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Abstract: In practical scenarios, when shooting conditions are limited, high efficiency of image 
shooting and success rate of 3D reconstruction are required. To achieve the application of bionic 
compound eyes in small portable devices for 3D reconstruction, auto-navigation, and obstacle 
avoidance, a deep learning method of 3D reconstruction using a bionic compound-eye system with 
partial-overlap fields was studied. We used the system to capture images of the target scene, then 
restored the camera parameter matrix by solving the PnP problem. Considering the unique charac-
teristics of the system, we designed a neural network based on the MVSNet network structure, 
named CES-MVSNet. We fed the captured image and camera parameters to the trained deep neural 
network, which can generate 3D reconstruction results with good integrity and precision. We used 
the traditional multi-view geometric method and neural networks for 3D reconstruction, and the 
difference between the effects of the two methods was analyzed. The efficiency and reliability of 
using the bionic compound-eye system for 3D reconstruction are proved. 
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1. Introduction 
Three-dimensional reconstruction methods reconstruct dense 3D models from mul-

tiple images, and their improvement is a fundamental problem in computer vision. These 
methods have been extensively studied in recent decades. The traditional method mainly 
comprises image feature extraction and matching, camera parameter estimation, triangu-
lation, and bundle adjustment [1]. Structure from motion (SfM) is a common method for 
3D reconstruction and is widely used in autonomous driving, mapping, military recon-
naissance, and other fields. 

SfM methods mainly include incremental, global, and hybrid methods [2]. Noah et al. 
developed Bundler [3], which is a typical incremental system. It reconstructs large scenes from 
a large internet image collection and exhibits good reconstruction accuracy and stability. 
Schonberger et al. proposed COLMAP [4] to improve the incremental method by introducing 
a geometric verification strategy and a best-view selection strategy to improve the robustness 
of the system initialization and triangulation process; however, it requires considerable com-
putational time to achieve a complete and accurate 3D model [5]. 

The global method was designed to improve the computational efficiency and reduce 
the accumulated drift error of the incremental method; however, it is less robust to image 
mismatch, and the errors are accumulated and difficult to correct, which leads to low re-
construction accuracy. The hybrid method combines the advantages of the incremental 
and global methods. Cui et al. proposed the HSfM system [6], which uses the global 
method when estimating the camera rotation matrix and the incremental method when 
estimating the camera position, and then performs triangulation and bundle adjustment 
to optimize the 3D model. Zhu et al. proposed a parallel SfM system [7] that can 
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reconstruct a city-scale scene containing millions of high-resolution images. The system 
decomposes a large SfM problem into smaller sub-problems by a camera clustering algo-
rithm and then performs a hybrid method to apply the relative camera poses into a global 
motion-averaging framework. 

Recent studies have adopted deep CNNs to infer the depth maps of all images from dif-
ferent viewpoints. Eigen et al. [8] first proposed a 3D convolution for reconstruction. The neu-
ral network fed by a single input image can directly generate a depth map. Yao et al. proposed 
MVSNet [9], which introduces differentiable homography transformation to construct a 3D 
cost volume. This network not only achieves good reconstruction results but also significantly 
improves the efficiency of the algorithm. Chen et al. proposed Point-MVSNet [10], which fuses 
the 3D geometry priors and 2D texture information into a coarse depth prediction and then 
refines the prediction by estimating the residual between the current iteration and that of the 
ground truth information. PVA-MVSNet [11] adaptively aggregates cost volumes by gated 
convolution, which can alleviate the occlusion problem by giving smaller weights to occluded 
views. R-MVSNet [12] and D2HC-RMVSNet [13] replace 3D CNNs with RNN in order to re-
duce memory consumption and achieve better results in larger-scale reconstruction. Cas-
MVSNet [14] and UCS-Net [15] adopt a coarse-to-fine strategy method and encoder-decoder 
architectures to recover delicate details. 

Whether applying the traditional or deep-learning method, the first step of recon-
struction is to obtain multiple images of the target scene. Previous studies usually adopt 
a camera array to obtain images. The advantage is that the camera parameters of the sys-
tem and the lighting condition can be precisely adjusted, but the whole system lacks flex-
ibility. It is inconvenient to switch between different shooting scenes and adjust the sys-
tem configuration. If using a monocular camera to shoot multiple times, the efficiency is 
low, and it is difficult to control the initial captured images and the final reconstruction 
result. In practical scenarios, when using an unmanned aerial vehicle or autonomous ve-
hicle for detection, the device needs to pass through the target area at a relatively fast 
speed due to the limitations of environmental conditions. The number of shots that can be 
taken during the detection is limited. Therefore, the high efficiency of shooting and the 
success rate and completeness of 3D reconstruction are required. The use of a multi-vision 
system to obtain images is convenient and reliable, which can be quickly adjusted for dif-
ferent scenarios while ensuring the success rate of reconstruction tasks. The insect com-
pound eye is a miniature multi-eye vision system with a multi-aperture and wide field of 
view. By applying fiber bundles to the design of a compound-eye system, the image trans-
mission and relay problems of a wide field of view multi-aperture compound-eye system 
are solved, enabling its applications to more scenarios. 

In this work, we study the principle and algorithm of 3D reconstruction using a com-
pound-eye vision system based on research on a bionic compound-eye vision system with 
nine sub-eyes developed by our research group. The main contributions of the paper are 
the following: 
• The nine-eye bionic compound-eye system with partial overlap of fields was pro-

posed to capture images of the target scene with fewer shots, and the image quality 
was improved. 

• CES-MVSNet for 3D reconstruction using the bionic compound-eye system was pro-
posed to improve the reconstruction results. 

• The efficiency and reliability of using the bionic compound-eye system for 3D recon-
struction were proved. 
The rest of the paper is organized as follows. As mentioned above, the characteristics 

of the nine-eye bionic compounded-eye system and the entire experimental system are 
described in Section 2. The proposed method is described in detail in Section 3. Experi-
mental results and discussion are demonstrated in Section 4. Finally, Section 5 presents 
the conclusions. 
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2. Nine-Eye Bionic Compound-Eye System 
The structure of the nine-eye bionic compound-eye system with partial overlap of 

fields used in this study is shown in Figure 1. The structure of this system is similar to the 
compound eye structure of insects and adopts a flexible multibranch image transmission 
cluster mode. The front end of the flexible optical fiber has an optical lens with a field of view 
of 40°, distortion of less than 0.5%, focal length of 9 mm, back focal length of 4.92 mm, entrance 
pupil diameter of 4 mm, light transmission band of 435–656 μm, and diaphragm in the center 
that can be adjusted to control exposure. The end face of the optical fiber bundle is optically 
coupled with a camera that captures images through the sleeve. The intersecting surface of 
each optical fiber is square, and nine bundle clusters are connected by epoxy resin adhesive to 
output the image, as depicted in Figure 2. The flexible fiber bundle is fixed by two adjustable 
brackets that can be bent to a certain angle to control the orientation of the front lens. Owing 
to this octopus-like design, the baseline length between the lenses can be increased. The cam-
era module with a macro lens is connected behind the end face of the optical fiber bundle to 
capture the image formed by the sub-eye lens and transmitted through the optical fiber. We 
used a Nikon D3200 digital SLR camera with a Nikkor 60 mm f/2.8D macro lens as the camera 
module, which could capture photos of 6016 × 4000 pixels. The whole system was installed on 
a tripod for manipulating the position and posture of the system by moving the tripod and 
adjusting the pan/tilt. 

 
Figure 1. Structure of compound-eye system. 

 
Figure 2. The end face of the optical fiber bundle. 

Owing to the design of the flexible fiber bundles for image transmission, the field-of-
view overlap rate between the sub-eyes of the system can be adjusted according to the 
distance and scale of the object or target scene, which can make the use of the system more 
flexible and convenient. Whilst the images of the object or target scene are captured, a 
certain baseline length is maintained between the sub-eye lenses; thus, functions such as 
the ranging and 3D reconstruction of objects and scenes can be achieved. 

An image captured by the bionic compound-eye system is shown in Figure 3. Because 
the gaps between the fiber bundles and the intersecting surface are not standard squares, 
it is necessary to perform correction processing after capturing the image of each sub-eye. 
In addition, the image also contains some noise and hexagonal fringes owing to the shape 
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of the fiber material, which must be denoised and edge enhanced. At the same time, the 
four corners and edge areas of the image still exhibit a relatively obvious brightness drop, 
which requires image vignetting correction. 

 
Figure 3. Image captured by compound-eye system. 

The luminance uniformity at different locations in the image caused by vignetting 
can be described by a sixth-order polynomial [16] as in Equation (1). 

( )a,b,cg r = + ar + br + cr + dr + er + fr2 3 4 5 61  (1) 

The r in Equation (1) is defined by Equation (2). 

( ) ( )
( ) ( )
− −

− −

cm cm

xi cm yi cmi=

x x + y y
r =

c x + c y

22

22

0,1,2,3
max

 (2) 

where (xcm, ycm) is the center of mass of the image applied with a low-pass Gaussian filter, and 
(cxi, cyi) are the coordinates of the four corners of the image, respectively. The reason for calcu-
lating the center of mass of the image is that the optical center may not coincide with the center 
of the image [17]. The numerator of Equation (2) represents the Euclidean distance between 
the pixel and the center of mass, and the denominator is the maximum distance from the four 
corners of the image to the optical center to ensure that r is in the range of [0,1]. 

Since the intensity entropy may lead the optimization into a local optimum [18], the 
image log-intensity entropy is used here as the minimum criterion. First, the luminance of 
the image pixels L is mapped to N histogram bin i by Equation (3). 

( ) ( ) ( )−i L = N + L1 log 1 log256  (3) 

The histogram bins nk are computed by Equation (4). 

( )( )( )
( )( )

( )( )( )
( )( )      

 − −k
x,y: i L x,y =k x,y: i L x,y =k

n = + k i L x,y + k i L x,y1  (4) 

The discrete entropy is finally computed from the histogram by Equation (5). 

ˆ ˆ k k
k

H = p plog  (5) 

where ˆ ˆ ˆ jk k jp = n n . 
We determined the best correction parameters using log-intensity entropy as the op-

timization criterion. The corrected image luminance is computed by Equation (6). 

( ) ( ) ( )corr orig a,b,cL x,y = L x,y g r  (6) 
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After the final processing, the size of the obtained image was 900 × 900 pixels, and the 
processing effect is shown in Figure 4. The red point is the center of mass as the optical center 
of the image, and the blue point is the center of the image. The correction parameters are a = 
0.012, b = 0.03, c = 0.17, d = 0.448, e = 0.942, and f = 5.661, respectively. The log-intensity entropy 
of the images before and after correction decreased from 6.65112 to 5.90766. It can also be seen 
that the luminance uniformity was significantly improved after correction. 

  
(a) (b) 

Figure 4. Images before and after processing. (a) Image before processing; (b) image after processing. 

We used NVIDIA Jetson AGX Xavier to process the images captured by the com-
pound-eye system and run the 3D reconstruction algorithm, as shown in Figure 5. Jetson 
AGX Xavier is an intelligent development kit from NVIDIA. Compared with the previous 
generation Jetson TX2, the performance was improved by more than 20 times, and the 
energy efficiency was improved by a factor of 10. Furthermore, it can support algorithms, 
such as visual SLAM, obstacle detection, and path planning. A diagram of the entire sys-
tem is shown in Figure 6. 

 
Figure 5. NVIDIA Jetson AGX Xavier Developer Kit. 

 
Figure 6. Diagram of the entire system. 
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3. Method of 3D Reconstruction Using a Bionic Compound-Eye System 
3.1. Traditional method 

The traditional 3D reconstruction method is based on the principle of multi-view ge-
ometry and estimates the depth of the point in view by triangulation. The projective ge-
ometry between the two views is called epipolar geometry [19], which describes the rela-
tionship between the projected points and projected rays of points in space in different 
views, as depicted in Figure 7. According to the epipolar geometric constraints of different 
views, the spatial position of the pixel point can be obtained, and two parts of the infor-
mation must be known for the calculation. The first is to determine the pixel positions of 
the same point in space for different views, that is, to perform feature matching between 
images. There are different types of image features: First, SIFT, which has scale-invariant 
image features, is a good choice for the algorithm to identify the corresponding features 
in multiple different images. Second, the state of the camera when capturing different 
views must be known, that is, the intrinsic and motion matrices of the camera must be 
known. To obtain this information, camera calibration must be performed. 

 
Figure 7. Epipolar geometry constraint. 

Many mature calibration algorithms are available for the calibration of camera pa-
rameters, such as the calibration method proposed by Zhang [20]. In the 3D reconstruction 
method with a fixed camera configuration, the camera parameters only need to be cali-
brated once, and the same parameters can be used for subsequent calculations. The posi-
tion of the sub-eye lens can be adjusted freely for the compound-eye system. However, 
during the image-capturing process, the entire system is in consistent motion. The camera 
parameters must be recalibrated after each shot. However, if a calibration object, such as 
the checkerboard, is used, the entire shooting process becomes very cumbersome, and at 
the same time, more images need to be processed, as mentioned above. Therefore, in this 
work, we restore the camera parameters by solving the Perspective-n-Point (PnP) problem 
[21], which does not need to shoot the calibration object after each movement of the system 
but directly uses the image of the subject or scene captured by the system. 

3.2. CES-MVSNet: Method of 3D Reconstruction Using a Nine-Eye Bionic Compound-Eye System 
In this study, we adopted an incremental method owing to its good reconstruction 

performance. The main steps of the algorithm are as follows: first, extract and match the 
feature points between two images, estimate two-view reconstruction, use it as the initial-
ization of the reconstruction, continuously add new images to the current model, and per-
form triangulation and bundle adjustment to refine the final 3D model. When choosing 
the initial pair at the initialization stage, the images should have a large number of matches 
and a large baseline [22]. The advantage of using a bionic compound-eye system for 3D scene 
reconstruction is that, by adjusting and controlling the angles between the sub-eyes of the sys-
tem, even if the system is constantly moved, the success rate of establishing good two-view 
initialization can be guaranteed, which is convenient for further steps. 
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The time complexity of the incremental method is typically O(n4), and the main time con-
sumption lies in the increasing number of input images, which leads to an increase in the time 
required for image matching and nonlinear optimization of the bundle adjustment [23]. 

Deep-learning networks have unique advantages for the prediction and reconstruc-
tion of 3D spatial shapes by learning and mining deeper structural features. Three-dimen-
sional reconstruction through deep learning is essentially carried out through prediction 
of the depth value of the pixel point. The general processing method regards the estima-
tion of the depth value as a typical classification problem, uses different depth values 
within a certain depth range as different depth hypotheses, estimates the probability of 
each depth estimation, and finally calculates the expectation depth value along the depth 
direction to obtain the depth of the pixel. 

Based on the basic structure of the MVSNet, in this study, we designed a deep neural 
network of the bionic compound-eye system named CES-MVSNet. The network structure 
is illustrated in Figure 8. 

 
Figure 8. Network structure of CES-MVSNet. 

3.2.1. Feature Extraction 
First, extract the image features {Ii}N 

i=1 of the input image {Fi}N 
i=1, where N represents the 

total number of input images. Since the resolution of the images captured by the com-
pound-eye system is relatively low, in order to extract higher-order image features while 
ensuring computational efficiency, compared with the eight-layer convolutional network 
in MVSNet, CES-MVSNet uses a nine-layer convolutional as shown in Table 1, where K 
denotes the kernel size, S the kernel stride, F the number of output channels, and H and 
W the width and height of the image, respectively. A batch-normalization (BN) layer and 
a Leaky-ReLU layer are added after each convolutional layer. 

Table 1. Detailed architecture of the feature extraction network. 

Input Layer Output Output Size 
Ii Conv2D + BN + ReLU, K = 3 × 3, S = 1, F = 8 2D_0 H × W × 8 

2D_0 Conv2D + BN + ReLU, K = 3 × 3, S = 1, F = 8 2D_1 H × W × 8 
2D_1 Conv2D + BN + ReLU, K = 5 × 5, S = 2, F = 16 2D_2 ½H × ½W × 16 
2D_2 Conv2D + BN+ReLU, K = 3 × 3, S = 1, F = 16 2D_3 ½H × ½W × 16 
2D_3 Conv2D + BN + ReLU, K = 3 × 3, S = 1, F = 16 2D_4 ½H × ½W × 16 
2D_4 Conv2D + BN + ReLU, K = 5 × 5, S = 2, F = 32 2D_5 ¼H × ¼W × 32 
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2D_5 Conv2D + BN + ReLU, K = 3 × 3, S = 1, F = 32 2D_6 ¼H × ¼W × 32 
2D_6 Conv2D + BN + ReLU, K = 3 × 3, S = 1, F = 32 2D_7 ¼H × ¼W × 32 
2D_7 Conv2D + BN + ReLU, K = 3 × 3, S = 1, F = 32 Fi ¼H × ¼W × 32 

3.2.2. Build Cost Volume 
After obtaining the extracted image features, it is necessary to construct an image-

matching cost volume for depth estimation from the reference view. Assuming that the 
depth range covered by the scene in the reference view is [dmin, dmax], this depth range was 
evenly divided into M different depth hypotheses to construct the cost volume. Each 
depth hypothesis is dm = dmin + m(dmax − dmin)/M, where m∈{0,1,2,…,M − 1}, representing the 
different fronto-parallel planes of the reference camera. 

The relationship between pixel x in the reference view and corresponding pixel xi in 
the ith source view can be expressed using differentiable homography [9], as in Equation 
(7). 

( ) ( )−
− −

 − 
 
 
 

− i i
i i id

d

1 T
0 0 0 0 1 1

0 0=
R t R t n R

H K R I R K  (7) 

where I denotes the identity matrix, and K, the intrinsic matrix of the camera. This corre-
spondence can be expressed as λi·xi = Hi(d)·x, where λi represents the depth of xi in the ith 
source view. 

At a plane of depth d, the matching cost of all pixels is defined as the variance of all 
features in N views, as in Equation (8). 

( )−
N

d i,d d
i=

c = F F
N

2

0

1
 (8) 

where Fi,d denotes the feature maps that are transformed from the source view into the 
reference view by bilinear interpolation, and Fd is the expectation of the feature volume of 
each pixel in all views.  

When using the compound-eye system, we can adjust the number of shots for differ-
ent scenes to improve the reconstruction effect. Using variance can leverage any number 
of image inputs while balancing image-feature differences among multiple views to sat-
isfy photometric consistency constraints. The matching cost of each depth hypothesis is 
calculated and concatenated to obtain the cost volume, which has a size of H/4 × W/4 × M 
× C, where C is the number of channels of the feature map. 

3.2.3. Depth Map Estimation 
The resulting cost volume is fed into a 3D U-Net [24] that outputs the depth proba-

bility volume. Unlike the 3D U-Net of MVSNet, which uses convolutional layers with a 
convolution kernel size of 3 × 3 × 3, on shallow layers, anisotropic convolutional layers 
with convolution kernel sizes of 3 × 3 × 1 and 5 × 5 × 1 were adopted to fuse the information 
on each depth hypothesis plane, which are equivalent to 2D convolution with convolution 
kernels of 3 × 3 and 5 × 5 on each depth hypothesis plane. The purpose of using two kernel 
sizes is to extract global and local information at the same time. We also use anisotropic 
convolutional layers with convolution kernel sizes of 1 × 1 × 7 to enlarge the receptive field 
along the depth direction with less memory usage and computation. In the deeper layers, 
as well as the output layer, an isotropic convolutional layer with a kernel size of 3 × 3 × 3 
was used to fuse more contextual information [25]. The detailed architecture of the 3D U-
Net of CES-MVSNet is shown in Table 2, where D denotes the depth sample number. 
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Table 2. Detailed architecture of the 3D U-Net. 

Input Layer Output Output Size 
C Conv3D + BN + ReLU, K = 3 × 3 × 1, S = 1, F = 8 3D_0 ¼H × ¼W × D × 8 

3D_0 Conv3D + BN + ReLU, K = 1 × 1 × 7, S = 2, F = 16 3D_1 1/8H × 1/8W × ½D × 16 
3D_1 Conv3D + BN + ReLU, K = 5 × 5 × 1, S = 1, F = 16 3D_2 1/8H × 1/8W × ½D × 16 

3D_2 Conv3D + BN + ReLU, K = 1 × 1 × 7, S = 2, F = 32 3D_3 
1/16H × 1/16W × ¼D × 

32 

3D_3 Conv3D + BN + ReLU, K = 3 × 3 × 1, S = 1, F = 32 3D_4 
1/16H × 1/16W × ¼D × 

32 

3D_4 Conv3D + BN + ReLU, K = 1 × 1 × 7, S = 2, F = 64 3D_5 
1/32H × 1/32W × 1/8D × 

64 

3D_5 Conv3D + BN + ReLU, K = 3 × 3 × 3, S = 1, F = 64 3D_6 
1/32H × 1/32W × 1/8D × 

64 

3D_6 
Deconv3D + BN + ReLU, K = 3 × 3 × 3, S = 2, F = 

32 
3D_7 

1/16H × 1/16W × ¼D × 
32 

3D_7 + 3D_4 Addition 3D_8 
1/16H × 1/16W × ¼D × 

32 
3D_8 Deconv3D + BN + ReLU, K = 1 × 1 × 7, S = 2, F = 16 3D_9 1/8H × 1/8W × ½D × 16 

3D_9 + 3D_2 Addition 3D_10 1/8H × 1/8W × ½D × 16 
3D_10 Deconv3D + BN + ReLU, K = 3 × 3 × 1, S = 2, F = 16 3D_11 ¼H × ¼W × D × 8 

3D_11 + 3D_0 Addition 3D_12 ¼H × ¼W × D × 8 
3D_12 Conv3D, K = 3 × 3 × 3, S = 1, F = 1 P ¼H × ¼W × D 

To be able to generate continuous depth estimation, a soft-max operation on the prob-
ability volume along the depth direction to obtain the estimated depth map must be per-
formed; then, the depth estimation of pixel x can be expressed as in Equation (9). 

( ) ( )
M -

m x m
m=

D x = d P d
1

0
 (9) 

3.2.4. Loss Function 
To select the loss function, we used the l1 norm as a measure of the mean absolute 

error between the ground truth and estimated depth map. For each training sample, the 
training loss can be expressed as Equation (10). 

( ) ( )
∈Ω

−
valid

gt
x

Loss D x D x
1

=  (10) 

where Ωvalid represents the set of pixels with the ground-truth depth information in view. 
After the network training was completed, we fed the images that needed to be re-

constructed and the corresponding camera parameters to the network. Each image was 
used as a reference to obtain an estimated depth map. Finally, the depth map was re-
projected to obtain the final 3D reconstructed point cloud model [26]. 

4. Experiments 
4.1. System and Scene 

We installed the whole system on a tripod and manipulated the position and posture 
of the system by moving the tripod and adjusting the pan/tilt. Imaging of the experiment 
was conducted in a laboratory room with an area of approximately 6 m × 6 m. The indoor 
layout was relatively simple, and the furnishings were rich and varied, as shown in Figure 
9. 
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(a) 

 
(b) 

Figure 9. Images of experimental environment. (a) Overall appearance. (b) Tables and lockers. 

4.2. Training 
Similar to the training MVSNet [9], the training dataset was divided into three parts: 

the training set, validation set, and test set. The BlendedMVS datasets were used to train 
the network to test and enhance the generalization ability of the neural network for dif-
ferent scenes. 

The BlendedMVS dataset [27] is a large-scale MVS dataset for multi-view 3D recon-
structions, as shown in Figure 10. The dataset contained 17,000 MVS training samples 
covering 113 scenes, including large buildings, sculptures, and small objects. The Blend-
edMVS dataset was a synthetic dataset. A 3D model was generated from the image using 
Altizure, an online 3D reconstruction platform, and output the rendered image and depth 
map from different viewpoints according to the model. The input image was applied with 
a low-pass filter to extract ambient light information, and the rendered image was applied 
with a high-pass filter to extract image-edge information. Then, the two results were line-
arly fused to obtain a fused image. 

 
Figure 10. Sample images in BlendedMVS dataset. 



Electronics 2022, 11, 1790 11 of 22 
 

 

We used Pytorch 1.6.0 and an NVIDIA RTX3080ti GPU to train CES-MVSNet. Then, 
we used an NVIDIA Jetson AGX Xavier to process the captured images and run the 3D 
reconstruction algorithm to simulate the practical application scenarios and verify the 
proposed method in this paper. 

The network training used an Adam optimizer; the batch size was set to 2 with an 
initial learning rate of 0.001. The total epochs were set to 15, and the learning rate sched-
uler was set to cosine. 

4.3. Experiment with Compound-Eye System and Discussion 
In order to prove the efficiency and reliability of the 3D scene reconstruction using 

the bionic compound-eye system, we captured a scene in the laboratory room, which is 
shown in Figure 11, using the compound-eye system and a monocular camera, respec-
tively. When shooting with the bionic compound-eye system, the relative positions of the 
sub-eye lenses of the system remained fixed, and the sub-eye images maintained a partial 
overlap of fields. The system was slightly moved to shoot five times from different angles 
and distances, and a total of 45 images were obtained for 3D reconstruction. When shoot-
ing with a monocular camera, the relative position of the camera between each shot was 
not limited, and multiple shots were taken from different angles and distances. The pro-
gram automatically selected 45 available images from the initial input images. The 3D 
reconstruction results of the bionic compound-eye system and the monocular camera are 
shown in Figures 12 and 13, respectively. 

 
Figure 11. Image of experimental scene. 

 
Figure 12. Three-dimensional reconstruction results of images shot by the compound-eye system. 
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Figure 13. Three-dimensional reconstruction results of images shot by a monocular camera. 

For the images captured by the bionic compound-eye system, the relative positions 
of the sub-eye lenses of the system were fixed, and all images obtained by shooting five 
times could be successfully matched and reconstructed. For the images captured by the 
monocular camera, some images failed to match with other images, so the reconstruction 
could not be performed successfully. From the initial input of 54 images, the same number 
of 45 images could be selected for reconstruction by the program. By comparing the re-
sults, the reconstruction of images captured by the bionic compound eye included about 
110,000 points, which is better than that of the monocular camera with about 73,000 points. 

A similar experiment was performed on another narrower scene in the laboratory. 
The experimental scene is shown in Figure 14, and the reconstruction results of the bionic 
compound-eye system and the monocular camera are shown in Figures 15 and 16, respec-
tively. The bionic compound-eye system was used for 3 shots, and a total of 27 images 
were obtained. The number of initial inputs of monocular camera images was 32, and 27 
images were finally selected for reconstruction. The number of points of the two recon-
struction results was about 104,000 and 62,000, respectively, and the number of recon-
struction points of the bionic compound-eye system was slightly more than that of the 
monocular camera. The experimental results also showed that 3D reconstruction for a 
smaller scene can be achieved using a smaller number of images. 

 
Figure 14. Image of another experimental scene. 
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Figure 15. Three-dimensional reconstruction results of images shot by the compound-eye system. 

 
Figure 16. Three-dimensional reconstruction results of images shot by a monocular camera. 

After several experiments, it was verified that all the images captured by the bionic 
compound-eye system could be used for 3D reconstruction, while a small part of the im-
ages captured by a monocular camera could not. The bionic compound-eye system has 
nine sub-eyes, so the shooting efficiency of using the bionic compound-eye system is nine 
times that of using a monocular camera. In the case of using the same number of images 
for reconstruction, the reconstruction effect of the bionic compound-eye system is close to 
or even slightly better than that of a monocular camera in terms of visual effects, and the 
number of reconstruction points of the former is about 50% more than that of the latter. 
Therefore, using the bionic compound-eye system for 3D reconstruction can effectively 
improve the shooting efficiency and, at the same time, achieve the 3D reconstruction effect 
consistent with using a monocular camera. 

In order to compare the difference between the effects of different reconstruction 
methods, we used the compound-eye system to capture two wider scenes in the labora-
tory room, and 144 and 81 images were selected for each scene. Some of the processed 
captured images of scene 1 are shown in Figure 17, and the overall and detailed 3D models 
reconstructed by different methods are shown in Figures 18 and 19, respectively. 
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Figure 17. Sample images of scene 1. 

 
(a) 

 
(b) 

 
(c) 

Figure 18. Overall 3D reconstruction results of the different methods. (a) Traditional method; (b) 
MVSNet; (c) CES-MVSNet. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 19. Detailed 3D reconstruction results of the different methods. (a,b) Traditional method; 
(c,d) MVSNet; (e,f) CES-MVSNet. 

We also use cloud compare software to analyze the results reconstructed by different 
methods, as shown in Figure 20. We compute the approximate distances of each point of 
the compared cloud relative to the reference cloud. The compared cloud is colored with 
the approximate distances. The histogram of the compared cloud shows that the points 
with green, yellow, and red colors, which indicate larger approximate distances, can be seen 
as the parts that are not well recovered in the reference cloud. As shown in Figure 20c,d, the 
ratios of the points with their colors were about 14% and 7%, respectively, which shows that 
the proposed method outperforms the previous methods in terms of completeness. 
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(a) 

 
(b) 

  
(c) (d) 

Figure 20. Cloud-to-cloud distance results. (a) Compared cloud: CES-MVSNet. Reference cloud: tra-
ditional method; (b) compared cloud: CES-MVSNet. Reference cloud: MVSNet; (c) histogram of the 
compared cloud in (a); (d) histogram of the compared cloud in (b). 

Some of the processed captured images of scene 2 are shown in Figure 21, and the overall 
and detailed 3D models reconstructed by different methods are shown in Figures 22 and 23, 
respectively. The computed cloud-to-cloud distance results are shown in Figure 24. 

 
Figure 21. Sample images of scene 2. 
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(a) 

 
(b) 

 
(c) 

Figure 22. Overall 3D reconstruction results of the different methods. (a) Traditional method; (b) 
MVSNet; (c) CES-MVSNet. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 23. Detailed 3D reconstruction results of the different methods. (a,b) Traditional method; 
(c,d) MVSNet; (e,f) CES-MVSNet. 
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(a) 

 
(b) 

  
(c) (d) 

Figure 24. Cloud-to-cloud distance result. (a) Compared cloud: CES-MVSNet. Reference cloud: tra-
ditional method; (b) compared cloud: CES-MVSNet. Reference cloud: MVSNet; (c) histogram of the 
compared cloud in (a); (d) histogram of the compared cloud in (b). 
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The results of the two different networks show that the reconstruction details and 
completeness of the model obtained by CES-MVSNet are significantly improved com-
pared to the model obtained by MVSNet. Additionally, a comparison of the results of the 
two different methods shows that the completeness of the model obtained using the neu-
ral network was generally better than those obtained using the traditional method. The 
resolution of the traditional method was higher. However, the model contains more ob-
vious outliers. The distribution of point clouds is relatively loose, especially in areas with 
fewer texture features, such as the surface of the top lockers, which have very vague de-
tails. The computer monitor below was almost invisible, but its black edges were still vis-
ible, and a few points in the part of the screen panel were not on the same spatial plane. 
Although the results of the deep learning network are slightly blurry, it can retain more 
detail in areas with fewer texture features compared to the former result, and the model 
had higher integrity and smoother visual effects. The two methods can achieve a relatively 
good recovery of the basic shape and relative positional relationship of the object, and 
generally, there were no obvious errors. Because the probability volume was used in the 
deep learning method, it can be used as a confidence measure for depth estimation. The 
confidence threshold can be set during the reconstruction process, and points with low 
confidence can be filtered to obtain reconstructed points with high confidence. Neither of 
the methods could reconstruct more subtle features well, such as some text on the spine 
of the book or on the box, but this is determined more by the resolution of the optical lens 
of the system and the quality of the image acquisition. 

In terms of the running time of the algorithm, using the traditional method to obtain 
a relatively good 3D reconstruction required about 100 more images and 1~2 h each time, 
which is determined by the accuracy of the feature extraction and optimization opera-
tions, whereas using a pre-trained deep neural network requires a few minutes, which is 
more efficient than the traditional method. The training time of the deep learning network 
on the RTX 3080Ti graphics card could also be controlled within 20 h. 

5. Conclusions 
This study investigated 3D reconstruction using a nine-eye bionic compound-eye 

system with a partial overlap of fields and proposed CES-MVSNet for 3D reconstruction 
using our system. We fed the captured image and camera parameters to the trained deep 
neural network, which can generate a 3D reconstruction result quickly. The difference be-
tween the effects of the traditional multi-view geometric method and neural networks for 3D 
reconstruction was analyzed, which proved that using the bionic compound-eye system for 
3D reconstruction can greatly improve the efficiency while ensuring the success rate of recon-
struction tasks and the integrity and accuracy of the reconstruction results. 

In the future, the main research direction of 3D reconstruction using the bionic com-
pound-eye system is to further improve the completeness and accuracy of the resulting 
model, and further improvements to the imaging quality of the optical system and inte-
gration of the whole system will be pursued. The high-quality 3D reconstruction of the 
scene obtained by the bionic compound-eye system has broad application prospects in 
automated vehicle recognition, map drawing, robot navigation, and obstacle avoidance. 
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