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Abstract: Shoulder Range of Motion (ROM) has been studied with several devices and methods in 

recent years. Accurate tracking and assessment of shoulder movements could help us to understand 

the pathogenetic mechanism of specific conditions in quantifying the improvements after rehabili-

tation. The assessment methods can be classified as subjective and objective. However, self-reported 

methods are not accurate, and they do not allow the collection of specific information. Therefore, 

developing measurement devices that provide quantitative and objective data on shoulder function 

and range of motion is important. A comprehensive search of PubMed and IEEE Xplore was con-

ducted. The sensor fusion algorithm used to analyze shoulder kinematics was described in all stud-

ies involving wearable inertial sensors. Eleven articles were included. The Quality Assessment of 

Diagnostic Accuracy Studies-2 was used to assess the risk of bias (QUADAS-2). The finding showed 

that the Kalman filter and its variants UKF and EKF are used in the majority of studies. Alternatives 

based on complementary filters and gradient descent algorithms have been reported as being more 

computationally efficient. Many approaches and algorithms have been developed to solve this 

problem. It is useful to fuse data from different sensors to obtain a more accurate estimation of the 

3D position and 3D orientation of a body segment. The sensor fusion technique makes this integra-

tion reliable. This systematic review aims to redact an overview of the literature on the sensor fusion 

algorithms used for shoulder motion tracking. 
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1. Introduction 

The shoulder joint has three degrees of freedom (DOFs) and is the human joint with 

the greatest range of motion (ROM) [1,2]. Despite the shoulder’s high degree of freedom, 

shoulder movements are hard to analyze [3]. This appears to be due to two factors. Firstly, 

the shoulder joint is controlled by a complicated system of joints, including the shoulder 

girdle closed chain and its peculiar ‘false scapulothoracic joint’ [4]. Furthermore, the bio-

mechanical complexity of the shoulder joints is related to the musculature that regulates 

the movements. Since determining the mobility of the shoulder complex is challenging, 

the scapula is provided with a lot of degrees of freedom depending on the study frame-

work. Recent studies have essentially avoided the issue of shoulder complex mobility es-

timation methods by kinematically identifying the scapula as an independent object, 
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firmly oriented to the thorax due to three Euler angles [5–7], or by assessing an empirical 

model of the scapula, such as that provided by the recent Stanford University model [8]. 

In the literature, various kinematic models of the shoulder have been proposed [9,10].  

Shoulder ROM has been studied with several devices and methods [11–13]. Accurate 

tracking and assessment of shoulder movements could help us to understand the patho-

genetic mechanism of specific conditions or quantifying the improvements after rehabili-

tation. The assessment methods can be classified as subjective (self-reports or self-evalua-

tion questionnaires) and objective. However, self-reported methods are not accurate, and 

they do not allow the collection of specific information. Therefore, finding measurement 

systems that provide quantitative and objective information about shoulder function and 

ROM is necessary. 

Objective systems can be divided into two main classes of motion capture technolo-

gies: non-wearable and wearable systems [14]. The former is the most common and in-

cludes stereophotogrammetric systems and optoelectronic systems (e.g., VICON, Opto-

trak, BTS SMART-D), electromagnetic tracking systems (e.g., Fastrak) and ultrasound-

based motion analysis systems (e.g., Zebris), nowadays considered as the gold standard 

[14]. 

Wearable systems comprise inertial measurement units (IMU) that are composed of 

an accelerometer and a gyroscope and, in the case of magnetic inertial measurement unit 

(MIMU), also a magnetometer [12]. These sensors’ measured quantities are acceleration, 

angular velocity, and magnetic field intensity. Traditionally, the orientation of a segment 

has been estimated by integrating the angular velocities measured, but this implicates in-

accuracies inherent in the measurements. 

Many approaches and algorithms have been developed to solve this problem. It is 

useful to fuse data from different sensors to obtain a more accurate estimation of the 3D 

position and 3D orientation of a body segment. The sensor fusion technique makes this 

integration reliable.  

This systematic review aims to redact an overview of the literature on the sensor fu-

sion algorithms used for shoulder motion tracking. 

2. Materials and Methods 

To improve the review’s reporting, the Preferred Reporting Items for Systematic Re-

views and Meta-Analyses (PRISMA) were employed. 

2.1. Eligibility Criteria 

The research question was formulated using the PICOS approach: Patient (P); Inter-

vention (I); Comparator (C); Outcome (O), and Study design (S).  

Population: patients with or without shoulder limitations. 

Systems and devices to quantify shoulder joint kinematic (O) that used wearable IMU 

or MIMU sensors (I) were used in patients with or without shoulder limitations (P). All 

the results were compared to stereophotogrammetric systems to provide information 

properties of the motion tracking tool and related algorithms. Study design: a validation 

study, case reports, or clinical trials evaluating 3D motion tracking of the shoulder. 

2.1.1. Study Inclusion Criteria 

 Only articles written in English. 

 Articles published in peer-reviewed journals or presented at a conference. 

 Wearable magnetic/inertial sensors to track upper limb kinematics, including the 

shoulder joint. 

 Studies that developed an algorithm to extract shoulder joint variables of clinical rel-

evance. 
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2.1.2. Study Exclusion Criteria 

 Reviews, books, cadaver studies; 

 Studies in which the shoulder joint was not included; 

 Patients who underwent previous surgery (hemiarthroplasty, total joint arthroplasty, 

rotator cuff repair); 

 Patients with neurological pathologies (e.g., stroke); 

 Use of prosthesis, orthoses, exoskeleton or robotic devices; 

 Studies where the analysis was done with a combination of inertial sensors and other 

types of sensors.  

2.2. Search Strategy 

The articles included in the study were screened through searches of PubMed and 

IEEE Xplore databases. The database was screened from its inception to April 2022. The 

search strategy included free text terms and Mesh (Medical Subject Headings) terms com-

bined with logical Boolean operators (AND, OR). For the research in the databases, iso-

lated or combined keywords and specialized terms were used. The keywords and their 

synonyms used were: (“shoulder joint*” OR shoulder) AND (“data fusion algorithm*” OR 

“sensor fusion algorithm”) AND (motion OR movement* OR kinematic*) AND (“weara-

ble sensor* OR “inertial sensor*”). 

2.3. Study Selection 

Only English-language articles were considered. Two reviewers conducted the initial 

search (MS and GDL). In case of a disagreement, a third reviewer (UGL) was consulted. 

CADIMA software was used to conduct the study. The researchers assessed the titles and 

abstracts, and the full text. The full text of all papers that were not excluded because of 

their abstract or title was then evaluated. A PRISMA flowchart was used to track the num-

ber of articles that were excluded or included (Figure 1). For designing the PRISMA, the 

rules by Liberati et al. [15] were followed. 

2.4. Quality Assessment 

The quality of the study included was assessed by two authors using the quality as-

sessment of Diagnostic Accuracy Studies-2 (QUADAS-2) [16]. QUADAS-2 is a tool devel-

oped to assess the quality of diagnostic studies testing the “risk of bias” and the “applica-

bility”. The risk of bias was checked by testing four domains: “patient selection”, “index 

test”, “reference standard”, and “flow and timing”. Each study’s applicability was graded 

as “yes, no, or unclear” for the first three categories; “yes” suggested a low risk of bias, 

“no” signaled a high risk of bias, and “unclear” indicated a lack of sufficient data. Two 

reviewers handled the domains independently, and a third author resolved any disagree-

ments. The risk of bias is reported in Figure 2. 
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Figure 1. PRISMA 2020 flow diagram [17]. 

 

Figure 2. Quality Assessment of Diagnostic Accuracy Studies-2 (QUADAS-2). 

2.5. Data Synthesis and Analysis 

General study characteristics extracted were: author and year of publication; typol-

ogy and number of sensors; the position of the sensors used to measure or track the joint; 

upper limb kinematic representation (shoulder DOFs); sensor fusion algorithm; compar-

ator system used to evaluate the performances; movements executed by the participants; 

shoulder ROM and accuracy. Only qualitative characteristics were reported due to the 

heterogeneity of the studies. A meta-analysis could not be performed due to the hetero-

geneity of the included studies. 
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3. Results 

3.1. Study Selection  

A flowchart diagram according to the PRISMA protocol was created, and it shows 

the selection process of the studies (Figure 1).  

A total of 213 results were founded with the search on the scientific databases. After 

the removal of duplicates, 207 were included in the analysis. Of 207 studies, 142 articles 

were excluded from the study through title and abstract screening. Then, 65 full-text arti-

cles were screened. Out of these studies, 53 were excluded, and only 11 studies fulfilled 

the inclusion criteria. The selection study process is reported in Figure 1. 

3.2. Study Characteristics and Risk of Bias Assessment 

A summary of the characteristics of the included studies is reported in Tables 1 and 

2. 

Several articles used IMU [18–20], six studies employed MIMU ([21–26]), and one 

study [27] used accelerometers.  

Two studies modelled the upper-limb skeleton structure as a link structure with five 

DOFs ([20–26]) and in the other two articles as a link structure with seven DOFs ([23–25]). 

In order to evaluate the shoulder’s range of motion, some authors asked the partici-

pants (healthy subjects) to execute some movements between the flexion/extension, ab-

duction/adduction and internal/external rotation [20–22,24,25]. In one study [23] the anal-

ysis assessed free movements. 

Several sensor fusion techniques were adopted. Complementary filter [22], Neuro-

Fuzzy Inference System (ANFIS) [28], Kalman Filter (KF [28], unscented Kalman filter 

UKF [19,20,23,25], extended Kalman filter EKF [24], quaternion-based gradient descent 

[21], composite filter [18,22], Lagrangian-based optimization technique [26], and factor-

ized quaternion approach [27] were used. 

The population was heterogeneous between studies. The mean age ranged from 23.3 

± 1.33 [22] to 45–73 [21]. The studies by El-Gohary [20], Lee [27] and Zhang [23] did not 

specify the patient’s characteristics. The remaining studies did include patients. The au-

thors reported no other information about the patient’s shoulders or comorbidities. 

The types of movements assessed were reported as follows: El Gohary [19], Hsu [22], 

Lee [27], Mazomenos [21], Pathirana [24], Peppoloni [25], and Pathirana [24] tested flex-

ion-extension movements. El Gohary [19], Hsu [22], Lee [27], Mazomenos [21], Pathirana 

[24], and Peppoloni [25] tested internal-external rotation movements. El Gohary [19], Hsu 

[22], Mazomenos [21], Pathirana [24], Peppoloni [25] assessed abduction-adduction move-

ments. Zhang [23] assessed UKF using free movements. The other studies did not report 

the type of movements tested. 

Quality assessment results of the final 11 articles were as follows: 9/11 studies re-

ported low-risk bias in “flow and timing” and “reference standard” domains, whereas the 

other two were described as “unclear”. The applicability of the “reference standard” do-

main was “low” in nine studies and “unclear” in two studies. Instead, 8/11 studies re-

ported low-risk bias in the “index test” domain, whereas one study was considered “low” 

and two were “unclear”. The applicability of the “index test” domain was “low” in six 

studies, “unclear” in three, and “high” in two studies. 3/11 studies reported “low” risk 

bias in the “patient selection” domain, three studies were considered “low”, and five were 

“unclear”. The applicability of the “patient selection” domain was “low” in four studies, 

“unclear” in three, and “high” in four studies. The QUADAS-2 is reported in Figure 2.  
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Table 1. Characteristics of the studies included. 

First 

Author, 

Year 

Participants 

(N) 

Patients 

Characteristics 

Sensors 

Sensors (N), 

Placement 

Upper Limb 

Kinematic 

Representa-

tion 

(Shoulder 

DoF) 

Acc Gyr Magn 

El Gohary 

2011, [19] 
- - V V  

IMU (N = 2), 

APDM Opal 

sensor 

FA (near wrist), 

UA (between 

the shoulder 

and elbow) 

- 

El-Gohary 

2012, [20] 
HS (N = 8) Not specified V V  

IMU (N = 2), 

APDM Opal 

UA, FA 

Upper limb 

with 5 DOFs, 

3 DOFs (Sh) 

Hsu 2013, 

[22] 
HS (N = 10) 

8 males, 2 fe-

males 

Y: 23.3 ± 1.33, a 

mean height of 

171 ± 7.45 cm, 

and a mean 

body mass of 

62.8 ± 12.1 kg 

V V V 

N = 2 

LSM303DLH 

(acc, magn) 

L3G4200D (gyr) 

UA, FA 

- 

Hyde 2008, 

[18] 
- - V V  

IMU (N = 2), 

Distal end of Sh 
- 

Lee 2012, 

[27] 
HS (N = 1) Not specified V   

Acc (N = 2), 

MMA7361L 

(Freescale) 

UA (near elb), 

FA (near wri) 

- 

Mazomenos 

2016, [21] 

HS (N = 18) 

Control 

group (N = 

4) 

HS: staff and 

students from 

the university, 

Y: 25–50, both 

male and fe-

male, both left 

and right arm 

dominance. 

Control group: 

stroke survi-

vors, both men 

and women, Y: 

45–73, at differ-

ent post-stroke 

rehabilitation 

stages. 

V V V 

MARG (N = 2), 

FA (wri), UA 

(elb) 

2-link limb 

model of up-

per limb 

3 DOFs (Sh) 

Pathirana 

2018, [24] 
HS (N = 10) 

8 males and 2 

females 
V V V 

MIMU (N = 1), 

elb 
3 DOFs (Sh) 
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Peppoloni 

2013, [25] 
- - V V V MIMU (N = 3) 

Upper limb 

with 7 DOFs 

Salah 2014, 

[28] 
- - V V  

IMU (N = 2) 

Trunk, thigh 
- 

Zhang 2011, 

[23] 
HS (N = 4) Not specified V V V 

MIMU (N = 3), 

wlb, wri, SE 

2 Link limb 

model (UA, 

FA), revolute 

joint (elb) 

3 DOFs (Sh) 

Zhou 2006, 

[26] 
HS (N = 4) 

Healthy 

patients, Y = 20–

40 

V V V 

MIMU (N = 2), 

Xsens MT9B 

UA (near the 

wri), FA (elb 

joint) 

Upper limb 

with 5 DOFs, 

HS: healthy subjects, P: patients, Y: range years, S: stroke survivors, acc: accelerometer, gyr: gyro-

scope, magn: magnetometer, UA: upper arm, FA: forearm, Sh: shoulder, wri: wrist, elb: elbow, Th: 

thorax, FLX-EXT: flexion-extension; AB-AD abduction-adduction, IER: internal-external rotation, 

RMSE: root mean square error, M: mean, SD: standard deviation, r: correlation coefficient, UKF: 

unscented Kalman filter, CF: complementary filter, QUEST: qestimator algorithm, ANFIS: adaptive 

neuro-fuzzy inference system, O: optical tracking system. 

Table 2. Sensors’ characteristics. 

First Author, 

Year 

Sensors 

Fusion 

Algorithm 

Comparato

r 
Movements 

Shoulder 

Parameters 
Accuracy 

El Gohary 

2011, [19] 
UKF 

O (Eagle 

Analog 

System) 

AB-AD (Sh) 

IER (Sh) 

FLX-EXT (Sh) 

- R > 0.9 

El-Gohary 

2012, [20] 
UKF O (Vicon) 

AB-AD (Sh) 

IER (Sh) 

FLX-EXT (Sh) 

- 
R ≥ 0.95 

RMSE < 8° 

Hsu 2013, [22] 
Quaternion-

based CF 

Xsens MTw 

inertial 

sensors 

FLX-EXT, AB, 

IER 
 RMSE < 3.36° 

Hyde 2008, 

[18] 

Composite 

filter 
- 

Depression-

elevation (sh), 

Retraction-

protraction 

(Sh) 

Upper limb-

orientation 
<15 Hz 

Lee 2012, [27] 

Factorized 

quaternion 

Approach 

IMU (MTx 

Xsens) 

FLX-EXT 

(UA) 

IER (UA) 

Orientation of 

the UA 

Mean Difference 

< 3.68° 

Mazomenos 

2016, [21] 

Quaternion-

based 

gradient 

descent 

- 

AB-AD (Sh) 

IER (Sh) 

FLX-EXT (Sh) 

Joint angles, 

position (UA, 

FA) 

- 

Pathirana 

2018, [24] 
EKF 

O (Vicon, 

Kinect) 

Forward FLX-

EXT 

AB-AD 

Backward 

FLX-EXT 

- 

RMSE < 8.46° 

(Kinect) 

RMSE < 6.08° 

(VICON) 
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Horizontal 

FLX-EXT 

Peppoloni 

2013, [25] 
UKF 

O (Vicon, 

Kinect) 

AB-AD (Sh) 

Internal 

rotation (Sh) 

FLX-EXT (Sh) 

- 

RMSE = 7.85° (5 

DOFs) 

R = 0.93 (5 

DOFs) 

RMSE = 7.41° (7 

DOFs) 

R = 0.82 (7 

DOFs) 

Salah 2014, 

[28] 
ANFIS VICON - - RMSE < 0.018 m 

Zhang 2011, 

[23] 
UKF 

MTx sensor 

units, 

BTS 

SMART-D 

Free 

movements 

Upper limb 

motion 

AB-AD (Sh) 

IER (Sh) 

FLX-EXT (Sh) 

RMSE < 0.2276° 

R > 0.8912 

Zhou 2006, 

[26] 

Lagrangian-

based 

optimisation 

technique 

CODA shrugging - 
RMSE < 0.004 m 

R > 0.96 

HS: healthy subjects, P: patients, Y: range years, S: stroke survivors, acc: accelerometer, gyr: gyro-

scope, magn: magnetometer, UA: upper arm, FA: forearm, Sh: shoulder, wri: wrist, elb: elbow, Th: 

thorax, FLX-EXT: flexion-extension; AB-AD abduction-adduction, IER: internal-external rotation, 

RMSE: root mean square error, M: mean, SD: standard deviation, r: correlation coefficient, UKF: 

unscented Kalman filter, CF: complementary filter, QUEST: quaternion estimator algorithm, ANFIS: 

adaptive neuro-fuzzy inference system, O: optical tracking system. 

3.3. Results of Individual Studies 

The psychometric properties analyzed are root mean square (RMSE), correlation co-

efficient (r), mean (M) and standard deviation (SD) [29]. To evaluate the performance of 

an algorithm it is necessary to compare the joint angles calculated by the algorithm to 

ground data derived from a gold standard system (optical tracking system (Vicon ([20,24], 

BTS [23]), CODA [26], Eagle Analog System [19], Xsens Mtw [22] and Xsens MTx sensor 

[23], [27].  

Using the UKF the RMSE value is 0.0564, 0.0230 and 0.0439 respectively for roll, pitch 

and yaw angles [23], RMSE = 5.5° (FLX-EXT shoulder) and RMSE = 4.4° (AB-AD shoulder) 

in [20]. 

The correlation coefficient in El Gohary [19] is consistently greater than 0.9; perform-

ing movements at a normal speed FLX-EXT shoulder (correlation = 0.97), AB-AD shoulder 

(correlation = 0.94), while performing movements at a fast speed FLX-EXT shoulder (cor-

relation = 0.94), AB-AD shoulder (correlation = 0.91). 

In another study by El-Gohary et al. [20] the correlation coefficient for FLX-EXT and 

AB-AD is equal to 0.98 and 0.99 respectively. 

In the study by Hsu et al. [22] the average RMS errors are 3.26 degrees for flexion, 

3.32 degrees for abduction, 2.34 degrees for extension, 3.12 degrees for external rotation, 

and 3.36 degrees for internal rotation. 

In the study by Hyde et al. [18], the authors reported that accelerometers and gyro-

scopes can evaluate upper-limb orientation. Moreover, using a three-axis gyroscope for 

lower limbs resulted in a valid solution. Lastly, using a composite filter was considered a 

simpler technique than the Kalman filter.  

According to Lee et al., [27] the findings reported the superiority of the proposed 

constraint-augmented Kalman filter compared to the unconstrained Kalman filter models. 
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The accuracy of the former method improved by an average of 1.88°–4.18° and 5.85°–7.70° 

compared to the two unconstrained Kalman filter models described. 

In the study by Mazomenos and colleagues [21], the authors tested the use of MARG 

sensors attached to the wrist and elbow using a gradient descent quaternion-based 

method. Two-link limb model, position vectors, and 3-D tracking were used to detect the 

upper and forearm positions. Three kinematic parameters (e_fe, s_fe, and vzf), were em-

ployed for the kinematic analysis and used to formulate a specific algorithm.  

The algorithm reached >88% performance for each task individually and >93% over-

all across both groups in the stroke group. Moreover, the algorithm successfully identified 

tasks of different duration with similar accuracy (±6% of the average value) in both 

groups.  

Pathirana and colleagues reported [24] that using a linear formulation in the meas-

urement system yields better results for real-time human kinematic movement estimation. 

This differs from the traditional approach, which uses extended Kalman filtering or a ro-

bust variant of extended Kalman filtering. The linear approach based on measurement 

conversion increases accuracy. Furthermore, quaternion normalization improves the esti-

mation accuracy of all estimators. Although the suggested approach surpasses traditional 

approaches for converted measurement Kalman filtering, there is less improvement due 

to quaternion estimation. 

Peppoloni and colleagues [25] proposed a novel 7-DoFs model for reconstructing hu-

man upper-limb kinematics in 2 DoFs clavicle motion, 3 DoFs shoulder motion, and 2 

DoFs forearm motion. The joint angle estimation for 7 degrees of freedom is slightly better 

than the other models. Position estimation was also improved; thus, the model presented 

can precisely track clavicle motion despite its simplicity. 

The results obtained by Salah and colleagues [28] show the effectiveness of the pro-

posed algorithm in predicting the human shoulder position with root mean square error 

of 0.018 m and 0.016 m in the x- and y-direction, respectively. 

The algorithm proposed in the study by Zhang and colleagues [23] can capture the 

upper-limb motion with high accuracy, and the estimation errors are quite low. Most es-

timation errors between these two systems are less than 0.05 rad. The proposed algorithm 

showed a small error in rms for computing shoulder movements FLX-EXT (RMSE = 2.4°), 

AB-AD (RMSE = 0.9°), and IER (RMSE = 2.9°). In addition, there are excellent correlation 

coefficient values between the method and the BTS system, reflecting a highly linear re-

sponse. 

Experimental results demonstrate that the algorithm proposed in the study by Zhou 

et al. [26] has RMS position errors that are normally less than 0.01 m, and RMS angle errors 

that are 2.5–4.8°. 

4. Discussion 

Objective systems can be divided into two main classes of motion capture technolo-

gies: non-wearable and wearable systems. The most common human motion capture tech-

niques are non-wearable systems used to measure joint angles noninvasively during dy-

namic movements. The advantage of these systems is that they provide very accurate 

measurements so that they are often taken as a reference (gold standard) to verify the 

performance of all other motion analysis systems. However, the disadvantages are that 

they are complicated, expensive and have usability problems because they require a large 

and structured space to allocate cameras. Therefore, the introduction of wearable systems 

can overcome the disadvantages of these systems. 

Wearable systems can be properly distributed on each body segment providing de-

tailed kinematic parameters. Therefore, they can be attached to the segment of interest 

without hindering the patient’s movement. Moreover, the low cost and high accuracy in-

crease the interest in these devices being adopted in different applications. Nowadays, 

wearable systems are used to track human movements during activities of daily living 

(ADLs). 
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Usually, the segment’s orientation has been calculated by integrating the angular ve-

locities detected by gyroscopes. The position has been calculated by double-integrating 

the translational acceleration measured by accelerometers. One of the most significant is-

sues with integration would be that measurement errors rapidly accumulate and decrease 

accuracy. Roetenberg and colleagues demonstrated that the integration of noisy gyro-

scope data resulted in a drift of 10°–25° after the first minute [30]. Also, the magnetometer 

presents a limitation: the interference due to the presence of ferromagnetic materials in 

the proximity of the sensor and environmental magnetic fields. Bachmann et al. observed 

errors ranging from 12° to 16° due to the effect of ferromagnetic materials [31]. 

Therefore, many approaches and algorithms to solve these problems have been de-

veloped. The sensor fusion technique makes it possible to integrate the information gath-

ered from each sensor. 

In literature, there are not many articles about the algorithms used for the analysis of 

shoulder movement. This systematic review aims to give a brief guide of data fusion tech-

niques and algorithms that can be used to combine wearable sensor data for shoulder 

motion capture. 

The Kalman filter and its variants (UKF and EKF) are used in most of the proposed 

solutions in the literature. Alternatives based on complementary filters and gradient de-

scent algorithms have been reported as being more computationally efficient. EKF is the 

most widely employed nonlinear state estimation method. UKF, on the other hand, uses 

a more accurate method because the calculation of Jacobian matrices is more time-con-

suming due to the structure and dimension of the process. The high computing load re-

quired to develop Kalman-based solutions provides a clear justification for other ap-

proaches, including applying fuzzy processing. Also, the composite filter can be consid-

ered as a good alternative to the Kalman filter. 

Usually, data fusion algorithms use quaternions due to lower computational costs 

than Euler angles. For example, in the studies by Zhang [22] and Hsu [21] a quaternion-

based approach was used. In describing the orientation of a rigid body, quaternions out-

perform both Euler angles and rotation matrices. Furthermore, the concern of singularities 

that influence Euler angles and rotation matrices does not exist in quaternion representa-

tion, which is known to provide more reliable outcomes during orientation analyses. 

4.1. Analysis of Sensor-fusion Algorithms 

Sensor-fusion algorithms can use either deterministic or stochastic methods. To de-

crease the impact of offsets and drifts in the sensor signals, a complementary filter [22] is 

used to combine or merge the low-pass filtered accelerometer and magnetometer signals 

with the high-pass filtered gyroscope data. 

Hsu [22] developed a quaternion-based complementary non-linear filter to minimize 

the cumulative errors and estimate shoulder ROMs using two inertial modules placed on 

the human upper limb. The effectiveness of this algorithm has been validated by five 

shoulder motions (flexion, abduction, extension, extra rotation and internal rotation). 

The Kalman filter (KF), included in the stochastic approach, is the most widespread 

sensor fusion algorithm to process data from MIMU or IMU [19]. The KF’s basic principle 

is to employ recursive processes to estimate sensor orientation, and use the obtained data 

to modify filter features and anticipate future values of the orientation. This approach has 

been discovered to produce an output that is less sensitive to noise and fluctuation in 

sensor data than the complementary filter. 

In the literature, the Kalman filter has been adopted in conjunction with another al-

ternative approach, the fuzzy one. Salah [28] employed an adaptive neuro-fuzzy inference 

system (ANFIS) and a Kalman filter (KF) to estimate in real-time the position of the human 

shoulder during movements. The Kalman filter analyzes the ANFIS’s performance to re-

duce the difference between the estimated and real values. The extensive adoption of Kal-

man-based systems confirms their accuracy and reliability, but they also have a number 

of disadvantages. For example, the Kalman filter can be applied only when the system is 
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linear. Extensions to this method have been developed, such as EKF and UKF, which work 

on non-linear systems. 

EKF is the most widely used nonlinear state estimation method. EKF uses a first-

order Taylor series expansion to linearize the state and observation models [24]. When the 

distribution is Gaussian, EKF models the state variables with first- and second-order mo-

ments. If the dynamics are extremely non-linear and the local linearization does not ade-

quately characterize the relationship, the linearization leads to poor performance. The 

EKF also necessitates the computation of Jacobian matrices, which can be complex, time-

consuming, and error-prone. The EKF’s performance and implementation restrictions can 

be solved using sequential Monte Carlo algorithms, often known as particle filters. 

These algorithms can be used to solve highly non-linear and non-Gaussian estima-

tion problems that require more computing power than the EKF. 

UKF uses a more accurate method to characterize the propagation of the state varia-

ble distribution through the non-linear models. It accurately estimates probability density 

functions (PDF) under non-linear transformations [25]. 

A quaternion-based Kalman filter is an algorithm used to fuse sensor data to reduce 

the effect of sensor offsets and drifts in the estimate of sensor orientation [32]. It is a de-

velopment of the complementary filter. 

The Lagrangian-based optimization technique [26] integrates the values of accelera-

tion and the estimated value of rotation measured from both the inertial sensors in order 

to estimate the translation and rotation of the shoulder joint. 

Controlling estimation accuracy as a function of frequency is possible with a compo-

site filter [18]. The value of α sets the frequency, in radians/s, below which the blended 

estimate makes more use of the steady-state estimate based on accelerometers relative to 

the rate estimate based on the gyroscopes.  

Due to the integration of the gyroscope bias, making α too small would result in 

higher drift. Making α too large, on the other hand, will produce inaccuracies because the 

low frequency estimator, based on accelerometers, ignores force accelerations. 

The study by Hyde et al. [18] used a composite filter for the shoulder’s motion anal-

ysis. This filter provides control over estimation accuracy as a function of frequency, set-

ting the composite filter bandwidth to 1 Hz, i.e., α = 2π. 

The gradient descent method is simplest to both implement and compute. In the 

study by Mazomenos and colleagues [21] a quaternion-based gradient descent method 

was implemented. The upper arm position vector is used to calculate the shoulder flex-

ion/extension and abduction/adduction angles, whereas the forearm position vector is 

used to determine the shoulder medial/lateral rotation angle. 

4.2. Limitations 

The present study has some limitations. Firstly, a meta-analysis was impossible due 

to the heterogeneity and differences (type of sensors and measures adopted) between 

studies. Moreover, only English studies were included. The patient population was too 

heterogeneous, and most of the studies included did not report patients’ characteristics. 

Moreover, the majority of the studies used flexion-extension or internal-external rotation 

movements. However, the type of movement assessed between studies was different, and 

no international consensus has been reached regarding the most accurate movements to 

perform in shoulder analysis. Lastly, due to the few sources about this topic, the quality 

of evidence of the studies included was low; therefore, it was impossible to draw mean-

ingful and quantifiable conclusions. 

5. Conclusions 

The biomechanics of the shoulder joint are complex to study. The literature analysis 

reported heterogeneous studies with a low quality of evidence about shoulder movement 

analysis. Therefore, further clinical trials involving more patients with different anatomic 
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characteristics are required to obtain significant data on the best motion algorithm to 

study the shoulder joint. 
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