statement, which may have many hidden stack
positions unnamed. This generates a large number of intermediate variables when a Java
code is converted to Jimple.

This process is managed by the linearization of expressions. Taking Java statement
“return y * 5 + 16” (Line 8) as an example, we have three corresponding Jimple statements,
namely “$i4 = i2 * 5,” “$i5 = $i4 + 16,” and “return $i5” (Lines 19–21), which clearly illus-
trate the complete calculation process by introducing the intermediate variables $i4 and
$i5 to ensure the three-address form of Jimple statements.

[1] public int example(int x) {
[2] Foo f = new Foo();
[3] int y = f.bar(x) + 1;
[4] if(y < 0) {
[5] System.out.println("hello");
[6] return y * y;
 }
[7] else
[8] return y * 5 + 16;
 }

[1] public int example(int) {
[2] Test r0;
[3] int i0, $i1, i2, $i3, $i4, $i5;
[4] Foo $r1, r2;
[5] java.io.PrintStream $r3;

[6] r0 := @this: Test;
[7] i0 := @parameter0: int;

[8] $r1 = new Foo;
[9] specialinvoke $r1.<Foo: void <init>()>();
[10] r2 = $r1;
[11] $i1 = virtualinvoke r2.<Foo: int bar(int)>(i0);
[12] i2 = $i1 + 1;

[13] if i2 >= 0 goto label0;
[14] $r3 = java.lang.System.out;
[15] $r3.println("hello");
[16] $i3 = i2 * i2;
[17] return $i3;

[18] label0:
[19] $i4 = i2 * 5;
[20] $i5 = $i4 + 16;
[21] return $i5;
 }

Figure 2. Different representations of an example program: (a) Java source code; (b) Jimple representation.

Unlike the Java source code, the method header (Line 1) in Jimple only displays the
types of parameters, without the names. The Jimple variables strictly follow the definition-
use pattern in that the definitions of all the variables to be used below are given at the
beginning of the method body (Lines 2–5), and no more definition statements will appear
thereafter. Subsequently, the reference this of the current class and the parameters of the
method are assigned to the corresponding variables, whose types are explicitly declared
(Lines 6–7). Notably, all the classes and types involved, whether defined or used, appear in
the form of a complete class hierarchy to which they belong. For example, the complete
type of $r3 is java.io.PrintStream (Line 5). Thus, the types of variables are clear; this is
particularly important for program analyses.

Jimple is a three-address intermediate representation, i.e., at most three variables or
constants can appear in a statement. However, Java statements are concise, and there is
no limit to the number of variables in one statement, which may have many hidden stack
positions unnamed. This generates a large number of intermediate variables when a Java
code is converted to Jimple.

This process is managed by the linearization of expressions. Taking Java statement
“return y * 5 + 16” (Line 8) as an example, we have three corresponding Jimple statements,
namely “$i4 = i2 * 5,” “$i5 = $i4 + 16,” and “return $i5” (Lines 19–21), which clearly illustrate
the complete calculation process by introducing the intermediate variables $i4 and $i5 to
ensure the three-address form of Jimple statements.

4. System Design

To conduct a formal detection of Android malware based on CSP, Android applications
need to be gradually transformed into CSP processes, and an abstract expression of the
family properties should be provided, so that the classification results of the applications
can be achieved through model checking. The system design of DroidFDR is divided into
four main steps, as shown in Figure 3.

Electronics 2022, 11, 1798 8 of 27

Electronics 2022, 11, x FOR PEER REVIEW 8 of 27

4. System Design
To conduct a formal detection of Android malware based on CSP, Android applica-

tions need to be gradually transformed into CSP processes, and an abstract expression of
the family properties should be provided, so that the classification results of the applica-
tions can be achieved through model checking. The system design of DroidFDR is divided
into four main steps, as shown in Figure 3.

Property process

Sample process

Property 1

Malware
family 1

 FDR

Property 2

Malware
family 2

……
Property n

Malware
family n

Not any
Property

Benign
application

Property abstraction

Malware family 1 Property1

Malware family 2 Property 2

Malware family n Property n

……

Formal modeling

Process algebra: CSP

Code conversion

Safe behavior
simplification

Model Check

The sample belongs to

APK Java
Dex2jar Soot

Jimple

to be
verified

meet

public static void main (java.lang.String[])
{
 java.lang.String[] args;
 hello.Foo f, temp$0;
 int a, b, x, temp$1, temp$2, temp$3, temp$4;

 args := @parameter0: java.lang.String[];
 temp$0 = new hello.Foo;
 specialinvoke temp$0.<hello.Foo: void <init>()>();
 f = temp$0;
 a = 7;
 b = 14;
 temp$1 = virtualinvoke f.<hello.Foo: int bar(int)>(21);
 temp$2 = temp$1;
 temp$3 = temp$2 + a;
 temp$4 = temp$3 * b;
 x = temp$4;
 return;
}

Pi, r0, i0, ... = Pi+1, r0, i0, ...

Pi, r0, i0, ... = Pi+1, this, i0, ...

Pi, r0, i0, ... = (param.method?arg Pi+1, r0, arg, ...)
Pi, r0, i0, $i1, i2, ... = Pi+1, r0, i0, $i1, union($i1, 1), ...

Pi, r0, i0, ... = (set.class.a!temp$1 Pi+1, r0, i0, …)

Pi, r0, i0, ..., temp$1, … = (get.class.a?a Pi+1, r0, i0, …, a, …)

Pa = (set.class.a?x Px | get.class.a!a Pa)

Pi, r0, i0, ... = Pj, r0, i0, ...
Pi, r0, i0, ... = (end.method P)

Pi, r0, i0, ... = (if i2 >= 0 then Pj, r0, i0, ... else Pi+1, r0, i0, ...)
Pi, r0, i0, ... = | k: switch @ Pgoto(k), r0, i0, ...)
Pi, r0, i0, ... = (call.method param.method!arg0 param.method!arg1 …
retval.method?val return.method Pi+1, r0, i0, ...)
Pi, r0, i0, ... = thread.run ||| Pi+1, r0, i0, ...

Pi, r0, i0, ... = (retval.method!val end.method P)
method = (begin.method method1, r0, i0, ...)
Pi, r0, i0, ... = (throw.exception STOP)
Pi, r0, i0, ... = (entermonitor.object Pi+1, r0, i0, ...)
Pi, r0, i0, ... = (exitmonitor.object Pi+1, r0, i0, ...)
Application = (Methods || SYNM || Classes || Dummymain || SYNO)\C

Figure 3. System design of DroidFDR.

4.1. Code Conversion
Android applications are usually distributed and circulated in the form of APK files

in the market, so relevant analysis tools are necessary. Moreover, extracting the infor-
mation in the code quickly and effectively is important because the statement types in
Java source code and Java bytecode are very complex. Based on the above considerations,
APK files can be decompiled into class files in a compressed form (.jar) by dex2jar, (note:
https://sourceforge.net/projects/dex2jar/, accessed on 17 February 2021) and then con-
verted to Jimple by Soot. Jimple has several advantages, such as having few statement
types, being clearly typed, and having three-address forms, which are beneficial to subse-
quent formal modeling.

4.2. Formal Modeling
By corresponding each Jimple statement to a CSP process, we can formally model

Android applications. Jimple statements can be broadly divided into five categories: core
statements, statements for intraprocedural control flow, statements for interprocedural
control flow, monitor statements, and other statements. Since there are only 15 statements
in Jimple and the three-address form makes the semantics very clear, it would be easier
to express Jimple as CSP processes. A process paradigm of each statement is built on the

Figure 3. System design of DroidFDR.

4.1. Code Conversion

Android applications are usually distributed and circulated in the form of APK files in
the market, so relevant analysis tools are necessary. Moreover, extracting the information
in the code quickly and effectively is important because the statement types in Java source
code and Java bytecode are very complex. Based on the above considerations, APK files
can be decompiled into class files in a compressed form (.jar) by dex2jar, (note: https:
//sourceforge.net/projects/dex2jar/, accessed on 17 February 2021) and then converted
to Jimple by Soot. Jimple has several advantages, such as having few statement types,
being clearly typed, and having three-address forms, which are beneficial to subsequent
formal modeling.

4.2. Formal Modeling

By corresponding each Jimple statement to a CSP process, we can formally model
Android applications. Jimple statements can be broadly divided into five categories: core
statements, statements for intraprocedural control flow, statements for interprocedural
control flow, monitor statements, and other statements. Since there are only 15 statements
in Jimple and the three-address form makes the semantics very clear, it would be easier
to express Jimple as CSP processes. A process paradigm of each statement is built on the
basis of its characteristics, which is believed to be a good representation of code behavior.
A complete modeling of Android applications is proposed on this basis. More details can
be found in Section 5.

https://sourceforge.net/projects/dex2jar/
https://sourceforge.net/projects/dex2jar/

Electronics 2022, 11, 1798 9 of 27

4.3. Property Abstraction

Each malicious sample involved has a family label, and we can extract common
malicious behavior patterns from homologous samples as the property of the family. After
illustrating the relationship between different behaviors in the composition of property, we
propose an automated algorithm for extracting the CSP process that abstracts the property
of each family, whose predictive information is given by observing the malicious code and
referring to related technical reports. Compared with the original process of modeling
the entire sample behavior, the expression of the property process is more concise, as it
involves only the relevant malicious events. More details can be found in Section 6.

4.4. Model Checking

Finally, for Android malware detection, we use the FDR model checker, which is a
formal tool applied to CSP. The CSP process modeling the sample behavior is considered
the one to be verified, and it is simplified with only the events appearing in the property
process retained. Based on the traces model, the sample process is simplified and tested
against various property processes, and the result indicates the malware family to which the
sample belongs. Since benign applications do not have a corresponding property process, a
process that does not conform to any property is considered benign. More details can be
found in Section 7.

5. Formal Modeling with CSP

If a piece of Jimple code is considered an entire system, each statement contained
is an integral part of it and can be modeled as a CSP process. The process name of a
statement consists of the complete method name including parameter types and subscripts.
The first subscript denotes the number of the current statement in its method, followed
by non-static local variables of the method, non-static member variables of its class, and
that of class objects created in the method to better indicate the change in the variable
values. For example, for the method example shown in Figure 2b, the process name
corresponding to the i-th statement is Test_example (int)i, r0, i0, . . . , where the value of i is
no greater than the total number of Jimple statements in this method (start counting after
definition statements). We specifically explain how to convert different types of Jimple
statements into CSP processes below, where all example processes are named Pi, r0, i0, . . .
for convenience.

5.1. Core Statements
5.1.1. NopStmt

NopStmt is a no-operation statement, and the corresponding CSP process

Pi,r0,i0, . . . = Pi+1,r0,i0, . . .

indicates that no event has occurred, and that the variables values remained unchanged.
The execution continues directly based on the process behavior of the next statement.

5.1.2. IdentityStmt

IdentityStmt is a statement that assigns parameter values or the this reference to vari-
ables. If it is related to the parameters, for example, the CSP process of “i0 := @parameter0: int” is

Pi,r0,i0, . . . = (param.method?arg→Pi + 1, r0, arg, . . .)

Otherwise, for example, the CSP process of “r0 := @this: Test” is

Pi,r0,i0, . . . = Pi+1,this,i0, . . .

where param.method?arg is the event where the current method receives the argument
arg. The particularity of parameter assignment is that the arguments in the calling state-

Electronics 2022, 11, 1798 10 of 27

ment need to be passed onto the called method. In the case of multiple parameters, the
corresponding input value can be easily found because the parameter assignments are
performed in order.

5.1.3. AssignStmt

AssignStmt is a general assignment statement of variables, for example, the CSP
process of “i2 = $i1 + 1” is

Pi,r0,i0,$i1,i2, . . . = Pi+1,r0,i0,$i1, union($i1, 1), . . .

which is different from IdentityStmt in that the process mainly models the relationship
where the variable i2 on the left side of the equation is infected by the variable $i1 and the
constant 1 on the right side. The type of variable i2 is abstracted into a set to express the
propagation of data flow, so i2 will be replaced by union($i1, 1) in the subscripts of the
i + 1-th process here.

In addition, when AssignStmt involves static member variables of a class or static
variables of member methods in the class, it is necessary to transfer data between processes.
If it is to set their values, for example, the CSP process of “c.<Class: int a> = temp$1” is

Pi,r0,i0, . . . = (set.class.a!temp$1→Pi+1,r0,i0, . . .)

Otherwise, for example, the CSP process of “temp$1 = c.<Class: int a>” is

Pi,r0,i0, . . . ,temp$1, . . . = (get.class.a?a→Pi+1,r0,i0, . . . ,a, . . .)

where set.class.a!temp$1 is the event where AssignStmt outputs temp$1 as an assignment
to class.a, and get.class.a?a is the event where AssignStmt receives the value of class.a.

A process should be modeled for each class to manage the values of all static member
variables and static variables of the member methods in it. If the class has one such variable
a, the corresponding CSP process is

Pa = (set.class.a?x→Px|get.class.a!a→Pa)

where set.class.a?x is the event where the current class receives x as an assignment to a, and
get.class.a!a is the event where class outputs the value of a.

5.2. Statements for Intraprocedural Control Flow
5.2.1. IfStmt

IfStmt is a conditional judgment statement and is usually followed by GotoStmt as a
complete sentence instead of appearing alone.

5.2.2. GotoStmt

GotoStmt is a jump statement, which can appear alone like “goto label0,” or be
combined with IfStmt to indicate the location of the processing statements when the
judgment condition is satisfied, such as “if i2 >= 0 goto label0.” In Jimple, the target of
different jumps is identified by label, which is sequentially numbered starting from label0.

The CSP process corresponding to the former case is

Pi,r0,i0, . . . = Pj,r0,i0, . . .

where j is the statement number of the jump target. To obtain the value of j, we need to
search for the label (in the form of “label0:”) in the subsequent range of the current method.
The process does not execute any actual events, but simply jumps to the process where the
label is located.

Electronics 2022, 11, 1798 11 of 27

The CSP process corresponding to the latter case is

Pi,r0,i0, . . . = (if i2 >= 0 then Pj,r0,i0, . . . else Pi+1,r0,i0, . . .)

The process provides two options in that if the condition given by IfStmt is estab-
lished, the execution continues based on the statement process at the corresponding label;
otherwise, the subsequent process will be executed in sequence.

5.2.3. TableSwitchStmt

TableSwitchStmt is a table switch statement, translated from the instruction tableswitch
in Java bytecode. It is applied to scenarios where the distribution of the conditional values
in the switch branches is relatively concentrated, as shown in Figure 4a. The CSP process
corresponding to TableSwitchStmt is

Pi,r0,i0, . . . = |k: switch @ Pgoto(k),r0,i0, . . .)

where k is the case value of the branch, and goto(k) is the start number of the statements
handling the case. The process indicates that the execution jumps to the corresponding
label position after choosing the appropriate case branch.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 27

method. The process does not execute any actual events, but simply jumps to the process
where the label is located.

The CSP process corresponding to the latter case is

Pi,r0,i0,… = (if i2 >= 0 then Pj,r0,i0,… else Pi+1,r0,i0, …)

The process provides two options in that if the condition given by IfStmt is estab-
lished, the execution continues based on the statement process at the corresponding label;
otherwise, the subsequent process will be executed in sequence.

5.2.3. TableSwitchStmt
TableSwitchStmt is a table switch statement, translated from the instruction tables-

witch in Java bytecode. It is applied to scenarios where the distribution of the conditional
values in the switch branches is relatively concentrated, as shown in Figure 4a. The CSP
process corresponding to TableSwitchStmt is

Pi,r0,i0,… = |k: switch @ Pgoto(k),r0,i0,…)

where k is the case value of the branch, and goto(k) is the start number of the statements
handling the case. The process indicates that the execution jumps to the corresponding
label position after choosing the appropriate case branch.

(a) (b)

Figure 4. Examples of two switch Jimple statements: (a) TableSwitchStmt; (b) LookupSwitchStmt.

5.2.4. LookupSwitchStmt
LookupSwitchStmt is a lookup switch statement, translated from the instruction

lookupswitch in Java bytecode. It is applied to scenarios where the distribution of the con-
dition values in the switch branches is relatively sparse, as shown in Figure 4b. Although
LookupSwitchStmt accesses the jump table by index whereas TableSwitchStmt by key-
value matching, the two statements can share the same CSP.

5.3. Statements for Interprocedural Control Flow
5.3.1. InvokeStmt

InvokeStmt is a calling statement, such as “$i1 = virtualinvoke r2.<Foo: int
bar(int)>(i0).” If the called method has both parameters and a return value, the corre-
sponding CSP process of InvokeStmt is

Pi, r0, i0, … = (call.method→param.method!arg0→param.method!arg1→…→ret-
val.method?val→return.method→Pi+1,r0,i0,…)

where param.method!arg0, param.method!arg1… are events, where pass arguments to
method in turn, retval.method?val is the event where receives val from method, and
call.method and return.method are the events representing the start and finish of the calling
of method, respectively. When the called method has no parameters or return value, the
corresponding events will be removed from the process. For the called method, its argu-
ment reception is done in IdentityStmt.

tableswitch(i1)
{
 case 0: goto label0;
 case 1: goto label1;
 case 2: goto label2;
 default: goto label3;
};

lookupswitch(i1)
{
 case 3: goto label0;
 case 20: goto label1;
 case 50: goto label2;
 default: goto label3;
};

Figure 4. Examples of two switch Jimple statements: (a) TableSwitchStmt; (b) LookupSwitchStmt.

5.2.4. LookupSwitchStmt

LookupSwitchStmt is a lookup switch statement, translated from the instruction
lookupswitch in Java bytecode. It is applied to scenarios where the distribution of the
condition values in the switch branches is relatively sparse, as shown in Figure 4b. Although
LookupSwitchStmt accesses the jump table by index whereas TableSwitchStmt by key-value
matching, the two statements can share the same CSP.

5.3. Statements for Interprocedural Control Flow
5.3.1. InvokeStmt

InvokeStmt is a calling statement, such as “$i1 = virtualinvoke r2.<Foo: int bar(int)>(i0).”
If the called method has both parameters and a return value, the corresponding CSP process
of InvokeStmt is

Pi, r0, i0, . . . = (call.method→param.method!arg0→param.method!arg1→ . . . →retval.
method?val→return.method→Pi+1,r0,i0, . . .)

where param.method!arg0, param.method!arg1 . . . are events, where pass arguments to
method in turn, retval.method?val is the event where receives val from method, and call.method
and return.method are the events representing the start and finish of the calling of method,
respectively. When the called method has no parameters or return value, the corresponding
events will be removed from the process. For the called method, its argument reception is
done in IdentityStmt.

Electronics 2022, 11, 1798 12 of 27

In particular, the creation of a new thread follows the form of method calls; however,
it need not wait for the callee to complete the execution as in general calls. Therefore, its
corresponding CSP process is

Pi,r0,i0, . . . = thread.run|||Pi+1,r0,i0, . . .

where thread.run refers to the process of the run method in the created thread class thread.

5.3.2. ReturnStmt

ReturnStmt is a return statement with a return value, such as “return $i3.” Its corre-
sponding CSP process is

Pi,r0,i0, . . . = (retval.method!val→end.method→P)

where retval.method!val is the event that the current method returns the variable val. The
process indicates that the execution of the method ends after returning the required result
and returns to the beginning of the method for the next call.

5.3.3. ReturnVoidStmt

ReturnVoidStmt is the return statement “return” with no return value, the correspond-
ing CSP process of which is

Pi,r0,i0, . . . = (end.method→P)

where method refers to the current method. The process ends this execution without any
value returned and goes back to the beginning of the method.

To ensure that any method can only be called by at most one method at a time, the
SYNM process is necessary to describe the call synchronization mechanism of the system,
composed of the control process of each call synchronization event, SYNM_method,

SYNM_method = (call.method→begin.method→end.method→return.method→SYNM_method)

SYNM = (SYNM_method1|||SYN_method2||| . . .)

where method refers to the called method, and method1, method2 . . . are different called
methods in the system.

Figure 5 shows the synchronization between InvokeStmt and the called method with
two parameters and a return value. We set the prompt events begin and end for the beginning
and end of each method execution, respectively.

Electronics 2022, 11, x FOR PEER REVIEW 12 of 27

In particular, the creation of a new thread follows the form of method calls; however,
it need not wait for the callee to complete the execution as in general calls. Therefore, its
corresponding CSP process is

Pi,r0,i0,… = thread.run|||Pi+1,r0,i0,…

where thread.run refers to the process of the run method in the created thread class thread.

5.3.2. ReturnStmt
ReturnStmt is a return statement with a return value, such as “return $i3.” Its corre-

sponding CSP process is

Pi,r0,i0,… = (retval.method!val→end.method→P)

where retval.method!val is the event that the current method returns the variable val. The
process indicates that the execution of the method ends after returning the required result
and returns to the beginning of the method for the next call.

5.3.3. ReturnVoidStmt
ReturnVoidStmt is the return statement “return” with no return value, the corre-

sponding CSP process of which is

Pi,r0,i0,… = (end.method→P)

where method refers to the current method. The process ends this execution without any
value returned and goes back to the beginning of the method.

To ensure that any method can only be called by at most one method at a time, the
SYNM process is necessary to describe the call synchronization mechanism of the system,
composed of the control process of each call synchronization event, SYNM_method,

SYNM_method = (call.method→begin.method→end.method→re-
turn.method→SYNM_method)

SYNM = (SYNM_method1|||SYN_method2|||…)

where method refers to the called method, and method1, method2… are different called meth-
ods in the system.

Figure 5 shows the synchronization between InvokeStmt and the called method with
two parameters and a return value. We set the prompt events begin and end for the begin-
ning and end of each method execution, respectively.

Figure 5. Synchronization between InvokeStmt and the called method.

Figure 5. Synchronization between InvokeStmt and the called method.

Electronics 2022, 11, 1798 13 of 27

Since the first statement of a method is uncertain, begin is additionally used as the prefix
of the first process, and end is placed in the expression of ReturnStmt or ReturnVoidStmt
because the return statement usually marks the completion of a method. Therefore, the
CSP of the method is

method = (begin.method→method1,r0,i0, . . .)

while in InvokeStmt, we set the call and return events as the start and completion of this
call, respectively. The synchronization set of SYNM contains the call, begin, end, and return
events, and the control will return to the caller’s subsequent statement after executing the
called method.

5.4. Other Statements
5.4.1. ThrowStmt

ThrowStmt is an exception throwing statement, such as “throw r4.” Its corresponding
CSP process is

Pi,r0,i0, . . . = (throw.exception→STOP)

where exception refers to the type of variable being thrown, and throw.exception is the event
that throws the exception. This process indicates that the execution of the current method
stops after an exception is thrown. The specific type of exception should be confirmed on
the basis of the variable in the statement, which can be found in the definition statements
at the beginning of the method.

5.4.2. RetStmt

RetStmt is a return statement of standard request, translated from the instruction ret
in Java bytecode. It realizes the jump and return of the finally module in Java source code
with the instruction jsr. However, starting from Java SE 7, Java compilers after JDK 1.4.2 no
longer use these two instructions to process the module, so RetStmt is not considered.

5.4.3. MonitorStmt

EnterMonitorStmt and ExitMonitorStmt are monitor statements translated from Java
bytecode instructions monitorenter and monitorexit, respectively, providing explicit sup-
port for synchronization. Since each object has a corresponding monitor, the two statements
appear in pairs to play the role of acquiring and releasing the monitor lock separately,
ensuring that at most one thread can execute one synchronization event at any time.

The corresponding CSP process of EnterMonitorStmt is

Pi,r0,i0, . . . = (entermonitor.object→Pi+1,r0,i0, . . .)

and that of ExitMonitorStmt is

Pi,r0,i0, . . . = (exitmonitor.object→Pi+1,r0,i0, . . .)

where object refers to the monitored object, and entermonitor.object and exitmonitor.object
are events that enter and exit the monitor of the object, respectively.

To ensure the exclusiveness of the synchronized objects, the SYNO process is necessary
to describe the object synchronization mechanism of the system; this process comprises the
control process of each synchronization event, SYNO_object,

SYNO_object = (entermonitor.object→exitmonitor.object→SYNO_object)

SYNO = (SYNO_object1|||SYNO_object2||| . . .)

where object1, object2 . . . are different monitored objects in the system.

Electronics 2022, 11, 1798 14 of 27

5.5. Modeling of Application

From the perspective of the entire program, the system consists of the following
processes, compounded concurrently.

1. The processes of all methods in the program, denoted by method1, method2 . . . , are
responsible for the execution of the respective method.

2. The synchronization process of method calls, SYNM, is responsible for the exclusive
call to methods.

3. The processes of all classes in the program, denoted by class1, class2 . . . , are responsi-
ble for the management of static member variables and static variables of the member
methods in the respective class.

4. The process used to simulate the main method of the program, denoted by Dummy-
main, is responsible for modeling the application entries. Since an Android application
may have multiple entry points, we refer to FlowDroid to customize a dummy main
method for each application, and the processes of the other methods will be executed
only when they are called.

5. The synchronization process of the objects, SYNO, is responsible for the exclusive
access to monitored objects.

Therefore, the CSP process corresponding to the application is

Methods = (method1|||method2||| . . .)

Classes = (class1|||class2||| . . .)

Application = (Methods||SYNM||Classes||Dummymain||SYNO)\C

C = {call, return, begin, end, param, retval, set, get, entermonitor, exitmonitor}

6. Abstraction of Family Property

Common behavioral characteristics of malware belonging to the same family are
abstracted as family-specific properties. Unlike previous studies where the full participation
of experts was required, DroidFDR adopts an automated extraction algorithm for family
properties. The CSP process that expresses the property of a family can be automatically
extracted by observing malicious code and referring to relevant technical reports to provide
the predictive information required by the algorithm.

6.1. Composition Structure of Behavior in Property

Here, the property is defined as the behavior pattern of a malware family, which
can determine the dependency relationship between malicious behaviors, and it is the
foundation of our classification. The property can be formally modeled in CSP with various
structures, such as sequence, selection, parallelism, iteration, and conditional control, thus
bringing a good description ability. We briefly summarize the behavioral composition of
the properties, along with some examples:

6.1.1. Sequential Structure

The sequential structure expresses the order of execution between behaviors, usually
emphasizing that the former behavior must occur before the latter behavior. For example,
malware intended to send personal information of a user to a remote server must obtain
the data of interest through relevant system APIs first. The process

S = (a→b→S1)

corresponds to the diagram shown in Figure 6a, which indicates that the property must
perform the two behaviors a and b in order, and then continue to execute the subsequent
events based on the process behavior of S1.

Electronics 2022, 11, 1798 15 of 27
Electronics 2022, 11, x FOR PEER REVIEW 15 of 27

(a) (b) (c)

(d) (e)

Figure 6. Structural diagram: (a) sequential structure; (b) selective structure; (c) parallel structure;
(d) iterative structure; (e) conditional control structure.

6.1.2. Selective Structure
The selective structure presents the options of process branches, typically used to

perform multiple similar behaviors that will trigger different subsequent actions. For ex-
ample, malware may choose to collect the geographic location of a device through GPS or
a network. The process

S = (a→S1|b→S2|c→S3)

corresponds to the diagram shown in Figure 6b, which indicates that the property can
choose a, b, or c as the initial behavior, and then continue to execute the respective subse-
quent processes S1, S2, or S3.

6.1.3. Parallel Structure
The parallel structure expresses the concurrency between processes, usually empha-

sizing that the two branches can run simultaneously with some interactive behaviors. For
example, malware can start two different malicious activities when informed of system
boot. The process

S = (a→c→S1||b→c→S2)

corresponds to the diagram shown in Figure 6c, which indicates that when involving the
behavior c, the two branch processes will be executed synchronously, but alternately for
the remaining time.

6.1.4. Iterative Structure
The iterative structure expresses the repeated execution of behavior sequence, typi-

cally used to show the persistence of malicious behavior. For example, useless SMS could
be repeatedly sent in the background to consume user tariffs. The process

S = (a→b→S)

corresponds to the diagram shown in Figure 6d, which indicates that the property is com-
posed of two behaviors: a should be executed followed by b, and this procedure is re-
peated.

6.1.5. Conditional Control Structure
The conditional control structure describes the relationship between judgment con-

ditions and subsequent processes, usually emphasizing the control of conditions on pro-
cess behavior. For example, malware will start some illegal activities once the screen-off
duration is detected for a long enough duration. The process

S = (if x == 0 then S1 else S2)

a b S1

a S1

b S2

c S3

a S1

b S2

c

c

Parallel

a b
S1

S2

x == 0 Y

N

Figure 6. Structural diagram: (a) sequential structure; (b) selective structure; (c) parallel structure;
(d) iterative structure; (e) conditional control structure.

6.1.2. Selective Structure

The selective structure presents the options of process branches, typically used to
perform multiple similar behaviors that will trigger different subsequent actions. For
example, malware may choose to collect the geographic location of a device through GPS
or a network. The process

S = (a→S1|b→S2|c→S3)

corresponds to the diagram shown in Figure 6b, which indicates that the property can
choose a, b, or c as the initial behavior, and then continue to execute the respective subse-
quent processes S1, S2, or S3.

6.1.3. Parallel Structure

The parallel structure expresses the concurrency between processes, usually empha-
sizing that the two branches can run simultaneously with some interactive behaviors. For
example, malware can start two different malicious activities when informed of system
boot. The process

S = (a→c→S1||b→c→S2)

corresponds to the diagram shown in Figure 6c, which indicates that when involving the
behavior c, the two branch processes will be executed synchronously, but alternately for
the remaining time.

6.1.4. Iterative Structure

The iterative structure expresses the repeated execution of behavior sequence, typically
used to show the persistence of malicious behavior. For example, useless SMS could be
repeatedly sent in the background to consume user tariffs. The process

S = (a→b→S)

corresponds to the diagram shown in Figure 6d, which indicates that the property is
composed of two behaviors: a should be executed followed by b, and this procedure
is repeated.

6.1.5. Conditional Control Structure

The conditional control structure describes the relationship between judgment condi-
tions and subsequent processes, usually emphasizing the control of conditions on process

Electronics 2022, 11, 1798 16 of 27

behavior. For example, malware will start some illegal activities once the screen-off duration
is detected for a long enough duration. The process

S = (if x == 0 then S1 else S2)

corresponds to the diagram shown in Figure 6e, which indicates that the property is closely
related to whether the variable x is equal to 0, and S1 is executed when the condition is
satisfied, whereas S2 is executed when it is not.

6.2. Algorithm for Extracting Family Properties

In previous research, a property specific to each family was usually determined by
analysts through observation of malicious samples; this process requires considerable
human involvement. To improve the efficiency, an automated algorithm for extracting
family properties is proposed for DroidFDR. The sensitive API list and sensitive string
information are believed to be the most important components in the extraction of family
properties. First, the algorithm needs to define a list of sensitive APIs closely related to ma-
licious behaviors in advance for all malware families, and then determine a family-specific
list of sensitive strings based on the actual situation of each family. The corresponding
sensitive events can be given by combining the information from two aspects, thereafter
determining the processes constituted by these events in the samples, and perfecting the
possible arrangement of sensitive events through a series of rules. Algorithm 1 shows the
pseudocode of our property extraction algorithm.

For a specific malware family, the algorithm first simplifies the CSP process of test
samples belonging to the family through the function Simplify, in a way that retains the
family-related sensitive events and removes other events unrelated to malicious behavior.
The loop statement indicates that the process abstracting the family property can be affected
by all the inputted sample processes. These contain, as comprehensively as possible,
structures comprising sensitive events that the family may present through the conditional
judgment statements.

7. Model Checking in FDR

DroidFDR utilizes a model checker, namely the failures-divergence refinement (FDR),
to conduct a formal analysis of whether an Android application belongs to a malware
family. FDR is a refinement detection tool, applied to formal models built in CSP. FDR2
is a new version of the tool, with an improved flexibility and scalability over previous
versions. Although model checking can automatically verify with a limited state space,
FDR2 employs some state-space compression algorithms, thus significantly reducing the
size of the state space to be explored during the detection, and effectively alleviating the
problem of state-space explosion.

Algorithm 1 Extracting the property of a malware family f

Input:
Sampf1, Sampf2, . . . Sampfn ——The processes that express the behavior of test samples in the malware family f
SEf ——The sensitive event set of malware family f
Output:
Specf ——The process that abstracts the property of malware family f

Procedure Family_PropertyExtraction
begin
P1←Simplify(Sampf1, SEf)
Specf := P1
for(i = 1, i < n+1, i ++) do
begin
Pi←Simplify(Sampfi, SEf)
if(traces(Specf) ⊆ traces(Pi)) Specf := Pi
else if(traces(Pi) ⊆ traces(Specf)) continue
else Specf := Specf|Pi
end
end

Electronics 2022, 11, 1798 17 of 27

The theory of CSP is classically based on mathematical models unrelated to the lan-
guage itself. These models are based on observable behaviors of processes, rather than at-
tempting to capture a full operational picture of how the process progresses. FDR provides
three alternative models: traces model, stable failures model, and failures/divergences
model. Depending on these semantic models, equivalence relations can be defined for sys-
tems described in CSP in several ways, which can be used for proving different properties.
In the context of Android malware detection, we only focus on security, i.e., whether the
sample process has the property of any malware family. To meet this demand, the traces
model is sufficient. In the traces model, a process is represented by a set of finite sequences
of communications it can perform. The set of (finite) traces of process P is given by traces(P).
A process Q is a trace equivalence of another, P, if traces(Q) = traces(P).

The heart of the FDR is refinement, which is a relationship that reflects that a process
has at least some specific behaviors that can be satisfied by another process. Two processes
are necessary in each FDR test, called P and Q here. In the traces model, Q is a traces
refinement of P, which is written as P ⊆T Q, if traces(Q) ⊆ traces(P).

Specific to the detection of Android malware, P represents the abstracted property
of each family, whereas Q represents the modeled code behavior of a sample. In one test,
only a sample process and a property process can participate simultaneously. Under the
premise that the sample process only retains the events contained in the property process, it
is determined whether the former is a traces refinement of the latter. If FDR judges that the
test passes, it means that the sample has the property of the family, so it can be classified
into the family. Otherwise, it means that the sample does not belong to the family, and the
sample process is continued to be tested against other property processes. A sample should
be classified as a benign application if its process cannot become a traces refinement of any
property process.

8. Experimental Analysis
8.1. Dataset

The malware used in our experiment was obtained from

• Drebin dataset [3], covering multiple international Android app markets, websites,
malware forums, and security blogs, which contains all malware from the Android
Malware Genome Project [49],

• AndroZoo (note: https://androzoo.uni.lu/, accessed on 14 May 2022), a growing
collection of Android Applications collected from several sources, whose malware has
been analyzed by tens of different AntiVirus products, and

• VirusShare (note: https://virusshare.com/, accessed on 15 May 2022), a continuously
updated malware database for share.

The malware in the dataset has a clear family label, making it possible to evaluate the
effectiveness of Android malware detection and family classification methods.

The benign applications used in our experiment come from the top apps in various
categories of the Huawei app market, downloaded during the August–December period
of 2019. To exclude potentially bad applications, they were inspected using VirusTotal
(note: https://www.virustotal.com/, accessed on 11 March 2021). VirusTotal is a website
that provides an analysis service for suspicious files for free, with more than 70 anti-virus
scanning engines involved in the detection of uploaded files. In the case of no timeout, an
application is considered benign only when all engines show no warnings.

8.2. Experimental Results

To better reflect the detection effect of DroidFDR, we compared it with the same
type of formal detection method for Android. The comparison subject was the research
tool LEILA [41], proposed by Canfora et al. in 2019. LEILA uses a formal method simi-
lar to DroidFDR in that it employs model checking to perform the family classification
of Android applications. The difference is that the process algebra in LEILA for code
modeling is Milner’s calculus of communicating systems (CCS) [45], the properties of the

https://androzoo.uni.lu/
https://virusshare.com/
https://www.virustotal.com/

Electronics 2022, 11, 1798 18 of 27

malware families are expressed by temporal logic formulae, and CAAL [50] is used as the
verification environment.

Table 2 gives a comparison between LEILA and DroidFDR, including the classification
results of malicious samples against four families, and the experimental evaluation here is
largely influenced by that of LEILA. When characterizing the property of each family, LEILA
randomly selects five samples for manual inspection, whereas DroidFDR automatically
extracts the property process from five samples. Each time a model checking is performed
against a family,

• Fifty samples of the family that are not involved in the property extraction process,
• Three-hundred malicious samples belonging to other families, and
• Fifty benign applications

are randomly chosen to be verified.

Table 2. Comparison of family classification results between LEILA and DroidFDR.

Malware
Family

Precision (%) Recall (%) F1 Score (%) Accuracy (%) AUC

LEILA DroidFDR L D L D L D L D

Opfake 92.00 94.12 92.00 96.00 92.00 95.05 98.00 98.75 0.9543 0.9757
GingerMaster 95.92 95.92 94.00 94.00 94.95 94.95 98.75 98.75 0.9671 0.9671
FakeInstaller 84.21 96.15 96.00 100.00 89.72 98.04 97.25 99.50 0.9671 0.9971

Plankton 100.00 96.08 100.00 98.00 100.00 97.03 100.00 99.25 1.00 0.9871
Average 93.03 95.57 95.50 97.00 94.12 96.27 98.50 99.06 0.9721 0.9818

The performance measures for the classification were the precision, recall, F1 score,
accuracy, and AUC [51]. The precision, recall, and accuracy represent the proportions
of correct predictions in all samples classified as positive, in all positive samples, and
in all samples, respectively. Since the precision and recall are a pair of contradictory
metrics, the F1 score is a measure of the comprehensive performance because it is the
harmonic average of the precision and recall. In addition, AUC is a good indicator of
classification performance.

The family classification results show that, although the two methods have respec-
tive advantages in different indicators of different families, the detection performance of
DroidFDR is slightly better than that of LEILA on average. Considering that formal meth-
ods generally have a high detection accuracy, this is sufficient to confirm that DroidFDR has
advantages over similar type of methods. Notably, under the same number of test samples
in each family, the classification effect of different families is relatively close in DroidFDR,
whereas the detection results of LEILA have a certain degree of fluctuation. In particular,
the precision of the FakeInstaller family is low, probably because of the uncontrollable
influence of manual property extraction, resulting in misclassifications of many samples
that do not belong to the family.

Because of the small number of families considered in the experiment with LEILA,
we selected additional families with more than 50 samples from the Android Malware
Genome project and 300 benign applications for another experiment, the proportion and
results of which are listed in Tables 3 and 4. A 10-fold cross-validation [51] was used for
the evaluation. On the premise that the data are evenly distributed, the malicious and
benign applications were divided into 10 subsets each. In each round of the experiment,
a malicious subset that had not been selected was chosen, the samples of which were
inputted to the family property extraction algorithm, and the remaining subsets were kept
for testing. Evidently, DroidFDR exhibits a good detection performance.

Electronics 2022, 11, 1798 19 of 27

Table 3. The proportion of malicious and benign samples in each experiment.

Malware
Family # Family Sample # Other Malware # Benign Applications Total

Number

AnserverBot 187 706 300 1193
BaseBridge 122 771 300 1193

DroidKungFu3 309 584 300 1193
DroidKungFu4 96 797 300 1193

Geinimi 69 824 300 1193
KMin 52 841 300 1193
Pjapps 58 835 300 1193
Adrd 91 802 300 1193

DroidDream 81 812 300 1193
FakeDoc 132 761 300 1193
Dowgin 100 793 300 1193
Wooboo 100 793 300 1193

Table 4. Classification results of large families with DroidFDR.

Malware
Family

Sample
Number

Precision
(%)

Recall
(%)

F1 Score
(%)

Accuracy
(%) AUC

AnserverBot 187 97.30 96.26 96.77 98.91 0.9783
BaseBridge 122 95.87 95.08 95.47 99.08 0.9731

DroidKungFu3 309 97.72 97.09 97.40 98.66 0.9815
DroidKungFu4 96 96.81 94.79 95.79 99.33 0.9726

Geinimi 69 95.65 95.65 95.65 99.50 0.9769
KMin 52 94.32 96.15 95.24 99.58 0.9795
Pjapps 58 91.52 93.10 92.31 99.25 0.9633
Adrd 91 96.74 97.80 97.27 99.58 0.9876

DroidDream 81 95.18 97.53 96.34 99.50 0.9859
FakeDoc 132 99.23 98.48 98.85 99.66 0.9882
Dowgin 100 97.06 99.00 98.02 99.66 0.9936
Wooboo 100 96.04 97.00 96.52 99.41 0.9832

The effectiveness of the FDR tool for the formal detection of Android malware de-
pends on the appropriate description of the code and the behavioral consistency within
the malware family. From a theoretical basis, DroidFDR has the following advantages
over LEILA:

• LEILA directly models Java bytecode, whereas DroidFDR converts APK files into an
intermediate representation, i.e., Jimple, with fewer types of statements and simpler
forms, which is conducive to fast and accurate formal modeling.

• LEILA focuses on capturing sensitive API calls when defining family properties,
whereas DroidFDR also considers sensitive string information and sensitive data flow
to make the expression of the properties more comprehensive, thus yielding a better
detection performance.

• The temporal logic formulae for the property are defined by manually inspecting a
few samples from each family in LEILA, whereas DroidFDR includes an automatic
property extraction algorithm, which significantly improves the efficiency and avoids
the possibility of human error.

Most current studies in the field of Android malware detection have applied machine
learning technology to statistical pattern analyses. In comparison, the structural pattern
analysis with the help of formal languages has a relatively higher detection performance
while ensuring the accuracy of code modeling and family property abstraction; moreover,
it can capture the behavioral structure of applications with interpretability, which is not
possible for machine learning methods. The former requires a large, comprehensive, and
accurate extraction of the features from the code, which is difficult to research, because it
largely determines the learning effect. The latter only requires formulating modeling rules
for the code, making it easy to fully express the behavior; however, there is the problem of
a longer detection time. In short, formal detection methods, such as DroidFDR, have a very
broad application prospect in specific scenarios with less time limit.

Electronics 2022, 11, 1798 20 of 27

8.3. Performance Analysis

An experiment was performed on a laptop equipped with a 6-core 1.10 GHz Intel
Core i7-10710U CPU and 16 GB of memory. Based on the system design of DroidFDR
mentioned in Section 4, the runtime overhead was mainly divided into four parts: code
conversion, formal modeling, property abstraction, and model checking. First, the APK file
of the Android application should be converted into Java class files and Jimple intermediate
representation in turn using tools dex2jar and Soot. Subsequently, each Jimple statement is
modeled as a CSP process under the rules formulated in advance, and all the statements
in the program are integrated into a system process. The family-specific sensitive event
set and sample processes are inputted to the property extraction algorithm to obtain the
abstract process of the family property. Notably, this step need not be repeated more
than once for a family. Finally, for any Android application, verifying its corresponding
process against a property process via model checking by the FDR can determine whether
it belongs to the family. Table 5 lists the average time spent in each phase of the comparison
experiment, where the second and third columns represent the processing time of a sample,
the fourth column represents the time required to extract a property from five samples, and
the last column represents the time required for model checking.

Table 5. Classification results of large families with DroidFDR.

Phase Code
Conversion

Formal
Modeling

Property
Abstraction Model Checking

Time (s) 10.94 5.97 1505.32 268.23

Like other formal methods, the analysis process of DroidFDR is time-consuming,
particularly for property abstraction and model checking. However, DroidFDR is intended
for the anti-malware analysis of applications to be released to the market. In a commercial
application environment, DroidFDR can be used as an analysis module for malware
behavior in the security center. If equipped with a high-performance server, DroidFDR can
be made more efficient, and the required time can be limited to an acceptable range.

8.4. Analysis of Typical Malicious Behaviors

By applying the property extraction algorithm to the malicious samples in our dataset,
we can obtain the formal expression of each family property to better understand the
behavior patterns when performing malicious activities. Some behavior patterns are very
common in malware family properties. Although there are various implementations to
achieve an objective, samples from the same family will be encoded in the same way,
suggesting the same formal expression. Based on the experimental results, we briefly
elaborate on the patterns of several typical malicious behaviors to provide a reference for
further research on the security of Android applications.

8.4.1. Root Privilege Escalation

Rooting is a basic operation that several malware carry out before performing actual
malicious activities, because it can escalate the privileges of Android applications. However,
the Android system does not officially provide a legal implementation of this function, so
the purpose of improper privilege escalation can be achieved only by exploiting various root
vulnerabilities. The “Rageagainstthecage” vulnerability is very common, and DroidDream
is one of the malware families that exploit it. Figure 7 shows the code related to root
privilege escalation in the sample of DroidDream, indicating how the family implements
this operation.

Electronics 2022, 11, 1798 21 of 27

Electronics 2022, 11, x FOR PEER REVIEW 21 of 27

very common in malware family properties. Although there are various implementations
to achieve an objective, samples from the same family will be encoded in the same way,
suggesting the same formal expression. Based on the experimental results, we briefly elab-
orate on the patterns of several typical malicious behaviors to provide a reference for fur-
ther research on the security of Android applications.

8.4.1. Root Privilege Escalation
Rooting is a basic operation that several malware carry out before performing actual

malicious activities, because it can escalate the privileges of Android applications. How-
ever, the Android system does not officially provide a legal implementation of this func-
tion, so the purpose of improper privilege escalation can be achieved only by exploiting
various root vulnerabilities. The “Rageagainstthecage” vulnerability is very common, and
DroidDream is one of the malware families that exploit it. Figure 7 shows the code related
to root privilege escalation in the sample of DroidDream, indicating how the family im-
plements this operation.

Figure 7. Implementation code for root privilege escalation in the sample of DroidDream.

There are three key steps in the code.
Determine whether the file “rageagainstthecage” exists, which is a vulnerability that
needs to be exploited to obtain root privileges.
If the file exists, the Exec.createSubprocess method is used to run a shell terminal com-
mand. System files are placed in the/system directory, and system files related to root
privileges are placed in/system/bin/sh.
“chmod” is the prefix of the command for modifying file access permissions, and “chmod
777 directory” can make the file permissions under the path become readable, writable,
and executable.

Based on the above description, the part of the property related to root privilege es-
calation in DroidDream can be expressed as a behavior model comprising sensitive events
in the form of a conditional judgment:

java_io_File_init(File, String)!“rageagainstthecage”→android_os_Exec_createSub-
process(String, String, String, int[])!“/system/bin/sh”→channel?str→if member(str,

“chmod 777”) then java_io_FileOutputStream_write(int)!str

where str refers to the parameter of the write method, and channel?str indicates its source.
The value set of str should contain “chmod 777” after AssignStmt, so the member(str,
“chmod 777”) provided by FDR is required to test whether it is satisfied. Notably, the
channel here does not exist in the actual code modeling, so it should be hidden from the
property process during model checking.

8.4.2. Access to Sensitive Information
A privacy theft is a very common malicious activity, because malware authors can

collect device information and user privacy to conduct underground criminal transactions
for illegal reasons. Malware families are usually interested in the following three types of
sensitive information: information related to device and SIM card, such as International
Mobile Equipment Identity (IMEI), International Mobile Subscriber Identity (IMSI), and

Figure 7. Implementation code for root privilege escalation in the sample of DroidDream.

There are three key steps in the code.
Determine whether the file “rageagainstthecage” exists, which is a vulnerability that

needs to be exploited to obtain root privileges.
If the file exists, the Exec.createSubprocess method is used to run a shell terminal

command. System files are placed in the/system directory, and system files related to root
privileges are placed in/system/bin/sh.

“chmod” is the prefix of the command for modifying file access permissions, and
“chmod 777 directory” can make the file permissions under the path become readable,
writable, and executable.

Based on the above description, the part of the property related to root privilege
escalation in DroidDream can be expressed as a behavior model comprising sensitive
events in the form of a conditional judgment:

java_io_File_init(File, String)!“rageagainstthecage”→android_os_Exec_createSubprocess
(String, String, String, int[])!“/system/bin/sh”→channel?str→if member(str, “chmod 777”)

then java_io_FileOutputStream_write(int)!str

where str refers to the parameter of the write method, and channel?str indicates its source.
The value set of str should contain “chmod 777” after AssignStmt, so the member(str,
“chmod 777”) provided by FDR is required to test whether it is satisfied. Notably, the
channel here does not exist in the actual code modeling, so it should be hidden from the
property process during model checking.

8.4.2. Access to Sensitive Information

A privacy theft is a very common malicious activity, because malware authors can
collect device information and user privacy to conduct underground criminal transactions
for illegal reasons. Malware families are usually interested in the following three types of
sensitive information: information related to device and SIM card, such as International
Mobile Equipment Identity (IMEI), International Mobile Subscriber Identity (IMSI), and
Integrate Circuit Card Identification (ICCID) information; the geographic location of the
user; and the call records and the content of text messages. The code related to obtaining the
information in incoming SMS in the sample of GoldDream is shown in Figure 8, indicating
the sensitive content secretly recorded by the family when receiving a new text message.

There are three key steps in the code.
The system event android.provider.Telephony.SMS_RECEIVED is monitored, and

the corresponding broadcast will be triggered when the Android device receives a new
text message.

Since the SMS received by Android devices is in the PDU format, it is necessary to
extract some sensitive information such as the sender’s number, body of the message, and
reception time.

Electronics 2022, 11, 1798 22 of 27

Electronics 2022, 11, x FOR PEER REVIEW 22 of 27

Integrate Circuit Card Identification (ICCID) information; the geographic location of the
user; and the call records and the content of text messages. The code related to obtaining
the information in incoming SMS in the sample of GoldDream is shown in Figure 8, indi-
cating the sensitive content secretly recorded by the family when receiving a new text
message.

(a)

(b)

Figure 8. Implementation code for obtaining sensitive information contained in incoming SMS in
the GoldDream sample: (a) handling of incoming SMS; (b) writing to a file in the WriteRec method.

There are three key steps in the code.
The system event android.provider.Telephony.SMS_RECEIVED is monitored, and the
corresponding broadcast will be triggered when the Android device receives a new text
message.
Since the SMS received by Android devices is in the PDU format, it is necessary to extract
some sensitive information such as the sender’s number, body of the message, and recep-
tion time.
Arrange the format of the record for the extracted information and write to zjsms.txt.

Based on the above description, the part of the property related to accessing sensitive
information in the incoming SMS in GoldDream can be expressed in the form of a behav-
ior model:

android_content_Intent_getAction().begin→java_lang_String_equals(String)!“an-
droid.provider.telephony.SMS_RECEIVED”→android_telephony_SmsMes-
sage_getOriginatingAddress()?x1→android_telephony_SmsMessage_getDis-
playMessageBody()?x2→android_telephony_SmsMessage_getTimestampMil-

lis()?x3→android_content_Context_openFileOutput(String, FileCrea-
tionMode)!“zjsms.txt”→channel?str→if member(str, x1) then if member(str, x2) then

if member(str, x3) then java_io_FileOutputStream_write(int)!str

where x1, x2, and x3 are the variables returned by the three functions, and it is necessary to
determine whether the third argument of the WriteRec method contains the values of the
three variables. The flow of sensitive data can be well captured from our abstracted formal
representation of the properties.

Figure 8. Implementation code for obtaining sensitive information contained in incoming SMS in the
GoldDream sample: (a) handling of incoming SMS; (b) writing to a file in the WriteRec method.

Arrange the format of the record for the extracted information and write to zjsms.txt.
Based on the above description, the part of the property related to accessing sensi-

tive information in the incoming SMS in GoldDream can be expressed in the form of a
behavior model:

android_content_Intent_getAction().begin→java_lang_String_equals(String)!“android.

provider.telephony.SMS_RECEIVED”→android_telephony_SmsMessage_getOriginatingAddress()?x1→
android_telephony_SmsMessage_getDisplayMessageBody()?x2→android_telephony_

SmsMessage_getTimestampMillis()?x3→android_content_Context_openFileOutput

(String, FileCreationMode)!“zjsms.txt”→channel?str→if member(str, x1)

then if member(str, x2) then if member(str, x3) then java_io_FileOutputStream_write(int)!str

where x1, x2, and x3 are the variables returned by the three functions, and it is necessary to
determine whether the third argument of the WriteRec method contains the values of the
three variables. The flow of sensitive data can be well captured from our abstracted formal
representation of the properties.

8.4.3. In-App Package Installation

A malware can achieve its intended objectives, such as system destruction, by attract-
ing users to download junk software through placing advertisements within applications,
taking the opportunity to download other packages under the disguise of version updates,
or silently installing other software in the background without the user’s knowledge. As
shown in Figure 9, RogueSPPush publishes some attractive slogans on the app interface
to entice users to download junk software, and then the application will automatically
download and install the corresponding package (see Figure 10).

Electronics 2022, 11, 1798 23 of 27

Electronics 2022, 11, x FOR PEER REVIEW 23 of 27

8.4.3. In-App Package Installation
A malware can achieve its intended objectives, such as system destruction, by attract-

ing users to download junk software through placing advertisements within applications,
taking the opportunity to download other packages under the disguise of version up-
dates, or silently installing other software in the background without the user’s
knowledge. As shown in Figure 9, RogueSPPush publishes some attractive slogans on the
app interface to entice users to download junk software, and then the application will
automatically download and install the corresponding package (see Figure 10).

(a)

(b)

Figure 9. Implementation code for luring users to install junk software in the RogueSPPush sample:
(a) placing ads for junk software to attract users; (b) downloading the corresponding package.

(a)

(b)

Figure 9. Implementation code for luring users to install junk software in the RogueSPPush sample:
(a) placing ads for junk software to attract users; (b) downloading the corresponding package.

Electronics 2022, 11, x FOR PEER REVIEW 23 of 27

8.4.3. In-App Package Installation
A malware can achieve its intended objectives, such as system destruction, by attract-

ing users to download junk software through placing advertisements within applications,
taking the opportunity to download other packages under the disguise of version up-
dates, or silently installing other software in the background without the user’s
knowledge. As shown in Figure 9, RogueSPPush publishes some attractive slogans on the
app interface to entice users to download junk software, and then the application will
automatically download and install the corresponding package (see Figure 10).

(a)

(b)

Figure 9. Implementation code for luring users to install junk software in the RogueSPPush sample:
(a) placing ads for junk software to attract users; (b) downloading the corresponding package.

(a)

(b)

Electronics 2022, 11, x FOR PEER REVIEW 24 of 27

(c)

Figure 10. Implementation code for software download and installation: (a) opening internet con-
nection in the doDownloadTheFile method; (b) tracking download progress in the doDown-
loadTheFile method; (c) installing a package in the openFile method.

As shown in Figure 9b, the linkSite method is responsible for the download and in-
stallation processes. Through a series of calls, the doDownloadTheFile method finally im-
plements two operations, namely opening the network connection (see Figure 10a) and
tracking the download progress (see Figure 10b), with the openFile method called to install
the package (see Figure 10c).

Based on the above description, the part of the property related to installing junk
software in RogueSPPush can be expressed in the form of a behavior model:

com_talkweb_comm_ExctingProductBean_setContent(String)!“The most complete,
most accurate, and most professional love book! Click to download!”→com_talk-
web_comm_ExctingProductBean_setProductName(String)!“Love is coming”→

com_talkweb_comm_ExctingProductBean_setLink-
Path(String)!“http://www.go108.com.cn/mobile/Client/apk/lic.apk”→

java_net_URL_openConnection().begin→android_os_Environment_getExternal-
StorageDirectory()?x→channel?str→if member(str, x) then if member(str,
“/go108/apk”) then java_io_File_init(String)!str→java_io_File_createNew-

File().begin→java_io_FileOutputStream_init(File).begin→android_content_In-
tent_SetAction(String)!“android.intent.action.VIEW”→android_content_Intent_Set-

DataAndType (Uri, String)!“application/vnd.android.package-archive”→an-
droid_app_Activity_StartActivity(Intent).begin

9. Conclusions
In the field of Android malware detection, if statistical analysis methods based on

machine learning focus on capturing malicious features of different malware families,
more attention can be paid to the complete malicious behavior process of families in the
detection using formal methods. This paper proposes a formal detection method for An-
droid malware based on CSP, called DroidFDR, which involves the following steps: code
conversion, formal modeling, property abstraction, and model detection. First, the APK
file of a sample is converted to an intermediate representation, Jimple, which is easy to
analyze, in order to model the code behavior formally with CSP. Subsequently, the CSP
process that expresses the property of each family is automatically abstracted from the
corresponding samples, which is then used as input to the FDR tool for model checking
with the simplified process of the sample behavior. Finally, the sample is classified by
identifying whether the sample matches the property of any malware family. The experi-
mental results show that DroidFDR could characterize the behavior mode of Android ap-
plications from their structure, with a good classification performance.

Author Contributions: Conceptualization, Z.Y. and F.C.; methodology, Z.Y. and F.C.; software, Z.Y.
and F.C.; validation, X.C. and S.J.; formal analysis, Z.Y.; investigation, L.S.; resources, X.D.; data
curation, X.D.; writing—original draft preparation, Z.Y. and F.C.; writing—review and editing, Z.Y.
and F.C.; visualization, X.C.; supervision, L.S.; project administration, X.D.; funding acquisition,
X.D. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant Nos. 62176265, 61672494 and 61972040.

Figure 10. Implementation code for software download and installation: (a) opening internet connec-
tion in the doDownloadTheFile method; (b) tracking download progress in the doDownloadTheFile
method; (c) installing a package in the openFile method.

Electronics 2022, 11, 1798 24 of 27

As shown in Figure 9b, the linkSite method is responsible for the download and
installation processes. Through a series of calls, the doDownloadTheFile method finally
implements two operations, namely opening the network connection (see Figure 10a) and
tracking the download progress (see Figure 10b), with the openFile method called to install
the package (see Figure 10c).

Based on the above description, the part of the property related to installing junk
software in RogueSPPush can be expressed in the form of a behavior model:

com_talkweb_comm_ExctingProductBean_setContent(String)!“The most complete,
most accurate, and most professional love book! Click to download!”→com_

talkweb_comm_ExctingProductBean_setProductName(String)!“Love is coming”→
com_talkweb_comm_ExctingProductBean_setLinkPath(String)!

“http://www.go108.com.cn/mobile/Client/apk/lic.apk”→java_net_URL_
openConnection().begin→android_os_Environment_

getExternalStorageDirectory()?x→channel?str→if member(str, x)
then if member(str, “/go108/apk”) then java_io_File_

init(String)!str→java_io_File_createNewFile().begin→java_
io_FileOutputStream_init(File).begin→android_content_

Intent_SetAction(String)!“android.intent.action.VIEW”→android_content_
Intent_SetDataAndType (Uri, String)!“application/vnd.android.package-archive”→

android_app_Activity_StartActivity(Intent).begin

9. Conclusions

In the field of Android malware detection, if statistical analysis methods based on
machine learning focus on capturing malicious features of different malware families,
more attention can be paid to the complete malicious behavior process of families in the
detection using formal methods. This paper proposes a formal detection method for
Android malware based on CSP, called DroidFDR, which involves the following steps: code
conversion, formal modeling, property abstraction, and model detection. First, the APK file
of a sample is converted to an intermediate representation, Jimple, which is easy to analyze,
in order to model the code behavior formally with CSP. Subsequently, the CSP process that
expresses the property of each family is automatically abstracted from the corresponding
samples, which is then used as input to the FDR tool for model checking with the simplified
process of the sample behavior. Finally, the sample is classified by identifying whether
the sample matches the property of any malware family. The experimental results show
that DroidFDR could characterize the behavior mode of Android applications from their
structure, with a good classification performance.

Author Contributions: Conceptualization, Z.Y. and F.C.; methodology, Z.Y. and F.C.; software, Z.Y.
and F.C.; validation, X.C. and S.J.; formal analysis, Z.Y.; investigation, L.S.; resources, X.D.; data
curation, X.D.; writing—original draft preparation, Z.Y. and F.C.; writing—review and editing, Z.Y.
and F.C.; visualization, X.C.; supervision, L.S.; project administration, X.D.; funding acquisition, X.D.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China under
Grant Nos. 62176265, 61672494 and 61972040.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

Electronics 2022, 11, 1798 25 of 27

References
1. Xu, J.; Yuan, Q. LibRoad: Rapid, online, and accurate detection of TPLs on Android. IEEE Trans. Mob. Comput. 2022, 21, 167–180.

[CrossRef]
2. Senanayake, J.; Kalutarage, H.; Al-Kadri, M. Android mobile malware detection using machine learning: A systematic review.

Electronics 2021, 10, 1606. [CrossRef]
3. Arp, D.; Spreitzenbarth, M.; Hübner, M.; Gascon, H.; Rieck, K. Drebin: Effective and explainable detection of android malware in

your pocket. In Proceedings of the 21st Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA,
USA, 23–26 February 2014.

4. Avdiienko, V.; Kuznetsov, K.; Gorla, A.; Zeller, A.; Arzt, S.; Rasthofer, S.; Bodden, E. Mining apps for abnormal usage of sensitive
data. In Proceedings of the 37th IEEE/ACM International Conference on Software Engineering (ICSE), IEEE, Florence, Italy,
16–24 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 426–436.

5. Xu, K.; Li, Y.; Deng, R.H. ICCDetector: ICC-based malware detection on android. IEEE Trans. Inf. Foren. Sec. 2016, 11, 1252–1264.
[CrossRef]

6. Fan, M.; Liu, J.; Luo, X.; Chen, K.; Tian, Z.; Zheng, Q.; Liu, T. Android malware familial classification and representative sample
selection via frequent subgraph analysis. IEEE Trans. Inf. Foren. Sec. 2018, 13, 1890–1905. [CrossRef]

7. Han, Q.; Subrahmanian, V.; Xiong, Y. Android malware detection via (somewhat) robust irreversible feature transformations.
IEEE Trans. Inf. Foren. Sec. 2020, 15, 3511–3525. [CrossRef]

8. Huang, Y.; Li, X.; Qiao, M.; Tang, K.; Zhang, C.; Gui, H.; Wang, P.; Liu, F. Android-SEM: Generative adversarial network for
Android malware semantic enhancement model based on transfer learning. Electronics 2022, 11, 672. [CrossRef]

9. Qiu, J.; Zhang, J.; Luo, W.; Pan, L.; Nepal, S.; Xiang, Y. A survey of Android malware detection with deep neural models. ACM
Comput. Surv. 2021, 53, 1–36. [CrossRef]

10. Dahl, G.E.; Stokes, J.W.; Deng, L.; Yu, D. Large-scale malware classification using random projections and neural networks. In
Proceedings of the 38th IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Vancouver, BC,
Canada, 26–30 May 2013; pp. 3422–3426.

11. Huang, W.; Stokes, J.W. MtNet: A multi-task neural network for dynamic malware classification. In Proceedings of the 13th
International Conference on Detection of Intrusions and Malware, and Vulnerability Assessment (DIMVA), San Sebastián, Spain,
7–8 July 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 399–418.

12. Tobiyama, S.; Yamaguchi, Y.; Shimada, H.; Ikuse, T.; Yagi, T. Malware detection with deep neural network using process behavior.
In Proceedings of the IEEE 40th Annual Computer Software and Applications Conference (COMPSAC), IEEE, Atlanta, GA, USA,
10–14 June 2016; pp. 577–582.

13. Wu, B.; Chen, S.; Gao, C.; Fan, L.; Liu, Y.; Wen, W.; Lyu, M. Why an android app is classified as malware: Toward malware
classification interpretation. ACM Trans. Softw. Eng. Meth. 2021, 30, 1–29. [CrossRef]

14. Nix, R.; Zhang, J. Classification of android apps and malware using deep neural networks. In Proceedings of the International
Joint Conference on Neural Networks (IJCNN), IEEE, Anchorage, AK, USA, 14–19 May 2017; pp. 1871–1878.

15. McLaughlin, N.; Rincon, J.M.; Kang, B.; Yerima, S.; Miller, P.; Sezer, S.; Safaei, Y.; Trickel, E.; Zhao, Z.; Doupe, A.; et al.
Deep android malware detection. In Proceedings of the 7th ACM Conference on Data and Application Security and Privacy
(CODASPY), Scottsdale, AZ, USA, 22–24 March 2017; ACM: New York, NY, USA, 2017; pp. 301–308.

16. Karunanayake, N.; Rajasegaran, J.; Gunathillake, A.; Seneviratne, S.; Jourjon, G. A multi-modal neural embeddings approach for
detecting mobile counterfeit apps: A case study on Google Play store. IEEE Trans. Mob. Comput. 2022, 21, 16–30. [CrossRef]

17. Yuan, Z.; Lu, Y.; Wang, Z.; Xue, Y. Droid-Sec: Deep learning in android malware detection. In Proceedings of the ACM Conference
on SIGCOMM, Chicago, IL, USA, 17–22 August 2014; ACM: New York, NY, USA, 2014; pp. 371–372.

18. Yuan, Z.; Lu, Y.; Xue, Y. DroidDetector: Android malware characterization and detection using deep learning. Tsinghua Sci.
Technol. 2016, 21, 114–123. [CrossRef]

19. Xu, L.; Zhang, D.; Jayasena, N.; Cavazos, J. HADM: Hybrid analysis for detection of malware. In Proceedings of the 2nd SAI
Intelligent Systems Conference (IntelliSys), Amsterdam, The Netherlands, 2–3 September 2016; Springer: Berlin/Heidelberg,
Germany, 2016; pp. 702–724.

20. Amera, E.; El-Sappagh, S. Robust deep learning early alarm prediction model based on the behavioural smell for android malware.
Comput. Secur. 2022, 116, 102670. [CrossRef]

21. Xu, J.; Li, Y.; Deng, R.; Xu, K. SDAC: A slow-aging solution for Android malware detection using semantic distance based API
clustering. IEEE Trans. Dependable Secur. Comput. 2022, 19, 1149–1163. [CrossRef]

22. Huang, Y.; Lin, C.; Guo, Y.; Lo, K.; Sun, Y.; Chen, M. Open source intelligence for malicious behavior discovery and interpretation.
IEEE Trans. Dependable Secur. Comput. 2022, 19, 776–789. [CrossRef]

23. Enck, W.; Gilbert, P.; Chun, B.G.; Cox, L.P.; Jung, J.; McDaniel, P.; Sheth, A.N. TaintDroid: An information-flow tracking system
for realtime privacy monitoring on smartphones. ACM Trans. Comput. Syst. 2014, 32, 1–29. [CrossRef]

24. Arzt, S.; Rasthofer, S.; Fritz, C.; Bodden, E.; Bartel, A.; Klein, J.; Traon, Y.L.; Octeau, D.; McDaniel, P. FlowDroid: Precise context,
flow, field, object-sensitive and lifecycle-aware taint analysis for android apps. In Proceedings of the 35th ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI), Edinburgh, UK, 9–14 June 2014; ACM: New York,
NY, USA, 2014; pp. 259–269.

http://doi.org/10.1109/TMC.2020.3003336
http://doi.org/10.3390/electronics10131606
http://doi.org/10.1109/TIFS.2016.2523912
http://doi.org/10.1109/TIFS.2018.2806891
http://doi.org/10.1109/TIFS.2020.2975932
http://doi.org/10.3390/electronics11050672
http://doi.org/10.1145/3417978
http://doi.org/10.1145/3423096
http://doi.org/10.1109/TMC.2020.3007260
http://doi.org/10.1109/TST.2016.7399288
http://doi.org/10.1016/j.cose.2022.102670
http://doi.org/10.1109/TDSC.2020.3005088
http://doi.org/10.1109/TDSC.2021.3119008
http://doi.org/10.1145/2619091

Electronics 2022, 11, 1798 26 of 27

25. Wei, F.; Roy, S.; Ou, X. Amandroid: A precise and general inter-component data flow analysis framework for security vetting of
android apps. ACM Trans. Priv. Secur. 2018, 21, 1329–1341. [CrossRef]

26. Li, L.; Bartel, A.; Bissyande, T.F.; Klein, J.; Traon, Y.L.; Arzt, S.; Rasthofer, S.; Bodden, E.; Octeau, D.; McDaniel, P. IccTA: Detecting
inter-component privacy leaks in android apps. In Proceedings of the 37th IEEE/ACM International Conference on Software
Engineering (ICSE), IEEE, Florence, Italy, 16–24 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 280–291.

27. Bianchi, A.; Corbetta, J.; Invernizzi, L.; Fratantonio, Y.; Kruegel, C.; Vigna, G. What the app is that? Deception and countermeasures
in the android user interface. In Proceedings of the 36th IEEE Symposium on Security and Privacy (SP), IEEE, San Jose, CA, USA,
17–21 May 2015; pp. 931–948.

28. Zhao, Q.; Zuo, C.; Dolan-Gavitt, B.; Pellegrino, G.; Lin, Z. Automatic uncovering of hidden behaviors from input validation in
mobile apps. In Proceedings of the 41th IEEE Symposium on Security and Privacy (SP), IEEE, San Francisco, CA, USA, 18–20
May 2020; pp. 1106–1120.

29. Yang, Z.; Yuan, Z.; Jin, S.; Chen, X.; Sun, L.; Du, X.; Li, W.; Zhang, H. FSAFlow: Lightweight and fast dynamic path tracking and
control for privacy protection on Android using hybrid analysis with state-reduction strategy. In Proceedings of the 43rd IEEE
Symposium on Security and Privacy (SP), IEEE, San Francisco, CA, USA, 23–25 May 2022; pp. 721–736.

30. Zhang, J.; Tian, C.; Duan, Z. An efficient approach for taint analysis of Android applications. Comput. Secur. 2021, 104, 102161.
[CrossRef]

31. Palit, T.; Moon, J.; Monrose, F.; Polychronakis, M. DynPTA: Combining static and dynamic analysis for practical selective data
protection. In Proceedings of the 42rd IEEE Symposium on Security and Privacy (SP), IEEE, San Francisco, CA, USA, 24–27 May
2021; pp. 1919–1937.

32. Yang, W.; Xiao, X.; Andow, B.; Li, S.; Xie, T.; Enck, W. AppContext: Differentiating malicious and benign mobile app behaviors
using context. In Proceedings of the 37th IEEE/ACM International Conference on Software Engineering (ICSE), IEEE, Florence,
Italy, 16–24 May 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 303–313.

33. Rasthofer, S.; Arzt, S.; Bodden, E. A machine-learning approach for classifying and categorizing android sources and sinks. In
Proceedings of the 21st Annual Network and Distributed System Security Symposium (NDSS), San Diego, CA, USA, 23–26
February 2014.

34. Shen, F.; Vecchio, J.D.; Mohaisen, A.; Ko, S.Y.; Ziarek, L. Android malware detection using complex-flows. IEEE Trans. Mobile
Comput. 2019, 18, 1231–1245. [CrossRef]

35. Song, F.; Touili, T. Model-checking for android malware detection. In Proceedings of the 12th Asian Symposium on Programming
Languages and Systems (APLAS), Singapore, 17–19 November 2014; Springer: Berlin/Heidelberg, Germany, 2014; pp. 216–235.

36. Bai, G.; Ye, Q.; Wu, Y.; Botha, H.; Sun, J.; Liu, Y.; Dong, J.S.; Visser, W. Towards model checking android applications. IEEE Trans.
Software Eng. 2018, 44, 595–612. [CrossRef]

37. Mercaldo, F.; Nardone, V.; Santone, A.; Visaggio, C.A. Ransomware steals your phone. Formal methods rescue it. In Proceedings
of the 36th International Conference on Formal Techniques for Distributed Objects, Components, and Systems (FORTE), Crete,
Greece, 6–9 June 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 212–221.

38. Mercaldo, F.; Nardone, V.; Santone, A.; Visaggio, C.A. Download malware? No, thanks. How formal methods can block update
attacks. In Proceedings of the 4th FME Workshop on Formal Methods in Software Engineering (FormaliSE), Austin, TX, USA,
15 May 2016; ACM: New York, NY, USA, 2016; pp. 22–28.

39. Battista, P.; Mercaldo, F.; Nardone, V.; Santone, A. Identification of android malware families with model checking. In Proceedings
of the 2nd International Conference on Information Systems Security and Privacy (ICISSP), Rome, Italy, 19–21 February 2016;
pp. 542–547.

40. Martinelli, F.; Mercaldo, F.; Nardone, V.; Santone, A.; Vaglinid, G. Model checking and machine learning techniques for
HummingBad mobile malware detection and mitigation. Simul. Model. Pract. Theory 2020, 105, 102169. [CrossRef]

41. Canfora, G.; Martinelli, F.; Mercaldo, F.; Nardone, V.; Santone, A.; Visaggio, C.A. LEILA: Formal tool for identifying mobile
malicious behavior. IEEE Trans. Software Eng. 2019, 45, 1230–1252. [CrossRef]

42. Hoare, C.A.R. Communicating Sequential Processes; Prentice Hall: Upper Saddle River, NJ, USA, 1985.
43. Einarsso, A.; Nielsen, J.D. A Survivor’s Guide to Java Program Analysis with Soot; Version 1.1; BRICS, Department of Computer

Science, University of Aarhus: Aarhus, Denmark, 2008.
44. Gardiner, P.; Goldsmith, M.; Hulance, J.; Jackson, D.; Roscoe, B.; Scattergood, B.; Armstrong, P. Failures-Divergence Refinement:

FDR2 User Manual; FDR Version 2.82; Formal Systems (Europe) Ltd.: Oxford, UK, 2005.
45. Milner, R. Communication and Concurrency; Prentice Hall: Upper Saddle River, NJ, USA, 1989.
46. Barbuti, R.; Francesco, N.D.; Santone, A.; Vaglini, G. Selective mu-calculus and formula-based equivalence of transition systems.

J. Comput. Syst. Sci. 1999, 59, 537–556. [CrossRef]
47. Iadarola, G.; Martinelli, F.; Mercaldo, F.; Santone, A. Call graph and model checking for fine-grained Android malicious behaviour

detection. Appl. Sci. 2020, 10, 7975. [CrossRef]
48. Cimino, M.; Francesco, N.; Mercaldo, F.; Santone, A.; Vaglini, G. Model checking for malicious family detection and phylogenetic

analysis in mobile environment. Comput. Secur. 2020, 90, 101691. [CrossRef]
49. Zhou, Y.; Jiang, X. Dissecting android malware: Characterization and evolution. In Proceedings of the 33rd IEEE Symposium on

Security and Privacy (SP), IEEE, San Francisco, CA, USA, 24–25 May 2012; pp. 95–109.

http://doi.org/10.1145/3183575
http://doi.org/10.1016/j.cose.2020.102161
http://doi.org/10.1109/TMC.2018.2861405
http://doi.org/10.1109/TSE.2017.2697848
http://doi.org/10.1016/j.simpat.2020.102169
http://doi.org/10.1109/TSE.2018.2834344
http://doi.org/10.1006/jcss.1999.1660
http://doi.org/10.3390/app10227975
http://doi.org/10.1016/j.cose.2019.101691

Electronics 2022, 11, 1798 27 of 27

50. Andersen, J.R.; Andersen, N.; Enevoldsen, S.; Hansen, M.M.; Larsen, K.G.; Olesen, S.R.; Srba, J.; Wortmann, J.K. CAAL:
Concurrency workbench, Aalborg edition. In Proceedings of the 12th International Colloquium on Theoretical Aspects of
Computing (ICTAC), Cali, Colombia, 29–31 October 2015; ACM: New York, NY, USA, 2015; pp. 573–582.

51. Zhou, Z. Machine Learning; Tsinghua University Press: Beijing, China, 2016.

	Introduction
	Related Work
	Preliminaries
	CSP
	Soot
	Jimple

	System Design
	Code Conversion
	Formal Modeling
	Property Abstraction
	Model Checking

	Formal Modeling with CSP
	Core Statements
	NopStmt
	IdentityStmt
	AssignStmt

	Statements for Intraprocedural Control Flow
	IfStmt
	GotoStmt
	TableSwitchStmt
	LookupSwitchStmt

	Statements for Interprocedural Control Flow
	InvokeStmt
	ReturnStmt
	ReturnVoidStmt

	Other Statements
	ThrowStmt
	RetStmt
	MonitorStmt

	Modeling of Application

	Abstraction of Family Property
	Composition Structure of Behavior in Property
	Sequential Structure
	Selective Structure
	Parallel Structure
	Iterative Structure
	Conditional Control Structure

	Algorithm for Extracting Family Properties

	Model Checking in FDR
	Experimental Analysis
	Dataset
	Experimental Results
	Performance Analysis
	Analysis of Typical Malicious Behaviors
	Root Privilege Escalation
	Access to Sensitive Information
	In-App Package Installation

	Conclusions
	References

