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Abstract: Post Operation Clean Out (POCO) is the process to remove hazardous materials and
decommission nuclear facilities at the end of a nuclear plant’s lifetime. The introduction of Internet
of Things (IoT) technologies in the environment, especially radio frequency identification (RFID),
would improve efficiency and safety by intelligently monitoring POCO activities. In this paper,
we present a passive material identification and crack sensing method developed for the integration
of sensing and communication using commercial off-the-shelf (COTS) RFID tags, which is a long-
term solution to material property monitoring under insulation for harsh environmental conditions.
To validate the effectiveness of material identification and crack monitoring, machine learning tech-
niques have been applied, and the feasibility of the study has been outlined. The result shows that the
material identification can be achieved with traditional features and obtain improved accuracy with
three-layer multi-layer neural networks (MLNN). In crack characterization, the tree algorithm based
on traditional features achieves a reasonable accuracy, while three-layer MLNN is the best solution,
which supports the efficiency of traditional feature extraction methods in specific applications.

Keywords: structural health monitoring; RFID; machine learning; non-destruction testing; nuclear
decommissioning

1. Introduction

Non-destructive testing (NDT) methods are used in industry to evaluate the integrity
and properties of material or components without destroying the tested object. The IAEA
promotes the use of non-destructive testing technology to maintain the stringent quality
control standards for the safe operation of nuclear and other industrial installations [1].
One of the most common types of defects are cracks, whose detection in time are a prereq-
uisite to smooth operation and the prevention of future failures [2]. With the development
of sensors and the Internet of Things (IoT), defect detection and characterization techniques
are enabled by embedding sensors for large-scale infrastructure. The ability to inspect
defects or classify them without the shutdown of industry for unscheduled time is an im-
portant economic consideration [3–5], and therefore, a monitoring method with predictive
maintenance capability is highly desirable.

Many NDT&E methods can be used for high-temperature inspection and monitoring,
such as laser ultrasonic [6,7], thermal infrared imaging technology [8] and laser electromag-
netic acoustic transducer (EMAT) configurations [9–11], the MFL (magnetic flux leakage)
method for crack monitoring [12], and even eddy current and pulsed eddy current tech-
niques [13,14]. However, these inspection techniques come with complexity and costs for
long-term measurements in condition-monitoring applications. Additionally, these tech-
niques have their weaknesses, particularly in remote locations with limited access, since
their usage is dependent on cabling or battery-operated electronics. Thus, new technologies
for the deformation monitoring of conveyor belt structures are required. Most recently,
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radio frequency identification (RFID)-based sensors have been proposed as a device for
remotely gathering information about crack detection and its growth [15–18].

The benefit of RFID is that it can operate in high temperature conditions [19] for its
passive nature. The chip-based RFID can operate at 160 degrees [3] without the constraint
of batteries, while the chip-less RFID is able to tolerant hundreds of degrees without an
integrated circuit (IC). However, in chip-less tags, the anti-collision techniques are totally
dependent upon the reader, whereas in chip-based tags, the IC is dedicated for tagging
purposes. The chipped passive wireless RFID sensors have gained much attention in
both academies and industries for potential SHM [2,18]. Low-frequency (LF) and high-
frequency (HF) RFID sensors have been used previously to characterize the steel corrosion
progression [17,20,21], and the read range was later improved by the usage of 3D ultra-
high-frequency (UHF) band RFID [22,23]. However, communication and sensing in LF/HF
RFID systems are antithetical, where the former is based on magnetic resonance coupling
(MRC) and the latter relies on magnetic inductive coupling. Though the time-domain-based
RFID system has an immense communication speed over frequency domain [24], the latter
is advantageous in terms of working at different resonant frequencies.

UHF RFID systems can be easily installed, have a large reading range, and do not
require dedicated line-of-sight access [25]. Moreover, in RFID technology, each sensor has its
identity, so an array configuration of multiple sensors can be distributed over the structure
to be monitored, and each sensor in this array can be easily identified with its location on
the structure/material. This type of focused monitoring system increases the ability to
keep track of potential hot-spots and provides early opportunity to inspect and fix possible
damages from worsening [26]. By using a passive RFID sensor, it is possible to obtain
the status data (e.g., temperature, stress, crack, etc.) of a structure without disassembling
it [3,27]. However, one of the major challenges arises when there are multiple parameters to
be inspected in harsh environments such as nuclear power plants or decommissioning sites.
It is more evident that it is vital and very much desirable to have an automated system
or application. Therefore, incorporating machine learning (ML)-based health monitoring
will vastly improve the system’s performance. Installing an algorithm based on ML will
eliminate the uncertainties involved with human supervision. It can work with multi-
dimensional data and is able to improve the model by self-learning [28,29]. The last two
decades have seen a rise in the use of ML methods for handling several identification
problems in engineering domains [30]. However, structural health monitoring within
the nuclear industry using ML-incorporated UHF RFID sensors is still not addressed
comprehensively in the literature. Machine learning-based crack detection will help allow
the system to take place in real time, significantly improving the system’s performances [31].

UHF RFID sensors have been used for crack detection for many applications. An RFID-
based sensor is used for concrete crack detection in [32]. Here, the sensor operates in
conjunction with another attached conductive surface, and the strain of the concrete causes
the electrical resistance to be increased. Therefore, the authors are able to identify damage
from the tag response. In [33], RFID-based sensors are proposed to depict gradual metallic
plates’ crack damage. The results in [32] show that the RFID sensors are able to detect crack
widths of as low as 0.0650 mm. An investigation was conducted in [34,35] for the crack
depth over stainless steel and ferromagnetic materials by combining RFID sensors with
the ThingMagic platform. A UHF RFID tag is proposed in [33] to monitor the tyre’s health,
where a modified end loaded meander line dipole antenna is used to compensate for the
decreased read range. However, the existing studies of RFID-based sensors in the literature
such as [32–35] do not consider the significant prediction outcomes when combined with
the ML algorithms.

The implementation of ML techniques is vital for dynamic operations of the systems
with continuous and automated learning [36]. ML algorithms are generally divided into
supervised and unsupervised types, which are analysed for the learning and prediction of
empiric results. Supervised learning algorithms minimise the error between the targeted
data and output data, whereas unsupervised algorithms are adopted for clustering data
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when data training is not preferable. However, both types of ML algorithms can be utilised
for the material classifications based on the site conditions and circumstances for the
availability of input data [37]. Construction material classification via ML techniques
has gained a lot of attention among professionals and researchers in the construction
sector. Various studies can be found related to material classification for construction
progress monitoring. However, still, improvements are required in the methodologies
and algorithms towards effective and efficient outcomes. Other than pattern recognition,
ML technologies are adopted for the self-learning of the big-data based systems connected
via the Internet of Things (IoT) integrated with digital technologies [38]. Likewise, for the
construction progress detection technologies, the trend of integration with ML techniques
for the digitalisation of the monitoring process has also been increased in recent times [39].
ML has different recognized branches such as artificial neural networks (ANN), support
vector machines (SVM), and fuzzy logic-based systems (FS) [30]. ML-based crack detection
methods are widely used for civil applications to detect cracks in pavements using deep
neural networks [40], concrete surfaces incorporating fuzzy logic and ANN [41], and steel
bridge girders using SVM in [30].

The focus of the paper is to explore the capabilities of ML in the nuclear sector, and this
is performed by carrying out a comparative study of identifying the correct material
based on the ML approach and then determining varying cracks based on width, depth,
and length using both a multilayer neural network (MLNN) and classic feature-based
classification. The concept of this model involves an MLNN and its input features in terms
of the backscattered power, transmitted power, electric field strength, and unwrapped
phase, which are obtained from an RFID sensor. In order to identify the significance and
future impact of the crack, the paper furthermore expands its objective by performing the
detection of both materials and cracks of different sizes. Such modelling essentially leads
to a highly accurate system capable of identifying cracks and crack widths. Consequently,
the UHF RFID sensor response can be proficiently interpreted to monitor infrastructure
health and the decommission of the old reactors, which is unavoidable at the end of their
operation, and POCO is carried out to tackle the radiation contaminated materials and
ensure the safety and efficiency in the process.

2. Proposed Methodology
2.1. RFID Base Material Identification and Crack Sensing

The principle of RFID-based sensing can be expressed as follows. RFID is based on
backscattering theory, which enables passive information exchange, as shown in Figure 1a.
The communication is established with a switchable load inside the RFID chip. When the
RFID tag antenna harvests the electromagnetic wave from the reader and powers up the
chip, the chip switches the load to change the chip impedance, which causes a change in
the matching condition between the tag antenna and tag chip, leading to an amplitude
shift keying (ASK) modulated backscattered signal [42]. When the tag is placed on a
specific material, as shown in Figure 1b, the dielectric constant of the material changes
the impedance of the tag antenna, which further changes the matching status, resulting
the change in various communication features, such as transmitted power, backscattered
power, phase, etc. These features thus contain information about the dielectric constant of
the material, which provide potential for material identification with RFID technology.

For simple antennae such as microstrip line antennae or meander line antennae,
which are normally used in RFID tags, the effect of placing a dielectric material can be
modelled as inserting a layer with a dielectric constant of εe f f and loss tangent δe f f under
the tag, which can be regarded as a parasitic capacitor and a parasitic resistor to the
tag antenna [43]. This parasitic capacitor adds a negative reactance to the tag antenna
impedance, and the parasitic resistor increases the antenna resistance, thus causing a
mismatch between the tag antenna and the tag chip, reflected in a decrease in transmitted
power and back-scattered power.
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Figure 1. (a) RFID principle, (b) RFID-based material identification and crack sensing system.

The measurement for effective permittivity is not straight forward but can be analysed
with the model presented in [44]. Assuming that the transmission parameter from the
reader antenna to the tag antenna is S12 and back-scattering transmission parameter is S21
(S12 is the reverse voltage gain whereas S21 is the forward voltage gain), the transmission
parameter from the tag antenna to the tag chip is S23, and the transmission from tag chip to
antenna is S32, the equation describing the transmission is:

S13 = S12S23 (1)

After inserting the dielectric layer, the transmission parameter is:

S′13 = S12S′23 = S12S23 ×
Zic

Zant + Zic − 1
jωCp

× (1− tanδ) (2)

= S13 ×
Zic

Zant + Zic − 1
jωCp

× (1− tanδ)

The parasitic capacitance is defined by εe f f as

Cp =
εe f f Se f f

de f f
(3)

where Se f f and de f f are effective area and distance for an ideal planar capacitor model [45].
In our study, the experiment setup and sample diameter are the same; thus, S13,

Se f f , and de f f are the same for different dielectric materials. In this way, the change of
transmitted power is a direct measure of the material dielectric property εe f f and the loss
tangent δ. Similarly, backscattered power and phase are all directly related with εe f f and δ,
providing the capability of identifying the dielectric material.

A metal model is more complicated as it introduces parasitic inductance apart from
resistance and capacitance. The transmission equation is:

S′′13 = S13 ×
Zic

Zant + Zic − 1
jωCp

+ jwLp
× (1− tanδ) (4)

Thus, the measurement for the crack requires more parameters for measurement.

2.2. Machine Learning-Aided Material Identification

Original feature analysis methods are based on raw features such as received signal
strength intensity [46] and phase [47]. Benefits of these features are that they are easily
accessible, and initial research shows the effectiveness of their features. However, these
features suffer from environmental interference and are generally relative measurements
rather than absolute values of the material property. Further investigation has focused on
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various feature extraction methods, such as principal component analysis, tree, or Naïve
Bayes. As the operation environment of RFID is rough, and backscattered signal is weak
and vulnerable, these feature extraction methods suffer from low accuracy.

ML has a shown superior advantage in analysing multi-modal and multi-dimensional
datasets. To analysis and validate the effectiveness of ML in RFID-based sensing, we propose a
multi-layer neural network-based classification method that uses the supervised training
with an algorithm known as error back propagation to perform tasks. The structure of
an MLNN can be shown as Figure 2. The MLP develops a mapping function between
the inputs and outputs, including several hidden layers in between. The learning process
is that the processing elements (PEs) in the input layer receive data, such as transmitted
power, backscattered power, etc., then pass them to the PEs in the hidden layer. A simple
mathematical computation for extracting the weight of the links is undertaken by the PEs.
The results from the hidden PEs are mapped onto appropriate threshold function of each
PE, and the outputs are produced as the input to the next layer. Upon reaching the output
layer, the final results are compared with actual parameters to evaluate the effectiveness,
and the processing cost is calculated for measuring the efficiency.
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2.3. Material Sample Preparation

The materials used in this experiment are shown in Table 1. Figure 3 depicts the real
materials. The selected materials include groups of low-permittivity, low-loss material
(PTFE); low-permittivity, low-medium material (PVC); low-permittivity, high-loss material
(POM); low-permittivity, extremely high-loss material (cardboard); medium-permittivity,
medium-loss material (FR-4); and high-permittivity, medium-loss material (rubber). Thus,
we can have a group of low-permittivity materials to compare the effect of material loss
to the efficiency of wireless power transmission and a group of medium-loss materials to
compare the effect of permittivity.

Table 1. Material list.

Material Relative Permittivity Dielectric Loss Tangent

Cardboard 2.57 0.0717
FR-4 4.87 0.0141
Glass 7.11 0.0098

Polyoxymethylene (POM) 2.96 0.0450
Polytetrafluoroethylene (PTFE) 2.05 0.0002

Polyvinylchloride (PVC) 3.00 0.0079
Rubber 6.73 0.0247
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2.4. Crack Information

Stainless steel and carbon steel are essential materials in the nuclear industry for
their superior strength characteristics and cost efficiency. However, all metals face the
challenge of cracks either from long-term fatigue or extreme force applied. RFID-based
crack sensing could reduce the human power for undertaking routine examination and im-
prove effectiveness in the long-term monitoring of defect growth. However, the challenges
are the instability of RFID signal features and environmental noise. Here, we evaluated
artificial cracks on two different metal materials for their capability in crack sensing and
the effectiveness of ML compared with classic features. Two samples, carbon steel and a
stainless steel, had the same size of 300 × 300 × 20 mm3. Artificial cracks were created by
drilling slots on the samples. The specifications of the slot cracks are given in Figure 4c,
where the unit is millimetre. They consisted of three series of cracks, which represent the
increase of depth, width, and length, individually. Figure 4a,b are the images of the samples
with cracks.
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2.5. Data Preparation and Accuracy Equation

The results were pre-processed for ML as the multi-model and multi-dimensional
dataset was used. For each crack, it contained measurements of the transmitted power
(TP), backscattered power (BP), phase (PH), and electric field (EF) for the frequency range
between 800 MHz and 1000 MHz. This dataset was reorganised into an N-by-M matrix
so that the MLNN could evaluate where N was the observation number and M was the
feature number. Each row represents a single measurement that contains the measurement
frequency, measured TP, BP, PH, and EF, as well as the crack dimension and the sample
material. Seventy percent of the overall dataset was used for training the MLNN, and the
remaining thirty percent was used for validating the results.

After inputting the data into the MLNN, the number of neurons, number of iterations,
and activation functions were investigated to obtain an optimal model to extract the target
feature, which is the material for the material identification and crack parameters for crack
sensing. The accuracy equations for assessing the performance of the model for material
identification and crack sensing were defined as

Accuracy =
∑ Correctly Identi f ied Material Data

Total dataset number
(Material Identi f ication) (5)

Accuracy =
∑ Correctly Measured Crack Data

Total dataset number
(Crack Sensing) (6)

3. Experiment Validation
3.1. Experiment Setup

The validation experiment was carried out by measuring the tag signal and extracts
of the features when the tag was placed on different materials or defects, as shown in
Figure 5. The system consisted of a transponder as the sensor, a reader with an antenna as
a transceiver to power the tag and acquire the signal, and a laptop to control and collect
data from the reader. A UHF RFID development kit from Voyantic Tagformance Pro was
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used as the reader in the validation experiment. The reader antenna was connected to the
development kit using a directional coupler, which enables the separation of tag signals
and reader signals. The antenna was held using a tripod with a distance of 40 cm, so that
the tag response was measurable over the entire band from 800 to 1000 MHz. The tag was
placed on the target material sample with the polarization direction aligned with the reader
antenna. There were two green markers on the bench to ensure that the position of the
sample was the same for different materials.
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3.2. COTS RFID Tags for Validation

The selected UHF transponders are shown in Figure 6. Transponders a, b, and c
were anti-metal tags. a was a dipole-based tag, b was a patch antenna tag, and c the coil
antenna-based tag. Transponder d as a commonly used commercial UHF tag using a dipole
antenna design. e as the reference tag from Voyantic used to calibrate the Tagformance
UHF RFID development kit. The specifications are listed in Table 2.
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Table 2. Specifications of selected transponders.

Transponder Size (mm) Read Range (m) Operation Band (MHz)

a 49.8 × 14 × 0.4 3–3.6 865–928
b 25 × 9 × 3.7 1.8 902–928
c Round 34 × 34 × 6 NA 902–928
d 80 × 16 × 0.1 NA NA
e 116 × 22 × 0.9 NA 800–1000

3.3. Validation Results

The first step was the validation of the RFID-based crack sensing using traditional
features. The results are shown in Figure 7.
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The results for transponder a are shown in Figure 7. The first subplot shows the
transmitted power, which is the minimum transmitted power from the reader to power on
the transponder. This parameter is also known as the threshold power. This parameter can
be used to identify the material as it shows diverse results for different materials, and no
overlap occurred after 860 MHz. The difference between materials reached maximum at
880 MHz, then decreased as the operation frequency increased. The backscattered power
was noisier compared with the transmitted power, and only the response signal for the
steel stood out from other materials. Electric field strength showed a similar result as
the transmitted power, but the difference between the steel sample and other samples
was larger, indicating that this parameter was more sensitive to metal compared with the
transmitted power parameter. The phase was unwrapped in the fourth subplot to change
the angular change to the linear form, which complies with the form of other parameters.
The phase feature shows that the PVC and POM had the highest phase variation across the
band while those of glass, rubber, and FR4 were lower. The result of steel was among the
lowest group, which means that the phase feature is less sensitive to metal detection.

For transponder b, there was a much smaller variance in the results for the non-metal
objects. In contrast, the separation between metallic material and non-metallic material
was the highest, which shows its potential for structural defect sensing.

The result of transponder c shows that this tag has a sensing band limited from 908
to 928 MHz, which is the same as its operation band. Its sensitivity to different materials
is lower than transponder a’s. Among all the parameters, transmitted power and electric
field strength showed better sensitivity, while it was difficult to observe a constant trend in
backscattered power.

Transponder d shows a lower sensitivity compared with transponder a, but it has
a wider sensing band across the entire UHF band while using the transmitted power.
The backscattered power was still noisy compared with the transmitted power or electric
field strength, but the variance between different materials can be observed from the results.

The transmitted power parameter of transponder e shows a low sensitivity that was
the fourth among the five tags. However, the phase feature of the transponder was similar
to transponders a and c, which had the best sensitivity. The limitation of this tag was
its size. With a length over 10 cm, transponder e will suffer from a non-flat surface in
real applications.

The results show that the transmitted power is the best parameter for identifying the
material using RFID and dipole-based RFID tags to achieve the best sensitivity. An un-
wrapped phase feature could provide better sensitivity for some antenna designs (transpon-
der e), and it is more stable and immune to electromagnetic interference.

The results from raw features show that we can obtain different responses from dif-
ferent material samples. However, it is not easy to understand the relevance of these
parameters with electromagnetic properties, such as the dielectric property and the dielec-
tric loss. Thus, we use the transmitted power amplitude at the tag resonance in air to reveal
the sensitivity of different tag designs to the relative permittivity, as shown in Figure 7.
The dashed line in Figure 7 shows the relative permittivity of different materials, which is
the same for Figure 8a. Other lines in Figure 8 show the reading from different tags. It is
clear that tags b, c, and e show a similar trend as the change in relative permittivity between
different material samples. This result can also be validated in the accuracy assessment
of Figure 8b, which shows the correlation of the tag feature with the relative permittivity.
Other parameters such as backscattered power and phase were also investigated for relative
permittivity sensing, but no meaningful results could be achieved.

In the aspect of sensing the dielectric loss tangent, the backscattered power shows
a superior sensitivity than other features, and this is shown in Figure 9. In this study,
the backscattered power at the resonance of tag b shows the highest correlation with the
change in dielectric loss tangent. However, tag a and tag d also show relevance to the
change in dielectric loss, but negatively related.
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in correlation.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 17 
 

 

loss. Thus, we use the transmitted power amplitude at the tag resonance in air to reveal 
the sensitivity of different tag designs to the relative permittivity, as shown in Figure 7. 
The dashed line in Figure 7 shows the relative permittivity of different materials, which is 
the same for Figure 8a. Other lines in Figure 8 show the reading from different tags. It is 
clear that tags b, c, and e show a similar trend as the change in relative permittivity be-
tween different material samples. This result can also be validated in the accuracy assess-
ment of Figure 8b, which shows the correlation of the tag feature with the relative permit-
tivity. Other parameters such as backscattered power and phase were also investigated 
for relative permittivity sensing, but no meaningful results could be achieved. 

  
(a) (b) 

Figure 8. Transmitted power feature for relative permittivity measurement (a) results and (b) accu-
racy in correlation. 

In the aspect of sensing the dielectric loss tangent, the backscattered power shows a 
superior sensitivity than other features, and this is shown in Figure 9. In this study, the 
backscattered power at the resonance of tag b shows the highest correlation with the 
change in dielectric loss tangent. However, tag a and tag d also show relevance to the 
change in dielectric loss, but negatively related. 

  
(a) (b) 

Figure 9. Backscattered power feature for dielectric loss tangent measurement (a) results and (b) 
accuracy in correlation. 

To validate the effectiveness of machine learning techniques, we applied two tradi-
tional classification methods, tree and Naïve Bayes, and two MLNNs to extract the mate-
rial information and tag used. We selected two-layer and three-layer MLNN in the study. 
The activation function used in the MLNN was ReLU(Rectified Linear Unit) for its ad-
vantages of better gradient propagation, and the iteration was limited at 1000 for the 
trade-off of efficiency. The neuron number was optimized to 66, which provides the high-
est accuracy. The accuracy of each method and processing time with parallel computing 

Tag a Tag b Tag c Tag d Tag e
Tag

0.75

0.8

0.85

0.9

0.95

1
Accuracy of Material Ralative Permittivity based on Transmitted Power

Tag a Tag b Tag c Tag d Tag e
Tag

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
Accuracy of Material Dielectric Loss Tangent based on Backscattered Power

Figure 9. Backscattered power feature for dielectric loss tangent measurement (a) results and
(b) accuracy in correlation.

To validate the effectiveness of machine learning techniques, we applied two tradi-
tional classification methods, tree and Naïve Bayes, and two MLNNs to extract the material
information and tag used. We selected two-layer and three-layer MLNN in the study.
The activation function used in the MLNN was ReLU (Rectified Linear Unit) for its advan-
tages of better gradient propagation, and the iteration was limited at 1000 for the trade-off
of efficiency. The neuron number was optimized to 66, which provides the highest accuracy.
The accuracy of each method and processing time with parallel computing is shown in
Table 3. The results show that Naïve Bayes has the worst accuracy for both identifying
the material and the tag. MLNN shows the superior accuracy, with traditional methods
with a relatively long processing time. Between the two MLNNs, the three-layer MLNN
achieved a slightly even-better result. The tree algorithm also exhibited its application
as it achieved acceptable accuracy within a short time, which inspires its application in
distributed sensing conditions.

Table 3. Machine learning techniques accuracy for material identification.

Method Tree Naïve Bayes 2-Layer MLNN 3-Layer MLNN

Accuracy 64.4% 23.4% 77.9% 78.9%
Time 1.1821 s 19.765 s 102.32 s 149.19 s

The results show that the raw feature has an advantage in sensing single material
property, achieving a high relevance with the property change. MLNN shows better classi-
fication accuracy compared with classic categorization methods, but the accuracy is not suf-
ficient. This result helps the algorithm selection for sensing and classification applications.
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3.4. Validation of Crack Sensing Capability of RFID

According to the results shown above, the tag used in this investigation was transpon-
der b, which has the highest sensitivity and communication capability on metal and a low
profile that does not cover two adjacent cracks during the experiment. The experiment
setup was the same as introduced in the aforementioned section, except the sample was
replaced with metal samples, which has artificial defects.

The results for the stainless steel sample are shown in Figure 10. Subplots (a) to (c)
show the transmitted power, electric field strength, and unwrapped phase for the depth
increase series. The resonant frequency of the tag antenna can be identified from the
transmitted power, and it decreases in line with the crack depth increase. The amplitude
of transmitted power can identify different depth cracks, but the relation is not linear.
The electric field is similar to the transmitted power, providing the resonant frequency of
the tag antenna. The absolute value of the electric field strength is also not linear with the
growth of crack depth. The unwrapped phase results separate the different crack depth but
also face the problem of a non-linear relationship. Thus, the resonant frequency feature
is the best option for crack depth sensing using tag b. The results for the crack width
series are shown in Figure 10b. The growth of the crack width also leads to the decrease
of the resonant frequency shift of the tag antenna. An exception point is observed for
the sixth crack for the width in TP, which is the sixth crack in series 2. The reason could
be that the width of the crack introduces a new resonance at a higher frequency, and the
combination of the two resonances increases the resonance. The length series results in
Figure 10c show that the increase of the crack length also reduces the resonance of the tag
antenna. As the resonance shows a decreasing trend for depth increase, width increase,
as well as length increase, the next stage of work will be feature fusion with the non-linear
features to distinguish these increases.
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The carbon steel results are present in Figure 11. Although both samples are metals,
there are a few differences in the characteristics in the results. The sensor also shows a
linear decrease for both increases in crack depth and length, but the sensor is more sensitive
to depth increases in stainless steel and more sensitive to length increases in carbon steel.
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Meanwhile, there is a risk of losing resonance on carbon steel when the width of the crack
is between 3~3.5 mm. This results in losing the signal from the tag, affecting the reliability
of the monitoring system.
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Figure 11. Carbon steel crack sensing results: (a) depth, (b) width, and (c) length.

Resonance frequency based on transmitted power is the most appropriate stand-alone
feature, but the separation of the detailed crack characteristics is difficult to achieve with the
raw features. Meanwhile, there are differences in the results from carbon steel and stainless
steel, affecting the accuracy for sensing. Here, we applied the same feature extraction
methods and MLNN to improve sensing accuracy in crack characterisation. The neuron
number used was 65, the iteration limit as set as 1000, and the activation function was
ReLU. The results are shown in Table 4. MLNN methods were still the most accurate
methods. The tree method showed good performance in crack width sensing and extreme
low processing time.

Table 4. Machine learning techniques accuracy for crack sensing.

Crack Parameter Tree Naïve Bayes 2-Layer MLNN 3-Layer MLNN

Length 82.1%, 1.4737 s 66.4%, 14.027 s 90.8%, 73.589 s 91.3%, 111.05 s
Width 88.2%, 1.2931 s 65.2%, 8.3985 s 94.2%, 70.958 s 94.2%, 105.94 s
Depth 79.8%, 1.5238 s 48.0%, 14.052 s 90.9%, 73.596 s 91.4%, 107.57 s

3.5. Discussion

To the best of the authors’ knowledge, this was the first attempt to classify dielectric
materials with RFID using ML techniques. One of the most widely used techniques for
material dielectric property characterization is based on a novel microwave resonators,
CSRR [48], which obtains an accurate measurement for permittivity (less than 0.1) and loss
tangent (less than 0.0002). However, the setup is a direct contact measurement, which has
limited applications in harsh environments, e.g., a nuclear decommissioning site.
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This investigation also shows an improved accuracy for crack detection using MLNN
methods with RFID compared with [29], which has an accuracy of 83.3% for a 0.5 mm
width crack. Additionally, the full geometry sensing capability is presented, showing that
the system has the best performance for crack width. This is because the sensing area of
the RFID tag could cover the whole range of the crack width but only partially cover the
length. Depth is a subsurface parameter and is, thus, less sensitive compared with the other
two parameters. The results show that a future defect prediction and management system
could consist of a centralised MLNN from the server side assisted with distributed tree
algorithm-based sensing nodes for local and quick response.

4. Conclusions and Future Works

Non-destructive testing and evaluation (NDT&E) is vital for maintaining the safe
operation of nuclear power plants or supporting POCO in decommissioning sites. In this
paper, we have investigated an RFID-based sensing system for material classification and
defect sensing integrated with machine learning techniques. This has not been investigated
in the past. The results show that the raw feature is more effective in material property
sensing compared with machine learning methods. Meanwhile, the machine learning
method is effective in crack feature extraction, with a higher accuracy of 84.4% in width
and relatively lower, at 78.7%, in depth. The theoretic model suggests that classic feature
extraction methods have superior performance in measuring less variables, while MLNN
has better performance when unknown factors are more numerous. Future works will
focus on the selection guide for different applications regarding traditional methods and
machine learning methods.
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Abbreviation

Acronyms Definition
ANN Artificial neural network
ASK Amplitude shift keying
BP Backscattered power
COTS Commercial off-the-shelf
EF Electric field
EMAT Electromagnetic acoustic transducer
FR-4 Flame retardant-4
FS Fuzzy logic-based system
HF High frequency
IAEA International Atomic Energy Agency
IC Integrated circuit
IoT Internet of Things
LF Low frequency
MFL Magnetic flux leakage
MHz Megahertz
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ML Machine learning
MLNN Multi-layer neural network
MRC Magnetic resonance coupling
NDT Non-destructive testing
NDT&E Non-destructive testing and evaluation
PE Processing element
PH Phase
POM Polyoxymethylene
POCO Post Operation Clean Out
PTFE Polytetrafluoroethylene
PVC Polyvinylchloride
ReLU Rectified Linear Unit
RFID Radio frequency identification
SHM Structural Health Monitoring
SVM Support vector machines
TP Transmitted power
UHF Ultra-high frequency
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