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Abstract: In this paper, the performance analysis of the amplitude-comparison monopulse (ACM)
algorithm under a correlated noise effect is dealt with. The noise received by a monopulse antenna
is caused by various sources, such as jamming, multipath, clutter, and thermal noise. The noise
variables caused by these noise sources may be correlated with each other when received by the
antenna elements. We explicitly analyzed the angle estimation performance of the monopulse
algorithm when a correlated noise is received by deriving the probability density function (PDF) of
the channel noise variables. In this process, correlation coefficients between noise variables received
by antenna elements are defined, and variance and correlation coefficients of channel noise variables
are derived. The performance of the angle estimation is analyzed by calculating the root mean square
error (RMSE) for various variances and correlation coefficients of the received noise variables. The
expectation operation required for calculating the RMSE is performed via numerical integration.
Consequently, the analytically derived RMSE results show excellent agreements with the Monte
Carlo simulation-based RMSE result, and it is confirmed that the RMSE decreases as the correlation
coefficient between the received noise variables increases. When the SNR is high and on-axis, the
RMSE decreases by 20% whenever the correlation coefficient between the reception noise variables
increases by 0.2.

Keywords: tracking radar; amplitude-comparison monopulse; mean square error (MSE); correlated
noise; probability density function; numerical integration

1. Introduction

Radar can perform the functions of measuring the distance, angle, and speed of
the target. The angle information of the target is obtained by measuring the direction
of the radar pointing toward the target. The function of the radar tracking the target is
implemented by inputting the estimated angle error to the servo system that controls the
pointing direction of the radar. In general, lobe switching, conical scan, and monopulse
systems are used to calculate the estimated angle error, and these radars are tracking radars.
An amplitude-comparison monopulse (ACM) radar can accurately measure the estimated
angle error of the target with only one pulse (monopulse). An ACM radar measures
the target echo signal voltages through multiple squinted beams [1]. The voltages of the
received signal, obtained by using several squinted beams, are input to the difference
channels and the sum channel, and the tracking error voltage can be obtained through
the ratio of the outputs of these channels [2–4]. Through these tracking error voltages,
the antenna positioning servo motor is controlled so that the azimuth tracking error and
elevation tracking error become zero [5,6].

Estimating various parameters of a radar target is affected by various noises. In the
ACM, the noise has a great influence on the ability to estimate the angular position of the
target. In some cases, noises can become an obstacle to the precise tracking of the target.
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In [7–13], a performance analysis considering the deviation of the estimated angle of the
target expressed as measurement noise and a performance analysis by internal error were
conducted. In addition, various monopulse algorithms have been proposed to improve the
angle estimation accuracy in the presence of noise and interfering signals.

In [7], some facts related to the angle measurement precision of monopulse radar are
analyzed. It is explained that the important factors related to angle measurement accuracy
of monopulse radar are receiver output noise and squint angle. In relation to internal noise
including output noise, a study was conducted to analyze the influence of internal errors.
In [8], four main types of monopulse receivers are analyzed with respect to the influence of
internal error sources on the resulting measurement accuracy. In [9], the authors presented
the least-squares-based monopulse algorithm and a novel covariance prediction equation.
The proposed method can accurately predict the performance of the monopulse algorithm.
In [10], the effect on the angle estimation ability of monopulse radar when amplitude
and phase are not constant was studied. In addition, various monopulse algorithms are
proposed to reduce the effects of various noises. Noise jamming is an effective jamming
technique to degrade a radar’s capacity to estimate angles. This corresponds to artificial
noise caused by an external source. Adaptive digital beamforming was proposed in [11]
to maintain the target angle estimation accuracy of the monopulse in the jamming effect.
Conventionally, adaptive beamforming is proposed to suppress unwanted signals such as
noise, but this technique causes beam distortion. The new monopulse algorithm proposed
in [12] acquires the target angle without distorting the beam shape. In addition, in order for
the monopulse radar seeker to increase the angle measurement accuracy in the low signal-
to-noise ratio (SNR) environment, the authors of [13] proposed an estimation algorithm
based on the Bayesian framework.

In previous studies [14,15], the MSE of the ACM direction-of-arrival (DOA) estimated
angle was expressed as an analytic expression using the Taylor approximation and was
compared with the Monte Carlo method. The analytical expressions proposed in [14,15]
are highly computationally efficient. The final expressions quantifying the MSE of the
monopulse algorithm in the previous studies are very long and complicated and are not
intuitive. In addition, to take higher-order nonlinearities into account, higher-order Taylor
expansion should be employed, which makes the expression of the MSE much more
complicated. In [16–19], the output of the ACM radar under the influence of noise is
analyzed via probability characteristics. In [16], the monopulse ratio (MR) is regarded as a
random variable and the probability density function (PDF) of the MR is derived. In [17],
the joint PDF is mathematically derived by dividing the MR into real and imaginary parts
for each channel, and the result is used to develop marginal density for the special case of
the real correlation of the channels. In [18], the conditional mean and conditional variance
are derived and quantified as threshold levels as well as the SNR. In [19], the theoretical
expression derived from [18] is verified through simulation, and a detailed description is
given to quantify the angle measurement performance under the multi-jamming effect.
The PDF of the MR presented in [16,17] is derived for the general case considering the
correlation of noise, but it is difficult to use due to the complexity of the formula. Moreover,
in [18,19], it is difficult to analyze the angle estimation performance because the mean and
variance of the MR for the SNR, not the estimated angle, are shown as results. Previous
related studies analyzed the MR when the difference channel and sum channel of the MR
are correlated with each other. We further analyzed the root mean square error (RMSE) of
the estimated angle when the measurement noise correlated by an external noise source is
received via a monopulse antenna.

In this paper, the RMSE of the estimated angle of the ACM algorithm is analytically
derived using the PDF considering the probabilistic characteristics of the noise random vari-
ables, and the RMSE is calculated using numerical integration. The received noise random
variables are the measurement noise received by the antenna elements. We analyzed the
angle estimation performance by considering the correlation between these noise variables.
The expectations of the channel noise variables are obtained as a linear combination of the
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expectations of the measured noise variables, but the variance of the channel noise variables
requires additional consideration of the covariance terms as well as the variance of the
measured noise variables. We describe a monopulse antenna with four antenna elements
for azimuth and elevation measurements. Therefore, by defining six correlation coefficients
between the four received noise variables, the variance and correlation coefficients of the
channel noise are derived. The variances and correlation coefficients obtained in this way
are used as arguments of the bivariate Gaussian PDF for the channel noise variables. Then,
the RMSE is calculated by performing the integration considering only the main occurrence
range of the channel noise.

In Section 2.1, the equations for the signals received by the four antenna elements are
defined. In Section 2.2, the definition of the channel noise variables and their expectations
and variances are derived. In Section 2.3, an analytical expression of the RMSE of the
estimated angle is described. In Section 2.4, the Monte Carlo simulation-based RMSE to
verify the analytically derived RMSE is presented and a method for generating correlated
noise variables is described. In Section 3, the analytical RMSEs are verified by comparing
them with the Monte Carlo simulation-based RMSE, and the RMSE results for the corre-
lation coefficient change between the received noise variables are presented. In addition,
the correlation coefficient results of the channel noise variables to the ratio of variances
of the received noise variables are presented, and the RMSE results are presented for the
difference channel SNR and the sum channel SNR. In Section 4, the validity of this study
is emphasized through comparison with the performance analysis method proposed in
related studies. In Section 5, conclusions are drawn by analyzing the results obtained
in Section 3.

2. Methodology
2.1. Definition of Received Signals for Monopulse Radar

Monopulse radar is a tracking radar and measures the angle (tracking error) through
only one pulse. The angle estimation of monopulse radar consists of a phase-comparison
method and an amplitude-comparison method. In this paper, it is assumed that the
amplitude-comparison monopulse radar have four feed horns and three channels (azimuth
difference channel, elevation difference channel, sum channel) [1–3]. ACM radar receives
an incident signal using squinted beams. Figure 1 shows the antenna array plane of the
monopulse radar and incident angle of the target. In this figure, θT is the angle of incidence
between the target and the antenna boresight; A, B, C, and D are antenna elements; and
θazi and θele are the azimuth and elevation tracking errors for the target, respectively.

Figure 1. Monopulse antenna array and target angle error.
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In Figure 1, the positive azimuth direction is defined as a direction that increases in
the positive x-axis direction with respect to the boresight y-axis, and the negative azimuth
direction is defined as a direction that increases in the negative x-axis direction. Similarly,
the positive elevation direction is defined as a direction that increases along the positive
z-axis with respect to the y-axis, and the negative elevation direction is defined as a direction
that increases along the negative z-axis.

The target is a non-fluctuating single target, and when the radar is tracking the target,
the target’s line of sight (LOS) and antenna boresight are nearly aligned. Therefore, the
target echo signals incident on the antenna elements are all modeled to have the same
amplitude envelope [20]. The signals received by the antenna elements are:

xA = GA(θT)T + nA

xB = GB(θT)T + nB

xC = GC(θT)T + nC

xD = GD(θT)T + nD,

(1)

where T is the voltage amplitude of the target echo; GA, GB, GC, and GD are the voltage
gains; and nA, nB, nC, and nD are the received noise variables, respectively.

The received noise is caused by several environmental variables (jamming, external
sources, interference, and propagation effects). Typically, thermal noise exists inside the
antenna element and receiver. Thermal noise random variables present in antenna elements
are not correlated with each other. However, noise random variables of antenna elements
present by noise jamming or unresolved targets are correlated with each other [1]. In
Figure 2, the correlation between the received noise variables of the antenna elements
is shown.

Figure 2. Correlation coefficients between the noise variables received by the four antenna elements.

In Figure 2, ρij denotes a correlation coefficient between ni and nj. The definition of
the correlation coefficient is as follows [21]:

ρij =
cov
[
ni, nj

]
σiσj

(i 6= j : ∀i, j ∈ {A, B, C, D}), (2)

where cov
[
ni, nj

]
is the covariance of ni and nj, and σi and σj are the standard deviations of

ni and nj.
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2.2. Definition of Channel Noise Variables for Receiver of Monopulse Radar

The channels consist of the azimuth difference channel (∆azi), the elevation difference
channel (∆ele), and the sum channel (Σ). The target echo signal is input to the sum channel
and difference channels, and the tracking error is estimated through the output of these
channels. In Figure 3, a comparator for obtaining the elevation tracking error and the
azimuth tracking error is shown. The elevation tracking error and azimuth tracking error
are input to the closed-loop servo system so that the antenna boresight can be directed to
the moving target [5,6].

Figure 3. Monopulse comparator [5].

In Figure 3, the azimuth difference channel can be obtained through (A + D) − (B + C),
the elevation difference channel can be obtained through (A + B) − (D + C), and the sum
channel can be obtained through (A + B) + (C + D). Using (1), the outputs of the channels
are as follows:

∆azi
∆
= xA + xD − (xB + xC)

= T[GA(θT) + GD(θT)− GB(θT)− GC(θT)] + nA + nD − nB − nC
(3)

∆ele
∆
= xA + xB − (xC + xD)

= T[GA(θT) + GB(θT)− GC(θT)− GD(θT)] + nA + nB − nC − nD
(4)

Σ ∆
= xA + xB + xC + xD

= T[GA(θT) + GB(θT) + GC(θT) + GD(θT)] + nA + nB + nC + nD.
(5)

Here, the outputs of the channels are a linear combination of the received signals of
the antenna elements. Therefore, if the noise generated inside the receiver is ignored, the
channel noise variables can be expressed as a linear combination of the received noise
variables, i.e.,

nazi = nA + nD − nB − nC

nele = nA + nB − nC − nD

nsum = nA + nB + nC + nD.

(6)

Similarly, the voltage gains can be simplified as

Gazi(θ) = GA(θ) + GD(θ)− GB(θ)− GC(θ)

Gele(θ) = GA(θ) + GB(θ)− GC(θ)− GD(θ)

Gsum(θ) = GA(θ) + GB(θ) + GC(θ) + GD(θ),

(7)

where Gazi, Gele, and Gsum denote azimuth difference pattern gain, elevation difference
pattern gain, and sum pattern gain, respectively.
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Through (6) and (7), the channel outputs are summarized as follows:

∆azi = Gazi(θT)T + nazi (8)

∆ele = Gele(θT)T + nele (9)

Σ = Gsum(θT)T + nsum. (10)

In general, the received noise variables are modeled with a Gaussian distribution:

nA ∼ N
(
0, σ2

A
)

nB ∼ N
(
0, σ2

B
)

nC ∼ N
(
0, σ2

C
)

nD ∼ N
(
0, σ2

D
)
.

(11)

Here, all received noise variables are set to have zero mean and standard deviations of
σA, σB, σC, and σD. Because the random variables defined in (6) are the sum of correlated
Gaussian random variables, nazi, nele, and nsum are also Gaussian random variables [22]:

nazi ∼ N
(
µazi, σ2

azi
)

nele ∼ N
(
µele, σ2

ele

)
nsum ∼ N

(
µsum, σ2

sum
)
.

(12)

The expectations of the channel noise variables are given as the sum of the expectations
of the receive noise variables:

µazi = E[nA + nD − nB − nC] = µA + µD − µB − µC = 0 (13)

µele = E[nA + nB − nC − nD] = µA + µD − µB − µC = 0 (14)

µsum = E[nA + nB + nC + nD] = µA + µB + µC + µD = 0. (15)

The variances of the channel noise variables consist of the variance and covariance
terms of the receive noise variables:

σ2
azi = E

[
(nazi − µazi)

2
]
= E

[
(nA + nD − nB − nC)

2
]

= var[nA] + var[nB] + var[nC] + var[nD]

+2(cov[nA, nD]− cov[nA, nB]− cov[nA, nC]− cov[nD, nB]− cov[nD, nC] + cov[nB, nC])

= σ2
A + σ2

B + σ2
C + σ2

D
+2(ρADσAσD − ρABσAσB − ρACσAσC − ρDBσDσB − ρDCσDσC + ρBCσBσC)

(16)

σ2
ele = E

[
(nele − µele)

2
]
= E

[
(nA + nB − nC − nD)

2
]

= var[nA] + var[nB] + var[nC] + var[nD]

+2(cov[nA, nB]− cov[nA, nD]− cov[nA, nC]− cov[nB, nD]− cov[nB, nC] + cov[nC, nD])

= σ2
A + σ2

B + σ2
C + σ2

D
+2(ρABσAσB − ρADσAσD − ρACσAσC − ρBDσBσD − ρBCσBσC + ρCDσCσD)

(17)

σ2
sum = E

[
(nsum − µsum)2

]
= E

[
(nA + nB + nC + nD)

2
]

= var[nA] + var[nB] + var[nC] + var[nD]

+2(cov[nA, nD] + cov[nA, nB] + cov[nA, nC] + cov[nD, nB] + cov[nD, nC] + cov[nB, nC])

= σ2
A + σ2

B + σ2
C + σ2

D
+2(ρADσAσD + ρABσAσB + ρACσAσC + ρDBσDσB + ρDCσDσC + ρBCσBσC).

(18)
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The covariances between the channel noises are obtained as

cov[nazi, nsum]
= E[(nazi − µazi)(nsum − µsum)]
= E[(nA + nD − nB − nC)(nA + nB + nC + nD)]
= var[nA] + var[nD]− var[nB]− var[nC] + 2cov[nA, nD]− 2cov[nB, nC]
= σ2

A + σ2
D − σ2

B − σ2
C + 2ρADσAσD − 2ρBCσBσC

(19)

cov[nele, nsum]
= E[(nele − µele)(nsum − µsum)]
= E[(nA + nB − nC − nD)(nA + nB + nC + nD)]
= var[nA] + var[nB]− var[nC]− var[nD] + 2cov[nA, nB]− 2cov[nC, nD]
= σ2

A + σ2
B − σ2

C − σ2
D + 2ρABσAσB − 2ρCDσCσD.

(20)

Note that the covariances of the channel noise variables do not consider the correla-
tion coefficients of all received noise variables, but only two correlation coefficient terms.
Moreover, in (19) and (20), it can be seen that the channel noise variables are linear com-
binations of the received noise variables, but there is no correlation between the channel
noise variables under certain conditions.

2.3. Analytical Expression for Performance Analysis of Amplitude-Comparison Monopulse Radar

The correlation coefficient between the channel noise variables can be obtained using
(16)–(20):

ρazi,sum =
cov[nazi, nsum]

σaziσsum
(21)

ρele,sum =
cov[nele, nsum]

σeleσsum
. (22)

Equations (23) and (24) are the estimated angle equations of the monopulse algorithm [1]:

θ̂azi =
θ3dB
km

∆azi

Σ
=

θ3dB
km

Gazi(θT)T + nazi

Gsum(θT)T + nsum
(23)

θ̂ele =
θ3dB
km

∆ele
Σ

=
θ3dB
km

Gele(θT)T + nele
Gsum(θT)T + nsum

. (24)

where θ̂azi and θ̂ele are the estimated azimuth and estimated elevation, respectively. In
addition, km and θ3dB denote the monopulse error slope constant and 3-dB beamwidth of
sum pattern, respectively.

The monopulse error slope constant is determined as [1]

km = θ3dB
1

Σ(θ)
∂∆(θ)

∂θ

∣∣∣∣
θ=0

. (25)

It is usually convenient to analyze performance in terms of SNR. Thus, in (23) and (24),
let the denominator and numerator terms divided by sum channel output of target echo:

θ̂azi =
θ3dB
km

Gazi(θT)T
Gsum(θT)T

+ nazi
Gsum(θT)T

1 + nsum
Gsum(θT)T

=
θ3dB
km

Razi + u
1 + w

(26)

θ̂ele =
θ3dB
km

Gele(θT)T
Gsum(θT)T

+ nele
Gsum(θT)T

1 + nsum
Gsum(θT)T

=
θ3dB
km

Rele + v
1 + w

, (27)
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where Razi and Rele are the azimuth monopulse ratio and the elevation monopulse ratio of
the noise-free signal, respectively. Moreover, u, v, and w are normal distributions with the
following characteristic:

u ∼ N
(

0, σ2
azi

(Gsum(θT)T)
2

)

v ∼ N
(

0, σ2
ele

(Gsum(θT)T)
2

)

w ∼ N
(

0, σ2
sum

(Gsum(θT)T)
2

)
.

(28)

According to the variance of the three channel noises, three SNRs are defined. The
received signal power of the target echo is obtained as the square of the root mean square
(RMS) value, and the powers of the channel noises are the variances of the channel noise
variables, i.e.,

S/Nazi =
(Gsum(θT)T)

2

2σ2
azi

S/Nele = (Gsum(θT)T)
2

2σ2
ele

S/Nsum = (Gsum(θT)T)
2

2σ2
sum

.

(29)

Here, S/Nazi and S/Nele are defined as difference channel SNR, and S/Nsum is defined
as sum channel SNR.

Root mean square error (RMSE) is one of the measures to measure the accuracy of
an estimate. Assuming that the square of the estimated angle error is ergodic [21]. The
statistical RMSEs of the estimated azimuth and the estimated elevation are defined as√

E
[(

θ̂azi − θazi
)2
]
=

(∫ ∞

−∞

∫ ∞

−∞

(
θ3dB
km

Razi + u
1 + w

− θazi

)2
fu,w(u, w)dudw

) 1
2

(30)

√
E
[(

θ̂ele − θele
)2
]
=

(∫ ∞

−∞

∫ ∞

−∞

(
θ3dB
km

Rele + v
1 + w

− θele

)2
fv,w(v, w)dvdw

) 1
2

, (31)

where fu,w(nu,w) and fv,w(nv,w) are bivariate Gaussian joint PDF of u, w and v, w, respectively.
The joint PDFs are defined as a function of SNRs and correlation coefficient of channel

noise variables:

fu,w(u, w)

=

√
(S/Nazi)(S/Nsum)

π
√

1−ρ2
azi,sum

exp
[
− (S/Nazi)u2−2ρazi,sum

√
(S/Nazi)(S/Nsum)uw+(S/Nsum)w2

(1−ρ2
azi,sum)

]
(32)

fv,w(v, w)

=

√
(S/Nele)(S/Nsum)

π
√

1−ρ2
ele,sum

exp

[
− (S/Nele)v2−2ρele,sum

√
(S/Nele)(S/Nsum)vw+(S/Nsum)w2(
1−ρ2

ele,sum

)
]

.
(33)

In order to obtain RMSEs, (30) and (31) should be evaluated using MATLAB’s numeri-
cal integration function. The integration intervals are set to a range that is three times the
standard deviation.

2.4. Generate Correlated Noise Random Vectors for Monte Carlo Simulations

In this paper, the Monte Carlo simulation is used to verify the analytically derived
RMSE described above. That is, ergodicity is confirmed by comparing the results of the
numerical integration-based statistical average and the Monte Carlo simulation-based time
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average in the steady state. Thus, the Monte Carlo simulation is empirically calculated
through many repetitions using the original monopulse estimation equation.

The Monte Carlo simulation-based RMSEs are as follows:√
E
[(

θ̂ − θ
)2
]
=

√√√√ 1
N

N

∑
i=1

(
θ̂(i) − θ

)2
, (34)

where N denotes the number of repetitions. The estimated angle θ̂(i) can be obtained using
(23) and (24).

In order to perform a Monte Carlo simulation, we need to generate correlated noise.
The noise random vector for the receive noise variables is

N = [nA nB nC nD]
T , (35)

where (·)T is the transpose operator.
This noise random vector is a Gaussian random vector:

N ∼ N (mN, CN), (36)

where mN is the expectation vector and CN is the covariance matrix of the noise random
vector. According to (11), mN is a zero vector.

Expanding the covariance matrix of the noise random vector is

CN = E
[
(N−mN)(N−mN)T

]
= E




n2
A nAnB nAnC nAnD

nAnB n2
B nBnC nBnD

nAnC nBnC n2
C nCnD

nAnD nBnD nCnD n2
D




=


σ2

A ρABσAσB ρACσAσC ρADσAσD
ρABσAσB σ2

B ρBCσBσC ρBDσBσD
ρACσAσC ρBCσBσC σ2

C ρCDσCσD
ρADσAσD ρBDσBσD ρCDσCσD σ2

D

.

(37)

The elements of this covariance matrix consist of variance and correlation coefficients
of the received noise variables.

If CN = AAT, Z that satisfies the following expression is a standard normal random vector:

Z = A−1(N−mN). (38)

Therefore, the noise random vector can be expressed as follows:

N = AZ + mN. (39)

Because the covariance matrix CN is a symmetric matrix with real numbers, it has a
singular value decomposition (SVD):

CN = UDUT =
(

UD1/2
)(

UD1/2
)T

. (40)

Therefore, a random vector for the correlated noise variables is generated by the
following equation [21]:

N =
(

UD1/2
)

Z + mN. (41)

3. Result Analysis

In this section, we analyze the performance of the ACM algorithm under the influence
of correlated noise. The correlation coefficient results of the channel noise for the noise
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power difference change are analyzed, and the results of the sum channel SNR and the
difference channel SNRs for the correlation coefficient change are analyzed. In the perfor-
mance analysis, the correlation coefficients of the noise variables received by the antenna
elements are all set to be the same (i.e., ρAB = ρAC = ρAD = ρBC = ρBD = ρCD = ρ).

First, the results of the analytically derived RMSE equations are verified under various
conditions via the Monte Carlo simulation-based RMSE. In Figures 4–7, the results with the
legend ‘Simulation RMSE’ of θ̂azi and θ̂ele are obtained from (34), the results with the legend
‘Analytical RMSE’ of θ̂azi are obtained from (30), and the results with the legend ‘Analytical
RMSE’ of θ̂ele are obtained from (31). Moreover, the x-axis of Figures 4–7 is obtained from
S/Nsum in (29) and is in decibel units. The RMSE of the y-axis is in degrees.

Figures 4 and 5 illustrate the dependence of the RMSE on the SNR and correlation
coefficient with the increase in the SNR and correlation coefficient when the noise source
and target are on the boresight axis (i.e., on-axis). In this case, it is assumed that the
variances of the received noise variables are all equal. Figure 4 shows the RMSE results for
a high SNR, and Figure 5 shows the RMSe results for a low SNR.
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Figure 4. RMSE when the target and noise source are located on-axis (high SNR). (a) RMSE of θ̂azi.
(b) RMSE of θ̂ele.
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Figure 5. RMSE when the target and noise source are located on-axis (low SNR). (a) RMSE of θ̂azi.
(b) RMSE of θ̂ele.

For a low SNR, many outliers occur at the estimated angle. Therefore, in Figure 5,
when calculating the RMSE, outliers such as very large estimated angle values were filtered
by limiting the upper and lower limits.

In Figures 4 and 5, the results with the legend ‘Analytical RMSE’ show good agree-
ments with those with the legend ‘Simulation RMSE’. Note that the RMSE decreases when
the correlation coefficient increases from 0.1 to 0.9. That is, as the correlation between the
received noise variables increases, the accuracy of the estimated angle increases.
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In Table 1, the reduction rate of the RMSE for the increase in the correlation coefficient
shown in Figure 4 is tabulated. The reduction rate of the RMSE for several correlation
coefficients is calculated based on the RMSE result with a correlation coefficient of zero.
For a high SNR and on-axis, the RMSE decreases by approximately 20% as the correlation
coefficient between the received noise variables increases by 0.2.

Table 1. Reduction rate of RMSE with increasing correlation coefficient between noise variables at
high SNR and on-axis.

Correlation Coefficient between Noise Variables (ρ)

0 0.2 0.4 0.6 0.8

Reduction rate of RMSE [%] 0 20.04 39.90 59.92 79.93

Figures 6 and 7 illustrate the dependence of the RMSE on the increase in the SNR
and correlation coefficient when the target and noise source are off-axis. In this case, the
variances of the received noise variables are given differently. If the target and the noise
source are closest to the A-beam as the angle of incidence increases, the noise variable with
the largest variance is received from the A-antenna element, and the variances of the noise
variables received from the remaining antenna elements are smaller than the variance of
the noise variable received from the A-antenna element. In addition, because the C-antenna
element is the furthest from the A-antenna element, the variance of the noise variable
received from the C-antenna element is set to be the smallest. In Figure 6, the angles of
incidence of the target are 4◦, and in Figure 7, the angles of incidence of the target are 8◦.
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Figure 6. RMSE when the target’s azimuth and elevation are 4◦. (a) RMSE of θ̂azi. (b) RMSE of θ̂ele.
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Figure 7. RMSE when the target’s azimuth and elevation are 8◦. (a) RMSE of θ̂azi. (b) RMSE of θ̂ele.
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In Figures 6 and 7, the results with the legend ’Analytical RMSE’ show good agree-
ments with those with the legend ’Simulation RMSE’. Moreover, as the correlation coeffi-
cient increases from 0.1 to 0.9, the RMSE decreases. Consequently, the analytically derived
RMSE is verified by confirming the same results in various cases via Figures 4–7.

The dependence of the channel noise correlation coefficient on the ratio of the variances
of the received noise variables is illustrated in Figure 8. The channel noise correlation
coefficients (ρazi,sum, ρele,sum) defined in (21) and (22) are determined according to (19) and
(20), which are the covariances of the channel noise. If we rearrange the expression in (19),
we obtain

cov[nazi, nsum]
= σ2

A + σ2
D − σ2

B − σ2
C + 2ρADσAσD − 2ρBCσBσC

= E
[
(nA + nD)

2
]
− E

[
(nB + nC)

2
]
.

(42)

Here, cov[nazi, nsum] consists of terms E
[
(nA + nD)

2
]

and E
[
(nB + nC)

2
]
. E
[
(nA + nD)

2
]

is the variance of nA + nD and E
[
(nB + nC)

2
]

is the variance of nB + nC. Therefore, Figure 8a
illustrates the change of ρazi,sum with respect to the ratio of these two terms. Similarly, in Figure 8b,

the change of ρele,sum is illustrated with respect to the ratio of E
[
(nC + nD)

2
]

and E
[
(nA + nB)

2
]
.
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Figure 8. Channel noise correlation coefficient for noise variance ratio. (a) ρazi,sum. (b) ρele,sum.

In Figure 8, as E
[
(nB + nC)

2
]/

E
[
(nA + nD)

2
]

and E
[
(nC + nD)

2
]/

E
[
(nA + nB)

2
]

in-
crease, ρazi,sum and ρele,sum gradually decrease to negative numbers. In addition, as the
correlation coefficient of the received noise variables increases from 0 to 0.99, the average
rate of change and the absolute value of the channel noise correlation coefficient increases.

Figure 9 illustrates the difference channel SNR result for the sum channel SNR. As
the correlation coefficient of the received noise variable increases, the difference channel
SNR becomes larger than the sum channel SNR. In the result of the legend of ‘ρ = 0’, if
the correlation coefficient is zero, the covariance terms in (16)–(18) are all canceled, so that
the variance of the difference channel noise and the variance of the sum channel noise are
equal (the SNR becomes the same). When the correlation coefficient increases to 0.99, the
difference channel SNR increases than the sum channel SNR due to the covariance terms.

Figures 10–15 illustrate how the RMSE is dependent on the channel noise correlation
coefficient, difference channel SNR, and sum channel SNR. The x-axis is the difference
channel SNR, and the y-axis is the sum channel SNR. The figures show the channel noise cor-
relation coefficients of −0.9, 0, and 0.9, respectively. In Figures 10–12, the target’s azimuth
and elevation errors are positive, and in Figures 13–15, the target’s azimuth and elevation
errors are negative. The RMSE is the lowest when the difference channel SNR and the sum
channel SNR are 50dB, and the RMSE generally increases as the SNRs decrease. Overall, the
RMSE increases more predominantly when the difference channel SNR decreases to 10 dB
than when the sum channel SNR decreases to 10 dB. In Figures 10–12, when the channel
noise correlation coefficient increases from −0.9 to 0.9, the RMSE decreases, whereas in
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Figures 13–15, when the channel noise correlation coefficient increases from −0.9 to 0.9, the
RMSE rather increases.
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z
i
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 = 0.99
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S
/N

e
le

 = 0

 = 0.5

 = 0.99

(a) (b)

Figure 9. Difference channel SNR for sum channel SNR. (a) S/Nazi for S/Nsum. (b) S/Nele for S/Nsum.

(a) (b)

Figure 10. RMSE for difference channel SNR and sum channel SNR (θazi, θele = 5◦, ρazi,sum = −0.9).
(a) RMSE of θ̂azi. (b) RMSE of θ̂ele.

(a) (b)

Figure 11. RMSE for difference channel SNR and sum channel SNR (θazi, θele = 5◦, ρazi,sum = 0).
(a) RMSE of θ̂azi. (b) RMSE of θ̂ele.
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(a) (b)

Figure 12. RMSE for difference channel SNR and sum channel SNR (θazi, θele = 5◦, ρazi,sum = 0.9).
(a) RMSE of θ̂azi. (b) RMSE of θ̂ele.

(a) (b)

Figure 13. RMSE for difference channel SNR and sum channel SNR (θazi, θele = −5◦, ρazi,sum = −0.9).
(a) RMSE of θ̂azi. (b) RMSE of θ̂ele.

(a) (b)

Figure 14. RMSE for difference channel SNR and sum channel SNR (θazi, θele = −5◦, ρazi,sum = 0).
(a) RMSE of θ̂azi. (b) RMSE of θ̂ele.
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(a) (b)

Figure 15. RMSE for difference channel SNR and sum channel SNR (θazi, θele = −5◦, ρazi,sum = 0.9).
(a) RMSE of θ̂azi. (b) RMSE of θ̂ele.

4. Comparison with Existing Performance Analysis Method

In this section, the analytic MSE expressions of the ACM algorithm from [14] are
presented, and the results of the RMSE obtained via the analytic MSE expression of [14]
and the numerical integration-based analytical RMSE presented in this paper are compared.
The analytic MSEs are obtained using the Taylor series. These methods applied the second-
order Taylor approximation to the original monopulse estimation equation, using the
independent principle and moments of random variables in the process of deriving the
MSEs of the estimation equations to which the Taylor approximation is applied. The
analytic MSEs based on the second-order Taylor approximation proposed in the previous
study are as follows [14]:

E
[(
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)2
]

= σ2
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B + σ2
Cα2
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Dα2

D

+σ2
Aσ2

B

(
β2

AB + 1
2 βAAβBB
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(43)
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(44)

where α and β in (43) and (44) denote a first-order Taylor and a second-order Taylor
coefficient, respectively. For the detailed derivation of Equations (43) and (44), refer to [14].
The above equations are derived by assuming that the received noise variables are all
uncorrelated. Therefore, in order to compare with the method proposed in this paper, all
correlation coefficients are set to zero.

Figure 16 shows the results of the numerical integration-based analytical RMSE pro-
posed in this paper and the second-order Taylor approximation-based RMSE proposed
in [14]. The results of the integration-based MSE completely overlap the simulation-based
MSE results. On the other hand, the results of the second-order Taylor approximation
based-analytic MSE show quite large differences from the above results of two MSE meth-
ods. The reason for these differences is that the analytic MSE equations are derived by
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applying several approximations, so there are differences between the simulation-based
MSE using the original monopulse estimation equation and the analytic MSE. Moreover,
this Taylor approximation-based analytical expression is valid only when the correlation
coefficient is zero.
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Figure 16. Comparison of RMSE results using analytic expression based on Taylor approximation
and analytic expression based on numerical integration. (a) RMSE of θ̂azi. (b) RMSE of θ̂ele.

5. Discussion

In Section 3, first, the analytical RMSE is verified by comparing the results of the
Monte Carlo simulation-based RMSE for various cases. In Figures 4–7, it can be seen that
the analytical RMSE result and the Monte Carlo simulation RMSE result show excellent
agreements for the case where the SNRs are different and several correlation coefficients of
the received noise variables are given. The RMSE results are consistent, but the operation
times are not. The analytical RMSE calculates the main occurrence region of the noise
variables through the PDF. In this respect, it can be calculated more efficiently and accurately
than the Monte Carlo-based MSE, which is dependent on the number of repetitions.

In Figures 4–7, it is confirmed that the RMSE decreased as the correlation coefficient
between the received noise variables approached one. The reason why these results occur is
that when the correlation coefficient approaches one, the correlated noises in the difference
channel cancel each other out, so the SNR of the difference channel increases.

In Figure 8a, the fact that E
[
(nB + nC)

2
]/

E
[
(nA + nD)

2
]

is less than 1 denotes that
the magnitude of the noise received by the antenna elements B and C is larger than the
magnitude of the noise received by the antenna elements A and D. Moreover, it can be
explained that the noise source is located in the positive azimuth direction with respect
to the boresight. Conversely, if E

[
(nB + nC)

2
]/

E
[
(nA + nD)

2
]

is greater than 1, it can be
said that the noise source is located in the negative azimuth direction with respect to the
boresight. This is explained equally for elevation.

In Figure 8, when the power of the received noise dominates in the positive direction
in the azimuth and elevation, the correlation coefficient of the channel noise is positive, and
when the power of the received noise dominates in the negative direction, the correlation
coefficient of the channel noise is negative. Moreover, when the correlation coefficient
between the received noise variables increases, the change in the channel noise correlation
coefficient becomes larger as the ratio of the received noise variances is changed, and the
absolute value of the channel noise correlation coefficient is larger.

In summary, it can be explained that if the correlation coefficient between the received
noise variables increases, the absolute value of the correlation coefficient of the channel
noise increases and the RMSE of the estimated angle decreases. This is consistent with
the results shown in [16]. Reference [16] explains that the larger the correlation coefficient
between channels, the narrower the MR deviation becomes. The narrower the deviation of
the MR, the more precise the estimated angle.
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Figures 10–12 show the result that the RMSE decreases as the correlation coefficient
of the channel noise increases from negative to positive when the target’s azimuth and
elevation are positive. On the other hand, in Figures 13–15, when the azimuth and elevation
of the target are negative, the RMSE decreases as the correlation coefficient of the channel
noise decreases from positive to negative. In Figure 8, we find that the correlation coefficient
of the channel noise changes from negative to positive when the noise source changes from
negative to positive in the azimuth and elevation directions with respect to the boresight.
Consequently, referring to the results of Figures 8 and 10–15, when the noise source and
the target have the same sign in the azimuth and elevation directions, the RMSE decreases,
and when the sign is different, the RMSE increases.

6. Conclusions

In general, ACM radar uses four squinted beams to simultaneously estimate azimuth
and elevation. When noise from an external source is present, the noise is received in the
four squinted beams, and the accuracy of estimating the angle of the target by the radar
becomes low. Assuming this environment, in this study, we analyzed the RMSE of the
ACM algorithm with an analytical equation in various cases by varying the correlation and
variance of the noise variables received by the four antenna elements.

For verification, the results of the Monte Carlo simulation-based RMSE and the analytic
equation-based RMSE are compared by varying the SNR and angle of incidence. It is
confirmed that the results of the analytically derived RMSE equation and the Monte Carlo-
based simulation RMSE are in good agreement. Moreover, we find that the absolute value
of the channel noise correlation coefficient increases and the RMSE of the estimated angle
decreases when the correlation coefficient between the received noise variables increases.
In particular, when the SNR is high and the noise source is located on the axis, the RMSE
decreases by 20% whenever the correlation coefficient between the reception noise variables
increases by 0.2.

Referring to the results of the RMSE for the difference channel SNR and sum channel
SNR and the results of the channel noise correlation coefficient for the noise variance ratio,
it is confirmed that the RMSE decreases when the signs of the direction of the noise source
and the target are the same, and the RMSE increases when the signs are different. Here, the
same sign denotes that the azimuth or elevation direction of the target and the noise source
with respect to the boresight is the same.

In this paper, it is assumed that the correlation coefficients between the received noise
variables are all the same. However, in general, the correlation coefficients are different.
In a future study, we will derive a correlation coefficient expression that depends on the
direction of the noise signal, such as noise jamming, and will explicitly analyze the RMSE
performance for the direction of the noise signal.
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