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Abstract: Conventional image classification methods usually require a large number of training
samples for the training model. However, in practical scenarios, the amount of available sample data
is often insufficient, which easily leads to overfitting in network construction. Few-shot learning
provides an effective solution to this problem and has been a hot research topic. This paper provides
an intensive survey on the state-of-the-art techniques in image classification based on few-shot
learning. According to the different deep learning mechanisms, the existing algorithms are divided
into four categories: transfer learning based, meta-learning based, data augmentation based, and
multimodal based methods. Transfer learning based methods transfer useful prior knowledge from
the source domain to the target domain. Meta-learning based methods employ past prior knowledge
to guide the learning of new tasks. Data augmentation based methods expand the amount of sample
data with auxiliary information. Multimodal based methods use the information of the auxiliary
modal to facilitate the implementation of image classification tasks. This paper also summarizes
the few-shot image datasets available in the literature, and experimental results tested by some
representative algorithms are provided to compare their performance and analyze their pros and
cons. In addition, the application of existing research outcomes on few-shot image classification in
different practical fields are discussed. Finally, a few future research directions are identified.

Keywords: few-shot learning; transfer learning; meta-learning; data augmentation; multimodal

1. Introduction

Image classification aims to distinguish different types of images according to semantic
information, which is an important application in computer vision. Prior to the emergence
of deep-learning techniques, local features, such as Bag of Words (BoW) [1], Scale-Invariant
Feature Transform (SIFT) [2], Histogram of Oriented Gradient (HOG) [3], and Local Binary
Pattern (LBP) [4], were commonly used tools in image classification tasks. However, these
traditional methods heavily rely on manual design, which is not only computationally
complex but also inefficient. On the other hand, traditional image classification algorithms
extract single features of an image as input, such as texture features [5], which can only
represent partial information of an image and cannot accurately describe the image, making
it difficult to produce good results for image classification tasks. These classical methods
are generally for a specific identification task, and the size of the data is not large and the
generalization ability is poor, making it difficult to achieve an accurate recognition effect in
practical applications [6].

In recent years, with the continuous development of artificial intelligence and the
proposal of large-scale labeled datasets [7] and deep neural network structures [8], many
researchers have trained models with excellent recognition performance by convolutional
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neural networks (CNN) using large-scale labeled data [9-11]. Model training relies on a
huge amount of data. However, it is difficult to collect massive data samples in practical ap-
plication fields, such as medicine and military. Besides, sample labeling is time-consuming
and labor-intensive, and the training equipment also requires huge investment. A model
without sufficient training data is prone to overfitting. Few-shot learning (FSL) [12,13] can
effectively solve this problem. The concept of few-shot learning was first proposed by Feifei
Li et al. in 2003, pointing out that the key problem of few-shot learning is how to use the
learned knowledge to learn a new category [14]. This technique solves the long-standing
problem with the need for large and extensive datasets. For training samples, few-shot
learning generally only needs to learn features of a small number of labeled images to
classify new test images. At present, few-shot learning has been widely used in many image
processing tasks, such as image recognition [15], image segmentation [16], image classifica-
tion, and retrieval [17-19]. In addition, the research of few-shot image classification also has
high application value. In fields such as medical [20] and public security [21], it is difficult
to collect large-scale labeled data, making deep learning models perform poorly. Few-shot
learning can effectively alleviate the problem wherein some high-performance models
cannot generalize in new classes due to the small amount of training data; this enables
these high-performance models to be applied to more fields. At present, some scholars have
reviewed few-shot learning [22,23]. Zhao et al. [22] specifically introduced the research
progress of few-shot learning models and algorithms in accordance with the methods
based on model fine-tuning, data augmentation, and transfer learning. Wang et al. [23]
conducted an extensive literature review on few-shot learning and organized it into a
unified taxonomy from the perspective of data, model, and algorithm. However, there is
very little literature in academia reviewing few-shot image classification [24].

In the early stage of the research, few-shot learning is based on the Bayesian frame-
work, and the class probability reasoning of the sample is obtained by combining the model
parameters with the prior probability and the posterior probability [12]. With the develop-
ment of deep learning and the evolution of neural network architecture, researchers have
introduced neural network models to solve the problem of few-shot image classification.
In recent years, most of the existing few-shot learning methods have adopted the deep
learning technique. The difference between this paper and the aforementioned review
articles [22,23] is that this paper focuses on the existing methods for few-shot image classifi-
cation, whereas literature [22,23] discuss few-shot learning in different tasks such as image
segmentation, target detection, natural language processing, etc. The main contributions of
this paper are as follows: (1) based on an intensive survey on recent literature, this paper
divides the existing few-shot image classification algorithms into four categories: transfer
learning-based, meta-learning-based, data augmentation-based, and multimodal-based.
(2) The few-shot image datasets available in the literature are summarized. (3) Performance
of representative algorithms from each category is compared based on experimental results.
(4) A list of future research directions in few-shot image classification is identified.

The structure of this paper is as follows: Section 2 defines the few-shot image classi-
fication tasks and summarizes the commonly used datasets in this field; in Section 3, the
existing few-shot image classification algorithms are classified into four categories: transfer
learning-based, meta-learning-based, data augmentation-based, and multimodal-based;
Section 4 compares the experimental results of some representative algorithms and dis-
cusses the pros and cons of various methods; Section 5 describes the application of few-shot
image classification in different practical fields; Section 6 discusses the research trends of
few-shot image classification; Section 7 concludes this paper.

2. Definition and Datasets
2.1. Few-Shot Image Classification Definition

A few-shot image classification (FSIC) task is generally termed as a N-way K-shot [25]
problem. A training set of few-shot learning contains many categories, and there are
multiple samples in each category. In the training phase, N categories of image samples
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are randomly selected from the training set, and K samples (a total of N x K images) are
selected from each category as the support set. Then, a small number of samples from the
remaining data of each of these N categories are selected as the prediction object of the
model, also known as the query set. If K is very small (usually K < 10), the classification
task is called the few-shot image classification; when K = 1, it becomes a one-shot image
classification task; when K = 0, it is a zero-shot image classification task. Few-shot learning
generally adopts the episode training mechanism. An episode contains a support set and a
query set. After learning from the support set, the performance of the model is verified on
the query set. Therefore, an episode corresponds to a few-shot learning task. The goal of a
few-shot image classification task is to accurately classify the images in the query set based
on the existing support set, that is, the model is required to learn how to distinguish these
N categories from N x K samples.

2.2. Datasets

This paper summarizes the few-shot learning datasets commonly used in academia
and divides them into simple image datasets, complex image datasets, and special image
datasets according to different sample data types. Simple image datasets include the
Omniglot dataset [26] and the MNIST dataset [27], both of which have simple image
content, such as handwritten characters and handwritten numbers, which are easy to
classify. Complex image datasets include the minilmageNet dataset [25], tieredImageNet
dataset [28], CIFAR-100 dataset [29], and Caltech101 dataset [30], which have richer and
more complex image categories, such as images of people, animals, cars, etc., increasing
the difficulty of the classification task. The image contents of special image datasets are
relatively similar with large intra-class differences and small inter-class differences, and the
image samples of the dataset are all a particular kind of object. The special image dataset
includes the CUB-200 dataset [31] and the CIIP-TPID dataset [32]. Table 1 summarizes the
existing commonly used few-shot learning datasets.

The MNIST dataset consists of 60,000 training samples and 10,000 test samples, each
of which is a 28 x 28 pixel image of a handwritten number.

The Omniglot dataset is composed of 1623 handwritten characters from 50 different
languages. Each character has 20 different handwritings, which is equivalent to 1623 categories
with 20 samples per category.

The minilmageNet dataset contains 60,000 color images in 100 categories, with 600 sam-
ples in each category, and the size of each image is 84 x 84. Among them, the training set,
validation set, and test set contain 64 categories, 16 categories, and 20 categories, respectively.

The tieredImageNet dataset contains 608 categories with a total of 779,165 images.
Among them, the training set, validation set, and test set contain 351 categories, 97 cate-
gories and 160 categories, respectively.

The CIFAR100 dataset has 100 classes, each class has 600 color images of size 32 x 32,
500 of which are used as a training set and 100 as a test set.

The Caltech101 dataset is composed of 101 categories of object pictures, including
animals, industrial products, pizza, and human faces. There are 40 to 800 pictures in each
category, and the size of each picture is 300 x 200 pixels. The total number of pictures in
this dataset is 9146.

The full name of the CUB-200 dataset is Caltech-UCSD Birds-200 dataset, which
contains 6033 images of 200 species of birds.

The CIIP-TPID dataset was established by the Center for Image and Information
Processing (CIIP) of Xi’an University of Posts and Telecommunications (XUPT). According
to the actual needs of public security and traffic police, a total of 11,040 images of 69 types
of tire pattern images under different environments, illuminations, and angles have been
established in this dataset. Each category includes 80 tire surface patterns and 80 tire
indentation images. The tire pattern mixing database is the largest database published in
this field so far and has been used as the official dataset of the Multimedia Grand Challenge-
Fine Grained Vehicle Footprint Recognition competition of the ACM Multimedia Asia



Electronics 2022, 11, 1752

4 of 28

2019 conference [33] and the Grand Challenge-Few-Shot Learning for vehicle footprint
recognition competition of the ICME 2021 conference [34].

Table 1. The existing commonly used few-shot learning datasets.

Types Datasets Source Categories  Images Examples
w3 PRI
o) [Se e
Omniglot New York University 1623 32,460 B i)
Simple image datasets

75
oo [[2[}]3
MNIST New York University 10 70,000 [5[0]7]4]

minilmageNet Google DeepMind team 100 60,000

tieredImageNet University of Toronto 608 779,165

Complex image datasets
=EET - BE<Sas
EREDE KEERE
CIFAR-100 University of Toronto 100 60,000  Ewll NE MEEEH
ERuE S s
EMATE e
Caltech101 California Institute 101 9146
of Technology
CUB-200 California Institute 200 6033 |
of Technology
Special image datasets
CIIP-TPID Xi’an University of Posts 69 11,040

and Telecommunications

3. Few-Shot Image Classification Algorithms

According to different learning paradigmes, this paper summarizes the existing few-
shot image classification algorithms into four categories: transfer learning-based, meta-
learning-based, data augmentation-based and multimodal-based. (1) The transfer learning-
based method aims to apply the knowledge learned in a certain field or task to different
but related fields or problems. According to different mechanisms, transfer learning-based
methods can be further divided into instance-based, feature-based, and fine-tuning-based
methods. (2) The meta-learning-based method employs previous knowledge and experi-
ence to guide the learning of new tasks so that the model has the ability to learn to learn.
According to different mechanisms, meta-learning-based methods are subdivided into
model-based, optimization-based, and metric-based methods. (3) the data augmentation-
based method expands the training set through various processing of existing data to solve
the problem of insufficient training data. According to different augmentation ways, it can
be divided into data generation-based and feature enhancement-based methods. (4) The
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Few-shot
image
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algorithms

multimodal-based method learns better feature representations by eliminating redundancy
between modalities by exploiting the complementarity between multiple modalities. The
multimodal-based method is implemented in two ways: knowledge transfer-based and
metric-based methods. The existing few-shot image classification algorithms are summa-
rized in Figure 1.

. ) ’ TrAdaBoost, TaskTrAdaBoost,
,‘ Methods based on instance —
. J | Festra, ATL

-

. s N N
Transfer learning based ]"—{ Methods based on feature }— GFK, HTLIC, FSR, JAN, RIN

S

- ~
h { Methods based on fine-tuning |

) )

p \
4 Oquabetal., Geetal., Zhouetal
L

Methods based on model MTL, SNAIL, Chuetal.. Robust-dist

Andrychowicz et al., Meta-Learner

. Methods based on optimization LSTM. MANN, MAML, Meta-
Meta-learning based SGD. TAML

Kochetal., RN, MN, PN, Renetal.
PARN, SAML, CAD, DeepBDC,
SetFeat, GNN, EGNN, TPN, DPGN,
Meta-GNN, Gidaris et al., GCN-NFO

Methods based on metric

GAN, Mehrotra etal.,
DAGAN, MetaGAN,
AFHN, Hariharan et al.,

Methods based on data generation

3 PMN, Zhang et al.
Data augmentation based

IDeMe-Net, AGA, A-
Methods based on feature enhancemeut)—[ encoder: BPA. LaS0 ]

Methods based on knowledge transfer H Lietal, KIN ]
;[ Multimodal based

Methods based on metric H Schwards et al., AM3 J

Figure 1. An overview of image classification algorithms based on few-shot learning.

3.1. Transfer Learning-Based Methods

The main difficulty of few-shot learning lies in how to optimize the model when
new data classes appear but each class has no labeled training samples. Considering that
there are sufficient-known tagged data from related fields, this problem can be solved by
transfer learning (TL). The schematic diagram of transfer learning is shown in Figure 2.
As a machine learning method, transfer learning transfers the useful prior knowledge in
the source domain to the target domain, which is conducive to few-shot learning. Using
the prior knowledge from the source domain, the performance of the learning tasks in
the target domain can be improved even in the case of fewer samples. In some cases, the
violent transfer may fail when the source domain and the target domain are not related
to each other. In the worst case, it may even damage the learning performance of the
target domain, which is called negative transfer [35]. Generally, this scenario is suitable for
transfer learning when the data in the source domain is sufficient and the data in the target
domain is small. According to the different mechanisms and technical means in the process
of transfer learning, this paper divides the transfer learning methods into instance-based,
feature-based, and fine-tuning-based methods.
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Figure 2. The learning process of transfer learning.

3.1.1. Instance-Based Methods

In transfer learning, there is a high risk of generalization when a certain class of
samples has a high probability of occurring in the target domain and a low probability of
occurring in the source domain. Instance-based transfer learning is to find a way to weight
the input sample features. Instance-based transfer learning studies how to select examples
from the source domain that are useful for training in the target domain, such as effectively
assigning weights to labeled data instances in the source domain, this ensures that the
instance distribution in the source domain is close to that in the target domain, so as to
establish a reliable learning model with higher classification accuracy in the target domain.
The schematic diagram of instance-based transfer learning is shown in Figure 3.
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Figure 3. Schematic diagram of instance-based transfer learning.

The TrAdaBoost method proposed by Dai et al. [36] uses an AdaBoost-based approach
to filter out instances in the source domain that are different from the target domain. The
instances are reweighted in the source domain to form a distribution similar to the target
domain. Finally, the model is trained by using reweighted instances from the source
domain and original instances from the target domain. Since it is difficult to measure the
correlation between any independent source domain and target domain, Yao et al. [37]
extended TrAdaBoost and proposed a boosting method called TaskTrAdaBoost to minimize
the impact of negative transfer of irrelevant source domains for knowledge transfer. This
method can promote rapid retraining of new target domains.

In [38], a transfer learning method called Festra was proposed to deal with the problem
of interregional sandstone microscopic image classification. This method includes both
feature selection and E-TrAdaBoost; the latter combines the technique of feature and
instance transfer. The purpose of feature selection is to filter out the features with large
differences between the target domain and the source domain, while E-TrAdaBoost aims
to reduce the difference between slice images collected in different regions. Therefore,
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labeled instances from multiple regions can be used to train high-quality classifiers to make
predictions in the target domain.

In order to solve the impact of negative transfer, Liu et al. [39] proposed the Analogical
Transfer Learning (ATL), which follows the analogy strategy. The algorithm first learns
a modified source hypothesis, and then transforms the modified source hypothesis and
the target hypothesis (trained with only a small number of samples) into an analogous
hypothesis. The experimental results show that the algorithm effectively controls the
occurrence of negative transfer on the two levels of instance and hypothesis and has a
better generalization capability.

3.1.2. Feature-Based Methods

In transfer learning, it is usually difficult to have a good overlap between the feature
space of source domain and target domain, so it is necessary to find useful features on the
basis of the feature space. The feature-based transfer learning algorithms focus on how to
find the common feature representations between the source domain and the target domain,
and then use these features for knowledge transfer, which can be a good solution to this
problem. Gong et al. [40] proposed a domain adaptation technique Geodesic Flow Kernel
(GFK), which reduces the difference of edge distribution by finding a low-dimensional
feature space. In addition, when there are multiple source domains, a domain level metric
ROD is proposed, which calculates the distance between each source domain and the target
domain for selecting the appropriate source domain transfer.

In transfer learning, a large amount of unlabeled heterogeneous source data can be
used in some cases to improve the prediction performance of a specific target learner.
Zhu et al. [41] proposed a Heterogeneous Transfer Learning Image Classification (HTLIC)
method, which uses a large amount of available unlabeled source domain data to create a
common potential feature input space in order to improve the prediction performance of
the target classifier. Experiments show that this method can be effectively used for image
classification tasks. Feuz et al. [42] proposed a new heterogeneous transfer learning method
called Feature-Space Remapping (FSR), which transfers knowledge between domains with
different feature spaces and associates features in different feature spaces by constructing
meta features.

Deep networks have been successfully applied to learn transferable features to adapt
the model from the source domain to different target domains. The Joint Adaptation
Networks (JAN) proposed by Long et al. [43] is able to learn the transmission network by
aligning the joint distribution of multiple domain-specific layers across domains based
on the joint maximum average difference criterion. In addition, the author also proposed
a new deep network unsupervised domain adaptive method called Residual Transfer
Network (RTN) [44], which can realize the end-to-end learning of adaptive classifiers and
transferable features.

3.1.3. Fine-Tuning-Based Methods

In the research of deep learning, there are usually few large-scale datasets that can
be used to train neural networks, resulting in poor classification results. Fine-tuning-
based methods can avoid the need for large-scale training datasets, so as to improve the
classification effect. The transfer learning method based on fine-tuning first trains a model
on another large dataset, and then adopts the weights obtained from the training as the
initial weights of the new task (small dataset), and finally retrains the model with a smaller
learning rate. The advantage of this method is that the number of training parameters can
be reduced, which is beneficial to overcome overfitting.

CNN has achieved excellent results in the field of computer vision, but the training
of CNN models often requires a lot of labeled data and its performance on small datasets
will be worse. To solve this problem, Oquab et al. [45] adopted a fine-tuning method. First,
the traditional CNN model was pre-trained on large datasets such as ImageNet, and then
fine-tuned for specific tasks. This method modified the entire pre-training framework
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by removing the softmax activation layer and adding two adaptive layers with learnable
parameters while the rest of the parameters are frozen.

Ge et al. [46] proposed a selective joint fine-tuning transfer learning method, which
introduces some tasks with sufficient training sets into the current task for joint training.
The introduced auxiliary task selects the part of the images whose underlying features
are similar to the training set of the current main task. Using additional data that can be
directly obtained to assist the training of the main task; this method can effectively reduce
the risk of overfitting caused by insufficient training data and improve the classification
accuracy of the model.

At present, many few-shot learning methods based on transfer learning are pre-trained
on the basic dataset, and then fine-tuned on the new few-shot dataset. However, how to
choose the best basic dataset for pre-training is still a difficult problem. Zhou et al. [47]
proposed an algorithm to improve few-shot learning by guiding the selection of basic
categories. Specifically, first, the concept of similarity ratio (SR) was introduced to describe
the relationship between the category selection of basic datasets and the classification effect
on the new dataset; then, the problem of base class selection is further expressed as a
submodel optimization problem based on SR; finally, the optimal solution of this problem
is obtained by a greedy algorithm.

3.2. Meta-Learning-Based Methods

Deep learning has achieved great success and has become a practical method in many
applications, such as computer vision and natural language processing. However, this
relies heavily on a large amount of labeled training data. As a standard method to solve
the problem of few-shot learning, meta-learning tries to learn how to learn. The goal of
meta-learning is to enable models, especially deep neural networks, to learn from only a
small number of data samples how to take on new tasks. Meta-learning is essential for
machine intelligence and also very challenging. According to the different mechanisms,
this paper divides meta-learning into model-based, optimization-based, and metric-based
methods. Figure 4 shows an example of the application of meta-learning in the field of
image classification.

training data test set

N E 2 O
‘ ) . F <q
et | M e o £t 8

EJ%ME

meta-testing

Figure 4. An example of applying meta-learning in the field of image classification.

3.2.1. Model-Based Methods

The model-based meta-learning method aims to generate some parameters of the
model by using the general knowledge learned in different tasks so that the model can
adaptively solve the corresponding tasks, thereby improving the performance of few-shot
learning classification tasks.

Sun et al. [48] proposed a new meta-learning method called Meta-Transfer Learning
(MTL) by combining the advantages of transfer learning and meta-learning. In MTL, the
scaling and translation parameters are introduced to adjust the weight parameters to meet
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the needs of new tasks. This method avoids updating the weight parameters of the entire
network and reduces the problem of overfitting. In addition, deep convolution neural
network can be used to improve the ability of feature representation. Finally, the course
learning method is adopted to train the network from simple to difficult, which effectively
improves the loss convergence speed and the classification effect.

SNAIL [49] is a general meta-learning architecture, which is composed of interleaved
time convolution and causal attention layer. The convolution network learns the general
feature vector of the training samples to aggregate the information from past experience.
The causal attention layer selects the information from the collected experience to be
popularized to the new task, which can effectively complete the few-shot learning tasks.

Chu et al. [50] proposed a reinforcement learning model based on the maximum
entropy block sampling algorithm to solve the few-shot classification tasks. The model
divides a picture into several blocks and then forms a block sequence for learning. This
method can guide the network to select the valuable parts of the picture for observation,
without wasting energy in the background area, which improves the learning efficiency of
the model to a certain extent.

Dvornik et al. [51] proposed a few-shot learning algorithm based on model ensemble,
called Robust-dist, which integrates multiple models together and calculates the final
result by voting or averaging the output results of each model. The algorithm uses en-
semble learning to reduce the divergence between classifiers and improve the effect of
few-shot learning.

3.2.2. Optimization-Based Methods

In few-shot image classification tasks, the learner is usually overfitting due to the
small number of training samples, and in the training process, the learner is usually trained
for millions or even tens of millions of iterations before converging in order to achieve
a better result. These problems not only affect the performance of the learner, but also
the classification efficiency of the model. The optimization-based meta-learning method
is an important branch in the field of few-shot learning. This type of algorithm tries to
obtain a better initialization model or gradient descent direction through meta-learning and
optimizes the initialization parameters of the learner by means of a meta-learner so that the
learner can converge faster in the corresponding task and can learn fast with only a small
number of samples. Some existing methods use an additional neural network, such as Long
Short-Term Memory (LSTM), as a meta-learner to train the model. In [52], a meta-learner is
developed, based on LSTM, and shown how to transform the design of an optimization
algorithm into a learning problem. Ravi et al. [53] proposed another LSTM-based meta-
learner to learn appropriate parameter updates and general initialization of the learning
model. Compared with LSTM, Santoro et al. [54] proposed the Memory-Augmented
Neural Network (MANN), which trains the Neural Turing Machine (NTM) [55] as a meta-
learner. This is a neural network with enhanced memory capabilities. The displayed
external memory module is used to retain the sample feature information, and the meta-
learning algorithm is used to optimize the reading and writing process of NTM. The writing
process closely associates the feature information with the corresponding label, and the
reading process accurately classifies the feature vector, finally realizing effective few-shot
classification and regression tasks.

Finn [56] proposed a new meta-learning algorithm called Model-Agnostic Meta-
Learning (MAML). First, the network is trained to have the ability of common feature
extraction, and then on this basis, the network is further trained to quickly adapt to new
tasks, that is, a parameter initialization state with high sensitivity is obtained through
learning, in which a small change of parameters can greatly improve the loss function. This
method is considered model agnostic because it can be directly applied to any learning
model trained by the gradient descent process.

The advantage of MAML is that it uses meta-learning to obtain a better initialization
parameter. On this basis, better results can be obtained by fine-tuning on a small number
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of samples. However, the disadvantage is that the capacity of the model is limited as
only the initialization parameters are learned, which is generally only suitable for shallow
networks. The LSTM-based meta-learner method uses the LSTM network as the outer
network to learn the optimization parameters of the inner network. This method has a large
model capacity, but it is not practical because the LSTM training process is complex and
the convergence speed is slow. Based on this, Li et al. [57] proposed a compromise method
called Meta-SGD, which follows the method MAML that only needs the same network
structure for internal level training and external level training, respectively. Through meta-
learning, the initialization parameters; learning rate; and update direction are learned at the
same time, then the trained model can be easily fine-tuned to adapt to new tasks. Compared
with MAML, the model capacity of this algorithm has been improved. Compared with
LSTM, the training difficulty of this algorithm has been significantly reduced.

A potential problem of the optimization-based meta-learning method is that the model
tends to have a preference for training tasks during the training process, which may lead to
the decline of its generalization ability. To solve this problem, Jamal [58] proposed a method
called Task-Agnostic Meta-Learning (TAML), which is further improved on MAML. On
the original basis, it explicitly requires that the parameters of the model have no preference
for different tasks through regularization, so as to improve the generalization ability of the
model to new samples.

3.2.3. Metric-Based Methods

Metric learning is a method of spatial mapping, which can learn a feature space where
all data are transformed into a feature vector and the distance between the feature vectors
of similar samples is smaller than that of dissimilar samples for data distinction.

By comparing the similarity between data samples, several specialized models for
metric-based meta-learning have emerged [59-61], especially for few-shot classification
tasks. Specifically, Koch et al. [59] first introduced the Siamese Neural Networks for few-
shot classification tasks in 2015. In addition, Sung et al. [60] proposed a conceptually simple,
flexible, and general few-shot learning framework called the Relation Network (RN), which
is trained end-to-end from scratch. The classifier in RN learns several examples from
each category to train the network in an end-to-end manner and adjusts the embedding
and distance metrics to achieve effective few-shot image classification. Vinyals et al. [25]
proposed the Matching Networks (MN), which learns an embedding function and uses the
cosine distance in the attention kernel to measure similarity. Figure 5 shows the architecture
of MN. Snell et al. [61] proposed the Prototypical Networks (PN), which maps examples to a
p-dimensional vector space so that the examples of a given output category are close to each
other. Then, it calculates the prototype (average vector) for each category. The new sample
will be mapped to the same vector space, and the distance metric will be used to create a
Softmax among all possible categories to classify the sample. On this basis, Ren et al. [28]
proposed three improved models to extend the PN to semi-supervised learning.

Figure 5. The structure of MN, where gg and fy are the coding functions of training data and test
data, respectively.
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The ordinary CNN feature extraction networks will only get a high response at the
location of the target object. In this case, if the image target object in the support set and
the query set are not in the same location, the obtained feature map will not correspond
well. In order to solve the above problems, Wu et al. [62] made improvements based on RN
and proposed Position-Aware Relation Networks (PARN). Specifically, first, Deformable
Feature Extractor (DFE) is used to extract more useful features in feature extraction, so
as to improve the effect of similarity comparison. Then, the Dual Correlation Attention
(DCA) mechanism is proposed to aggregate the correlation information between any two
pixels between the query set image and the support set image. This method uses fewer
parameters to achieve better results.

In the existing meta-learning methods, based on metric, directly calculating the dis-
tance between the query set image and support set image may cause ambiguity, as the main
object can be located anywhere on the image. In order to solve this problem, Hao et al. [63]
proposed a Semantic Alignment Metric Learning (SAML), which aligns semantic-related
main objects through the “collect and select” strategy. Firstly, a relation matrix is calculated
to “collect” the distance between each local region pair of a 3D tensor extracted from the
query set image and the average tensor of the support set image, and then the attention
mechanism is used to “select” and pay attention to the semantically related local region
pairs, and finally the weighted relationship matrix is mapped to its corresponding similarity
score by multi-layer perceptron.

Chikontwe et al. [64] proposed a strategy to cross-attend and re-weight discriminative
features (CAD) for few-shot image classification. A single shared module is introduced to
produce a pooled attention representation of features by calculating the mutual attention
scores. This method can effectively re-weight features to boost performance and generalize
better for cross-domain tasks.

Xie et al. [65] proposed Deep Brownian Distance Covariance (DeepBDC), where the
BDC matrix is calculated to represent the input image and a more accurate similarity of a
pair of images can be obtained by the inner product of the corresponding BDC matrixes.
This greatly improves the performance of few-shot image classification.

Afrasiyabi et al. [66] introduced SetFeat for set feature extraction. A set of M feature
vectors is extracted from the images, and another set of M feature vectors is generated
by embedding a shallow self-attention based mapper at different stages of the network.
The set-to-set matching metric is used to establish the similarity between images in the
set-feature space during the training and inference to classify few-shot images.

The graph is composed of edges and nodes. The construction process of the graph
includes the generation of edges and the updating of nodes. The representation of edges
is the measurement of the relationship between nodes in the graph. In recent years, the
Graph Neural Network (GNN) based on meta-learning has been paid more and more
attention in few-shot learning. GNN can be attributed to embedding learning. By mapping
the samples into the feature space and then measuring the relationship between samples,
GNN classifies the samples according to the measurement distance. Therefore, the graph
neural network is essentially a metric-based method to achieve few-shot learning. The
nodes of the graph neural network can represent a single sample in the training set, and
the edges can represent the correlation between the samples, relying on the information
transfer between the nodes in the graph to capture the dependency relationship in the
graph, and have strong representation ability.

At present, some existing few-shot learning methods with GNN represent and learn
the intra-class sample relationships or inter-class sample relationships through the nodes
and edges in the graph and iteratively update the graph. Garcia et al. [67] proposed an
end-to-end GNN, which uses GNN to directly predict the category of unknown samples.
Firstly, feature extraction is carried out for the support set and query set, and then these
sample features and corresponding labels are spliced as the input of the graph network. In
the process of iteratively updating the graph, the relationship between intra-class samples
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and inter-class samples is implicitly constructed, and the classification task is completed
after the update. The proposed GNN structure is shown in Figure 6.
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Figure 6. Overview of the proposed GNN.

In contrast, the Edge-Labeling Graph Neural Network (EGNN) proposed by Kim et al. [68]
learns to predict the edge labels on the graph instead of the node labels and explicitly models
the similarity and dissimilarity between samples based on prior knowledge. Liu et al. [69]
proposed a Transductive Propagation Network (TPN), in which node features are obtained
through deep neural networks. The network uses the sample features extracted by the
convolution block as the input of the graph network and transfers the label from the sup-
port set samples to the query set samples according to the output feature of the graph
network. The network architecture diagram of TPN is shown in Figure 7. The Distribution
Propagation Graph Network (DPGN) proposed by Yang et al. [70] does not only focus on
the relationship between samples but introduces a graph network method for label prop-
agation through sample distribution to integrate the relationship between instance level
and distribution level, so as to transmit information between point graph and distribution
graph to realize image classification.
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Figure 7. The network architecture diagram of TPN.

The Meta-GNN [71] trains multiple similar few-shot learning tasks to obtain the
prior knowledge of the classifier, and then uses a new class with a small number of label
samples to classify nodes. Gidaris et al. [72] proposed a few-shot learning algorithm using
graph neural networks. The algorithm can be updated based on the weight vector of the
basic category and a small number of new samples to obtain the category weight vector
corresponding to the new sample, which cannot only identify the new sample, but also
retain the classification ability of the basic category. In order to quickly update the weight
parameters, the Denoising AutoEncoders (DAE) are introduced into the GNN. Gaussian
noise is added to the initial weight vector, and then the vector is restored and reconstructed.
The direction of weight update is guided by the difference between the reconstructed vector
and the initial vector.
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The representation ability of graph node features is an important factor affecting
the learning performance of the graph convolution network. Liu et al. [73] proposed
an improved graph convolution network model called GCN-NFO, which uses the cross
attention mechanism to associate the image features of the support set and the query
set and extracts more representative and discriminative salient region features than the
initialization features of graph nodes through information aggregation. The optimized
graph node features transmit information through the graph network, which implicitly
strengthens the similarity of intra-class samples and the difference of inter-class samples,
thereby enhancing the learning ability of the model.

3.3. Data Augmentation-Based Methods

The fundamental problem of few-shot learning is that the number of samples is too
small, which leads to lower sample diversity and makes the model prone to overfitting.
When the amount of data is limited, the number and category of samples in the dataset
can be expanded by the methods based on data augmentation to improve sample diversity
and prevent overfitting of few-shot learning models during training. At the beginning
of the development of deep learning, data augmentation usually generates new samples
by performing some transformations on the sample data. These transformations include
operations such as rotation, deformation, scaling, cropping, and color transformation. With
the continuous development of few-shot learning, more advanced data augmentation
methods are constantly being proposed. In this paper, according to the different ways of
enhancement, we will divide them into those methods based on data generation and those
based on feature enhancement, and then we will introduce them in detail.

3.3.1. Data Generation-Based Methods

The methods based on data generation aim to generate new sample data for few-shot
categories for the purpose of data augmentation. Although data augmentation can expand
the sample data in the dataset and reduce the overfitting problem in few-shot learning to a
certain extent, the transformation mode is limited due to the small amount of sample data.
Although the training effect has been improved to a certain extent, the overfitting problem
cannot be completely solved.

Goodfellow et al. [74] proposed the famous Generative Adversarial Nets (GAN), which
consists of a generator and a discriminator. The task of this model is to train two competing
networks for dynamic games. The generator generates an image that is as similar as
possible to the real image and aims to prevent the discriminator from judging whether
the image is a real image or an image generated by the generator. The discriminator
distinguishes the image generated by the generator from the real image as accurately as
possible. Mehrotra et al. [75] further proposed to generate samples for specific tasks to
expand the training set and combined GAN with a few-shot classification network to make
the generated samples more suitable for few-shot learning.

Based on the image generation adversarial model, Antoniou et al. [76] proposed the
Data Augmentation Generative Adversarial Networks (DAGAN). The model obtains image
data from the source domain and inputs it into the encoder to be projected into a lower-
dimensional vector. The converted random vector is connected to the decoder to generate
an enhanced image. The MetaGAN model proposed by Zhang et al. [77] combines GAN
with part of the classification network for training. This method can help the few-shot
classifier learn a clearer decision boundary, thereby helping to improve the performance of
few-shot learning.

Lietal. [78] proposed the Adversarial Feature Hallucination Networks (AFHN), which
uses the conditional Wasserstein Generative Adversarial Networks ((WGAN) to generate
samples for dataset expansion. By adding a classification regularizer and an anti-collapse
regularizer, the discrimination ability and diversity of generated samples are improved,
so that they can be applied to few-shot learning. The framework of AFHN is shown in
Figure 8.
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Figure 8. The framework of AFHN.

In addition to the above GAN-based methods, there are some other methods that
can also solve the problem of insufficient data. Few-shot learning can identify new object
categories from a few samples. In order to ensure sample diversity, Hariharan et al. [79]
proposed a data augmentation method based on few-shot learning of complex images. This
method transforms the two sample feature vectors of the same category, and then applies
them to the sample feature vector of the new category to generate a new sample and adds
it to the training set of the new category. Wang et al. [80] proposed the Prototype Matching
Networks (PMN), in which the image synthesizers, feature extraction networks, and
classifiers are combined into one network for end-to-end training. The loss of classification
is used to guide the training of the image synthesizer so that it can output images that can
meet the needs of classification. Based on the relational network, Zhang et al. [81] used a
salient target detection algorithm to segment the image into foreground and background,
and then merged the foreground and background of different pictures to form more
composite images, so as to expand the dataset.

3.3.2. Feature Enhancement-Based Methods

Data enhancement can not only expand the number of training samples by adding
image samples, but also realize the operation of data enhancement by enhancing the data
of feature space.

Humans can easily recognize the category of objects in an image even when the image
is deformed and some information is lost. Chen et al. [82] believe that although the de-
formed images may be visually unreal, they still retain key semantic information. Inspired
by the latest progress in meta-learning, the Image Deformation Meta-Network (IDeMe-
Net) is designed. The network combines the meta-learner with the image deformation
sub-network to generate additional training examples and optimizes the two models in an
end-to-end manner.

Dixit et al. [83] proposed a method for data augmentation by synthesizing sample
features under the condition of expected attribute values in the attribute space: Attribute-
Guided Augmentation (AGA). The model maps image samples into an attribute space and
trains the encoder-decoder of the model to make the model generate images in different
depths and poses. Schwartz et al. [84] proposed a data augmentation method A-encoder
based on an improved auto-encoder. Specifically, an Auto-Encoder (AE) is used to extract
the changes and differences between training category instance pairs, and then the differ-
ences are applied to a few samples of the new category to generate new samples. Finally, the
classifier is trained with the expanded dataset. Chen et al. [85] proposed a semantic feature
augmentation algorithm SFA, which uses the TriNet model based on an encoder-decoder
to map samples to the semantic space, learn the concept of samples in the semantic space,
expands samples in the semantic space by adding noise and finding nearest neighbors, and
then map them back to the visual space, so as to obtain more expanded samples.

The current feature enhancement-based methods only deal with situations where
there is only one category label in each image, while the multi-label situation has never
been mentioned. Focusing on this problem, Alfassy et al. [86] proposed the Label-Set
Operations network (LaSO) for multi-label few-shot image classification tasks, which uses
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the relationship between label sets to extract potential semantic information to form a data
augmentation at the feature space level.

3.4. Multimodal-Based Methods

Modality refers to the way people receive information, including hearing, sight, smell,
touch, and many other ways [87]. Multimodal learning refers to the use of the complemen-
tarity between multiple modalities to eliminate the redundancy between the modalities,
so as to learn a better feature representation. The existing few-shot image classification
problems often focus on only single mode of image. However, in many problem scenarios,
we only use a small amount of single-mode supervision information and ignore a large
number of easily accessible information of other modes. The multimodal information
of the target can provide more prior knowledge to make up for the lack of supervision
information in the image data. Few-shot image classification, based on multimodal, mainly
uses image information combined with text, speech, and other modal information to obtain
more prior knowledge, so as to better complete the image classification tasks. With the
development of deep learning, more and more scholars have begun to pay attention to the
research of few-shot image classification based on multimodal. According to the different
learning ways of multimodal, this paper divides it into two multimodal few-shot learning
methods based on knowledge transfer and metric. Next, the typical algorithms and research
progress of these two methods are introduced.

3.4.1. Knowledge Transfer-Based Methods

The few-shot learning task usually only contains dozens of categories, while the
large-scale few-shot learning task contains thousands of classes of images with few sample
images for each class, which also brings a lot of difficulties to the algorithm. In order to
solve this problem, Li et al. [88] proposed a class hierarchical structure for predicting the
affiliation of a certain sample class, using the semantic relationship between the source
set and the target set class as a kind of prior knowledge to help the network learn more
transferable feature information. This tree-shaped class hierarchical structure explicitly
expresses the semantic relationship. The network structure of the model is shown in
Figure 9.
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Figure 9. Overview of the knowledge transfer with class hierarchy network.

The model adopts CNN to extract the visual features of images, and then inputs them
into the class hierarchy network to predict the classes in two stages: (1) directly input the
classes of each layer in the fully connected layer. (2) Information from different layers are
fused to predict classes. After training, the nearest neighbor algorithm is used to classify
the feature vectors in the test stage.

The visual and semantic feature spaces have different structures according to their
definitions. For some concepts, visual features may be richer and more discriminative
than textual features. However, when visual information is limited in image classification,
semantic representation can provide powerful prior knowledge and context to facilitate
learning. In order to fully mine prior knowledge, Peng et al. [89] proposed the Knowledge
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Transfer Network (KTN), which combines visual feature learning, knowledge inferring,
and classifier learning into a unified few-shot image recognition framework. Among them,
the knowledge transfer module adopts a graph convolution neural network. Each node
represents the word vector corresponding to a class label, and the edge between nodes
represents the correlation between the two classes. Finally, image features and semantic
features are combined by classifier weight fusion, and the semantic features are added to
the few-shot classifier as a priori knowledge.

3.4.2. Metric-Based Methods

Human children use a combination of semantic information to learn new things. Based
on this idea, Schwartz et al. [90] proposed a few-shot learning algorithm that combines
multiple semantic information. The algorithm is based on the idea of the prototypical
network. First, CNN is used to extract the visual space prototype V; then, for a variety
of semantic information such as semantic tags, image descriptions, and object attributes,
the corresponding embedding network is used for feature extraction; next, the feature
information is transformed into the corresponding semantic prototype S;; finally, the
semantic prototype and visual prototype are fused according to a certain weight to obtain
the fusion prototype P. The similarity between the fusion prototype P and the visual
feature Q of the query set image is measured, and the class label is predicted.

Under the condition of having few samples, sometimes the image feature information
has higher discrimination, and sometimes the semantic information has more significant
discrimination. In order to improve the classification accuracy, Xing et al. [91] proposed
an Adaptive Modality Mixture Mechanism (AM3) based on the prototypical network. It
introduces semantic feature information in the feature extraction stage to cooperate with
the original visual prototype and uses an adaptive hybrid network to adjust the fusion ratio
of semantic features and image features. Hence it can adaptively and selectively combine
the information of the two modes for few-shot learning. The transformation mapping
and adaptive coefficients are learned by the neural network. This method uses the mixed
feature information to greatly improve the classification effect of the original algorithm.

3.5. Comparison of Different Learning Paradigms

In order to further analyze the advantages and disadvantages of different learning
paradigms of few-shot image classification algorithms, this section compares these four
classification methods in detail, as shown in Table 2.

Table 2. Comparison of advantages and disadvantages of few-shot image classification algorithms
with different paradigms.

Method

Characteristic Advantage Disadvantage

Transfer Learning

Meta-Learning

Data Augmentation

Multimodal

Transfer of the useful prior knowledge Alleviate of overfitting Negative transfer
Usage of prior knowledge to guide the

. Excell f 1 1
learning of new tasks xcellent performance Complex mode
U f ili inf tion t . . . .
sage of awanary miormaton to Prevention of overfitting Poor generalization ability
expand sample data
Usage of the information of auxiliary . .
Better feature representation Hard to train and calculate

modalities to classify images

In few-shot image classification tasks, transfer learning can achieve better accuracy
by pre-training on large datasets in the source domain and fine-tuning on small datasets
in the target domain. At the same time, transfer learning is also facing great challenges.
When the dataset categories differ greatly, the classification accuracy of the model will be
greatly reduced. In recent years, methods based on meta-learning have achieved good
classification results and become the mainstream method in the field of few-shot image
classification. This method solves the problem of how to make the model learn how to
learn. However, meta-learning methods generally have problems such as complex models
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and large amounts of calculations. Researchers can design simple and effective models
to perform better in few-shot image classification tasks. Although the method based on
data augmentation can expand the sample data and reduce the overfitting problem to a
certain extent, due to the small amount of sample data, the transformation mode is limited.
Although the training effect has been improved to a certain extent, it cannot completely
solve overfitting. In recent years, with the development of multimedia technology, the
multimodal technique has gradually become a current research hotspot. Methods based
on multimodal can use the information of auxiliary modalities to improve the expression
ability of image features, but it is easy to be disturbed by noise in the process of information
fusion, which makes the fused information inaccurate. Therefore, how to study a more
appropriate fusion method is the future development trend of multimodal methods.

4. Comparison of Different FSIC Algorithms
4.1. Quantitative Comparison of FSIC Algorithms

In order to compare the performance of different few-shot image classification algo-
rithms, this section summarizes the experimental results of some representative algorithms
on public datasets, together with analyzation and conclusions. At the same time, in or-
der to explore the classification performance of few-shot image classification models on
professional field data, several representative algorithms are selected for experimental com-
parison on the CIIP-TPID dataset applied in the field of public security. The classification
accuracy (Accuracy) of 5-way 1-shot and 5-way 5-shot was used as the evaluation criteria.
Accuracy is the evaluation criteria widely used by scholars in few-shot image classification
tasks to evaluate the classification performance of the model. Classification accuracy refers
to the proportion of the number of samples correctly classified by the model in the total
number of samples.

Number of correctly classified samples
Number of total samples

Accuracy = x 100%

4.1.1. Comparison of Performance on Benchmark Datasets

This section analyzes and compares the experimental results of some representative
few-shot image classification algorithms on the two benchmark datasets, Omniglot and
minilmageNet. These two datasets are widely used in the field of few-shot learning. The
Omniglot dataset consists of character images and its content is relatively simple. Although
the sample content of the minilmageNet dataset is complex, it is suitable for prototypical
design and experimental research. The experimental results are shown in Table 3.

As can be seen from Table 3:

1.  The few-shot image classification algorithms have a high classification accuracy
on the Omniglot dataset, while their performance on the minilmageNet dataset
is relatively poor.

2. The accuracy of the 5-way 5-shot task in the two datasets is higher than that of
the 5-way 1-shot task, which shows that the more training data in the sample cate-
gory, the more features the model can learn, which is conducive to improving the
classification accuracy.

3. On the Omniglot dataset, the accuracy of the selected algorithms is more than 98%,
and the experimental results are slightly different; on the minilmageNet dataset, the
experimental results of different algorithms differ greatly. The accuracy of the 5-way
1-shot task is mostly about 50%. The classification result of the GCN-NFO method
with the best performance is about 55% higher than that of the Meta-Learner LSTM
method. The classification accuracy of the 5-way 5-shot task is mostly about 65%.
Among them, the GCN-NFO method, which has the best classification effect, improves
by about 43% compared to the worst-performing MN method, indicating that the
existing few-shot image classification algorithm can still make a great improvement
on the minilmageNet dataset.
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Table 3. Comparison of experimental results of few-shot image classification algorithms on Omniglot
and minilmageNet.

5-Way Accuracy (%)

. Omniglot minilmageNet
Algorithm 1-Shot 5-Shot 1-Shot 5-Shot
MTL [46] - - 61.20 £+ 1.80 75.50 + 0.80
SNAIL [47] 99.07 £ 0.16 99.78 + 0.09 55.71 +£0.99 68.88 + 0.92
Meta-Learner
LSTM [51] - - 43.44 £0.77 60.60 £+ 0.71
MAML [54] 98.7 £ 0.4 999 + 0.1 48.70 + 1.84 63.11 £ 0.92
Meta-SGD [55] 99.53 £ 0.26 99.93 + 0.09 50.47 + 1.87 64.03 + 0.94
TAML [56] 99.5 +0.3 99.81 +£ 0.1 51.73 £ 1.88 66.05 + 0.85
RN [58] 99.6 +£ 0.2 99.8 + 0.1 50.44 + 0.82 65.32 +0.70
MN [59] 98.1 98.9 43.56 + 0.84 55.31 +0.73
PN [60] 98.8 99.7 4942 +0.78 68.20 £ 0.66
GNN [67] 99.2 99.7 50.33 £+ 0.36 66.41 + 0.63
EGNN [68] 99.7 99.7 62.3 76.37
TPN [69] 99.2 99.4 55.51 69.86
GCN-NFO [73] 99.87 99.96 98.57 98.58
MetaGAN [77] 99.67 £0.18 99.86 + 0.11 52.71 + 0.64 68.63 + 0.67
PMN [80] - - 57.6 71.9
IDeMe-Net [82] - - 59.14 £+ 0.86 74.63 + 0.74
A-encoder [84] - - 59.9 69.7
AM3 [91] - - 65.30 £+ 0.49 78.10 + 0.36

4.1.2. Comparison of Performance on Application Dataset

This section selects some representative algorithms and conducts experiments on the
CIIP-TPID dataset. The experiments are tested on the three sub-datasets of surface pattern
image (Surface), indentation pattern image (Indentation), and mixed pattern image (Mix),
respectively. Among them, each category of the surface pattern image dataset and the
indentation pattern image dataset contains 80 tire surface patterns and 80 tire indentation
pattern images, respectively. The mixed pattern dataset contains 160 mixed images of
surface pattern and indentation pattern per class. The experimental results are shown in
Table 4.

It can be seen from Table 4:

1.  The experimental results of various few-shot image classification algorithms on the
CIIP-TPID dataset are relatively good, better than those on the minilmageNet dataset,
but lower than those on the Omniglot dataset. The reason is that the minilmageNet
dataset has a wide variety of image samples and complex content; the Omniglot
dataset is composed of different handwritten character images with a single back-
ground and simple content; while the CIIP-TPID dataset consists of different types of
tire pattern images and includes indentation images on different carriers. Its image
background is slightly richer and the content is relatively simple.

2. The results of different methods on the mixed dataset are relatively low. This is
because the mixed data contains two kinds of data: surface pattern image and in-
dentation pattern image. The samples in each category are relatively complex with
characteristics of large intra-class differences and small inter-class differences, which
bring difficulties to the classification task.

3. GNN and GCN-NFO have the highest accuracy in the 5-way 1-shot task, indicating
that the metric learning method based on the graph neural network is more suitable
for the study of tire pattern image classification.

4. The GCN-NFO method achieves the best classification effect on different sub-datasets.
This is because GCN-NFO makes full use of the image features of the special data
samples to improve the network performance. In the next step, we will compare more
algorithms and try to conduct more in-depth research on datasets in other fields.
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Table 4. The experimental results of few-shot image classification representative algorithms on the
CIIP-TPID dataset.

5-Way Accuracy (%)

Algorithm Datasets 1-Shot 5-Shot
Surface 53.46 78.42

Meta Networks [9] Indentation 66.13 80.45
Mix 42.80 63.53

Surface 67.09 85.55

MAML [54] Indentation 77.66 87.32
Mix 46.03 64.00

Surface 63.97 81.60

RN [58] Indentation 73.71 84.54
Mix 48.21 65.20

Surface 77.46 89.52

GNN [67] Indentation 77.76 92.00
Mix 58.04 79.98

Surface 89.12 94.04

GCN-NFO [73] Indentation 95.84 88.14
Mix 99.62 88.20

Surface 72.71 91.03

SFA [85] Indentation 76.42 91.76
Mix 51.84 81.02

4.2. Qualitative Comparison of FSIC Algorithms

Based on the theoretical principle of the algorithm, this section compares the different
methods in each paradigm of few-shot image classification algorithms, and then analyzes
their advantages and disadvantages. The results are shown in Table 5.

Table 5. Comparative analysis of different methods in each paradigm of few-shot image
classification algorithms.

Category

Method Advantage Disadvantage

Transfer Learning

Instance-based Easy to implement Data distribution is often different

Good feature selection

Feature-based Prone to overfitting

and transformation
The number of iterations should

Meta-Learning

Optimization-based

Fine-tuning-based Alleviate overfitting be less
Model-based Strong generalization Compl.ex model apd
extensive calculations
Make models learn new Extensive calculations and high

tasks quickly memory consumption
Metric-based Easy to calculate Weak 1nterpretab1h.t y and high
memory consumption
Data generation-based Increase sample numbers Cannot completely
Data Augmentation & P solve overfitting
Feature enhancement-based  Increase feature numbers Easy to be disturbed by noise
Knowledge transfer-based Learn better feature representation Easy to be dISt.u tbed by noise
Multimodal during the fusion process
Simple calculation and Weak interpretability and high

Metric-based

high accuracy memory consumption

5. Applications of Few-Shot Image Classification

The research on few-shot image classification has high practical application value in
fields, such as medicine, public security, and commerce. The sample sets that need to be
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identified in these research fields have the characteristics of small scale, few annotations,
and rare categories, and many deep learning models with excellent performance cannot
be properly applied in these fields. Few-shot image classification can effectively solve this
problem, making these high-performance models more widely used in various fields. This
section introduces the specific applications of few-shot image classification from the three
fields of medicine, public security, and commerce.

5.1. Medical Field

Medical image classification has a very important application value and can provide a
key basis for patient condition analysis. Due to the limited source of medical images and
the manual processing of labeled data by experts, there is a lack of labeled training data.
In addition, some samples are not publicly available because of their secrecy. The above
factors lead to a small number of available samples for research, and the few-shot image
classification technology is, therefore, suitable for medical image processing. At present,
few-shot image classification has some practical applications in the medical field [92-95].
Figure 10 shows some image examples in the medical field.

Covid Cowid Normal

Viral Pneumonia Covid Viral Pneumonia
-y

Figure 10. Image examples in the medical field.

Shang et al. [92] combined transfer learning, multi-task learning, and semi-supervised
learning methods into a unified framework to promote a better performance of medical
image classification. Cai et al. [93] proposed an end-to-end learning model combined with
an attention mechanism to solve the problem of medical image classification and extract
features from space and channels, so as to enhance the representation ability of the model.

Chen et al. [94] proposed a few-shot learning method for the automatic screening
of COVID-19 images. An encoder is trained by comparative learning, which can cap-
ture the feature representation on the lung dataset and classify it by prototype network.
Jadon [95] proposed a few-shot learning model for COVID-19 detection with a combi-
nation of a Siamese network and transfer learning, which ultimately provided excellent
classification results.

At this stage, there are still some difficulties in fully applying few-shot image classifi-
cation technology to the medical field. The reasons are threefold:

1. There are subtle differences in medical images, which usually lead to certain recog-
nition errors and make the model learn unnecessary features, and finally affect the
classification results.

2. Most medical images are 2D images, which cannot truly reflect the 3D structure infor-
mation of the human body. This will lead to the loss of certain effective information in
the process of collecting images, and finally, result in inaccurate classification results.
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3. Analysis of medical images alone is not enough to accurately judge the disease but
requires collaboration with multimodal technologies. Although the current few-shot
image classification has made good achievements in the medical field, there is still a
lot of research space in the future.

5.2. Public Security Field

Few-shot image classification has extremely important application value in the field of
public security. Tire pattern image classification is an important way to provide key clues in
the processing of traffic cases and the detection of criminal cases. In addition, as an important
biological feature, palmprint also contains a wealth of information. Not only fingerprints and
shoe prints will be left at the crime scene, but sometimes incomplete palmprint information
will be left as well, which can provide important clues for case detection. Therefore, palmprint
recognition also has a very important application value in the field of public security. Figure 11
shows some image examples in the public security field.

Figure 11. Image examples in the public security field.

Tire pattern images have complex texture, single color, and similar visual effects of
different types of tire patterns, which bring great difficulties to the classification task. In
order to improve the classification accuracy of tire pattern images, Liu et al. [96] proposed
a feature extractor using the CNN model based on the idea of transfer learning. The pre-
processed model on ImageNet is applied to the tire pattern image dataset, and then the
model parameters are fine-tuned to enhance the representation ability of the new model.
In [97], a feature fusion algorithm, based on transfer learning, is proposed. The algorithm
transfers the pre-trained CNN model to the tire pattern image dataset through transfer
learning and fine-tuning of model parameters. In addition, in order to further improve the
classification performance, the obtained CNN features and low-level image features are
combined as fusion features to train the SVM classifier, which improves the classification
effect of the tread pattern image.

Shao et al. [98] proposed a few-shot palmprint recognition method based on the graph
neural network. The palmprint features extracted by the convolutional neural network are
processed as nodes in the GNN. The edges of the graph network represent the similarity
between the graph nodes. By continuously optimizing the parameters in the network, the
category of image samples is finally predicted.

In the field of public security, due to the problems of security and secrecy, it is often
difficult to obtain a large number of publicly used image data. This results in the lack of
large-scale annotation samples for research, which easily leads to overfitting in classification
tasks. At the same time, many criminal investigation images often have problems such as
complex backgrounds and unclear images. In the process of image classification, it is often
necessary to combine image denoising, image enhancement, image clarity, and other tech-
niques. In addition, most of the current criminal investigation images are two-dimensional
planar images obtained by cameras, which cannot truly reflect the three-dimensional infor-
mation of the scene. This will lose certain key information and make the final classification
results be inaccurate. Therefore, there is still much room for improvement in applying
few-shot image classification to the public security field.
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5.3. Commercial Field

With the increasing maturity of artificial intelligence, commodity information recogni-
tion has become a promising application direction. In the commodity recognition scenario,
there are often problems of a serious shortage of commodity sample data and unbalanced
data distribution. The use of general image classification methods will result in lower
accuracy for categories with fewer samples. Therefore, how to use the machine learning
model to learn effectively in the case of few-shots is an important research direction to
realize the commercialization of commodity classification. At present, few-shot image
classification has been successfully applied in the commercial field, such as commodity
image classification, bank operational risk classification, and so on. Figure 12 shows some
examples of the commodity image.

Figure 12. Examples of the commodity image.

In the field of commodity image recognition, there are often problems such as numer-
ous image categories, similar features, and scarcity of datasets. The recognition capabilities
of traditional deep learning models are limited. Xu et al. [99] proposed a Local Descriptor
Relation Network (LDR-Net) by combining the idea of deep local descriptors and metric
learning for supermarket retail commodity image classification. Lu et al. [100] proposed an
improved residual network model to improve the classification performance of clothing
images. By improving the arrangement order of “BN + ReLU + Convolutional Layer” in
the traditional residual block, the work introduces the attention mechanism and adjusts the
network convolution kernel structure, and the recognition and classification effect of the
model is improved.

Wu etal. [101] proposed a few-shot learning method for the commercial field—Probabilistic
Network, which improves the sensitivity of the model to commerce data by means of data
augmentation. The generalization ability of this method is verified by studying two cases
of absenteeism prediction and online hotel reviews.

At present, the core challenge of commodity information recognition is how to subdi-
vide the various and extremely similar commodity categories in the market. In addition,
there is no guarantee that it will have the same efficient and accurate recognition ability
for new products that are constantly appearing. At the same time, most of the existing
few-shot classification models only use the modal information of images to classify com-
modities and do not make full use of other modal information, resulting in inaccurate
classification results. Therefore, it is a research trend in the field of commodity information
recognition in the future to integrate text, voice, and other modal information to complete
the classification task. In addition, commodity data also has problems, such as unbalanced
data distribution. To fully utilize the few-shot image classification in the commercial field it
is also necessary to consider collecting datasets with wider categories and richer contents.
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6. Research Trend of Few-Shot Image Classification

Few-shot image classification has always been a critical and difficult problem in image
classification since it was proposed. Although the models and algorithms proposed in the
field of few-shot learning have improved the accuracy of image classification to varying
degrees, at present, there are still some obstacles to few-shot image classification. Diffi-
culties, such as limited dataset quality, artificially designed neural network architectures,
weak interpretability of neural network, multimodal fusion, etc., need to be further stud-
ied urgently. This section focuses on the current research difficulties of few-shot image
classification and discusses future research trends.

6.1. Build Suitable Datasets for Practical Applications

Although there are currently some datasets for few-shot image classification tasks,
there are still some deficiencies in both the number of image categories and the quality
of labeling. They generally have the characteristics of prominent foreground objects and
single background [102], which are not common images in practical application. The
few-shot image classification is a research topic combined with practical applications. Its
performance is closely related to the scale and quality of the dataset. The richer the training
images, the more obvious the performance improvement and the stronger the practicality.
To make few-shot image classification widely used in real life, we have to consider the
image recognition problems of complex scenes such as illumination, blur, occlusion, and
low resolution. In addition, the existing few-shot image classification methods are mostly
aimed at universal datasets. Due to the data security requirements and the difficulty of data
collection, there are relatively few pieces of research on data in special fields. Therefore,
how to construct larger-scale, higher-quality image datasets and produce dedicated datasets
for different fields is an important research problem in few-shot image classification.

6.2. Neural Architecture Search

In recent years, deep learning models have achieved good results on few-shot image
classification tasks, but the numerous hyperparameters and network structure parameters
that follow will produce explosive combinations. The efficiency of conventional random
search and grid search is very low. In addition, the current design of neural network
architecture still depends on manual work to a large extent, which is time consuming,
laborious and error prone. Therefore, how to transform the neural network architecture
from the manual design to automatic machine design has become a problem that researchers
pay attention to. Neural Architecture Search (NAS) [103,104] can solve this problem. At
this stage, scholars have applied the NAS method to image classification tasks [105,106],
and it is better than manually designed architectures. Therefore, how to design a better
network architecture than manual design through NAS, and how to expand NAS method
to other deep learning related hyperparametric optimization, so as to obtain better learning
parameters than manual design, is still a major research hotspot in the field of few-shot
image classification in the future.

6.3. Interpretability of Neural Networks

Although neural networks have played a key role in various fields, their limited inter-
pretability has always been a problem, which is what we often call the “black box problem”.
Even if we try to generalize the limited training data to unknown inputs, they may fail in
the case of small interference. Moreover, this practice will make it difficult to verify the
robustness of the algorithm. In recent years, there has been more and more work hoping
to explore what the neural network has learned [107-110]. Huang et al. [108] proposed
an interpretable depth model for fine-grained image classification, which increased the
interpretability of the model. Selvaraju et al. [109] proposed a novel class discrimination
positioning technology Grad-CAM (Gradient-weighted Class Activation Mapping), which
generates visual interpretation to make any CNN-based models more transparent. How-
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ever, how to propose a neural network with strong interpretability is still a research hotspot
in the field of few-shot image classification and even the whole field of deep learning.

6.4. Multimodal Few-Shot Image Classification

With the rapid development of information technology, the multimodal technique
has gradually become a research hotspot. Multimodal deep learning has brought great
opportunities and challenges to machine learning. At present, some scholars have applied
the multimodal technique to few-shot image classification [88-91]. For example, the KTN
network proposed in [89] combines the image features and semantic features for few-shot
image classification tasks; the AM3 method proposed in [91] can adaptively and selectively
combine semantic features and visual features, which greatly improves the classification
effect of the original algorithm. These methods can not only effectively avoid the overfitting
problem in the learning process, but also improve the classification effect to a certain
extent. However, the process of multimodal information fusion is easy to be disturbed
by noise, which makes the fused information inaccurate. Therefore, how to develop a
more appropriate multimodal fusion method to further improve the classification effect is
a research trend of few-shot image classification.

7. Conclusions

According to the different mechanisms, this paper divides the existing few-shot image
classification methods into four learning paradigms: transfer learning-based, meta-learning-
based, data augmentation-based, and multimodal-based. Transfer learning can transfer the
useful prior knowledge from the source domain to the target domain, which is conducive to
few-shot learning; meta-learning employs the prior knowledge learned from a large num-
ber of tasks to make the model learn how to learn; methods based on data augmentation
improve the diversity of samples by generating data or enhancing the number of features
in the feature space; the multimodal method uses the complementarity between multiple
elements of modal information and eliminates the redundancy between the modalities, so
as to learn better feature representation. In addition, this paper summarizes the commonly
used datasets for few-shot image classification and analyzes the advantages and disad-
vantages of different algorithms. Then, the application of few-shot image classification in
several fields is analyzed. In the end, based on the theoretical research results and practical
applications of few-shot image classification, this paper summarizes several future research
trends in this field.
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