
Citation: Yang, Y.; Sun, L.; Mao, X.;

Zhao, M. Data Augmentation Based

on Generative Adversarial Network

with Mixed Attention Mechanism.

Electronics 2022, 11, 1718.

https://doi.org/10.3390/

electronics11111718

Academic Editor: Manohar Das

Received: 21 February 2022

Accepted: 27 April 2022

Published: 27 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Data Augmentation Based on Generative Adversarial Network
with Mixed Attention Mechanism
Yu Yang *, Lei Sun, Xiuqing Mao and Min Zhao

School of Cryptography Engineering, Information Engineering University, Zhengzhou 450001, China;
sl20210221@163.com (L.S.); mxq_zf@163.com (X.M.); zm717207@163.com (M.Z.)
* Correspondence: yuyoung0107@163.com

Abstract: Some downstream tasks often require enough data for training in deep learning, but it
is formidable to acquire data in some particular fields. Generative Adversarial Network has been
extensively used in data augmentation. However, it still has problems of unstable training and
low quality of generated images. This paper proposed Data Augmentation Based on Generative
Adversarial Network with Mixed Attention Mechanism (MA-GAN) to solve those problems. This
method can generate consistent objects or scenes by correlating the remote features in the image, thus
improving the ability to create details. Firstly, the channel-attention and the self-attention mechanism
are added into the generator and discriminator. Then, the spectral normalization is introduced into
the generator and discriminator so that the parameter matrix satisfies the Lipschitz constraint, thus
improving the stability of the model training process. By qualitative and quantitative evaluations
on small-scale benchmarks (CelebA, MNIST, and CIFAR-10), the experimental results show that
the proposed method performs better than other methods. Compared with WGAN-GP (Improved
Training of Wasserstein GANs) and SAGAN (Self-Attention Generative Adversarial Networks),
the proposed method contributes to higher classification accuracy, indicating that this method can
effectively augment the data of small samples.

Keywords: generative adversarial network; mixed attention mechanism; small samples; data augmentation

1. Introduction

The three significant elements of artificial intelligence (AI) are data, computing power,
and algorithm. AI is developing more and more rapidly. The authors of [1] attempted to
make these models intelligent by introducing more explicable and physically meaningful
knowledge in a non-convex modeling way that meets the actual needs. The authors of [2]
proposed a new small-batch GCN that allows training of large-scale GCN in a small-batch
manner. More importantly, their mini-GCN can infer out of sample data and improve
classification performance without retraining the network. Deep learning, a branch of AI,
relies heavily on a good deal of data, and the size of the dataset has a specific impact on
the model’s performance. The data used for training is usually a large number of indeed
collected images, text, or voice data. Meanwhile, the training data need to be artificially
marked with some information, which consumes a lot of time and cost. However, in some
particular fields, such as astronomy, medical treatment, security, aviation, power systems,
and so on, it is burdensome to acquire enormous data. So, efficiently acquiring high-quality
data has become a research hotspot, and Data Augmentation (DA) technology has emerged.

Traditional image DA mainly involves geometric transformation and color transfor-
mation. Geometric transformation performs a simple transformation on the image, such
as flipping, rotating, and cutting. The most common color transformation is based on
noise. The image DA technique proposed in [3] combines sharpening and noise reduc-
tion. Although these methods can realize DA, they are limited to changing the original
images, which results in repetitive and single data distribution. Generative Adversarial
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Network (GAN) [4] provides a feature learning framework for solving the problems in
DA. The framework includes two modules: Generator (G) and Discriminator (D), and both
the modules learn to produce output by adversarial pattern. GAN has been universally
used in diverse image generation tasks. However, GAN still has some problems in that
it convergence is difficult, and it is easy to produce mode collapse. Based on the original
GAN, a series of improved models have been proposed. Wasserstein GAN (WGAN) [5] was
proposed by Martin et al. It has basically solved model collapse and ensured the generated
samples diversity. Improved Training of Wasserstein GANs (WGAN-GP) [6] was proposed
by Ahmed et al. Gradient penalty was used to achieve an approximate 1-Lipschitz [7]
constraint on the discriminator, making the GAN training more stable and converging
faster. Based on this, it can generate higher-quality samples. However, WGAN-GP has
no fundamental implementation restriction on 1-Lipschitz conditions. In February 2018,
Spectral Normalization GAN (SNGAN) [8] was proposed, and the main idea is to restrict
the modulus of a gradient to a range. The parameter matrix W of the neural network is
normalized by spectral norm. Although some achievements have been made in improving
the speed of convergence, further improvement is still needed. Convolutional Neural
Network (CNN) [9] was used for Deep Convolution GAN (DCGAN) [10]. Based on CNN’s
strong fitting and expressive ability, the quality of generating images is greatly improved,
but model collapse can easily occur during training. The authors of [11–13] generated
high-resolution face images, but these models are all complicated and time-consuming.
The authors of [14,15] proposed that a single natural image can train the GAN model. The
authors of [16] proposed a method in which the low-resolution images can be transformed
into the high-resolution images.

AugGAN [17] is an improved GAN model that emphasizes the cross-domain adapta-
tion of DA. For vehicle detection, if we use the data collected in the daytime to train the
model, the model will achieve a poor performance when it is used at night. Thus, people
are required to spend time collecting the data at night. To solve this problem, AugGAN
takes advantage of the high redundancy of daytime and night, and it transfers one domain
to another. In this way, it realizes data transformation to complete DA. The work in [18]
proposed DAGAN, which obtains source domain data and then learns to generate other
data items by taking any data item. DAGAN could improve the performance of a classifier
after DA. For medical image generation using GAN, a DA method was proposed in [19]. A
training scheme based on classical DA was exploited to enlarge the training dataset, and
GAN was then used to expand data diversity further. In addition, DCGAN was proposed
for DA to improve the performance of the Person re-identification model [20]. The authors
of [21] proposed an image-to-image translation network to generate high-quality images
for data augmentation, and this method can be used to improve the performance of dif-
ferent computer vision tasks. The proposed network consists of a detail branch, a transfer
branch, a filter module, and a reconstruction module. It shows significant effectiveness
in preserving details and structural information. The authors of [22] proposed a deep
translation (GAN)-based change detection network called DTCDN for optical and SAR
remote sensing images. The basic idea is to first utilize image translation to reduce the
difference of heterogeneous remote sensing images and then adopt an improved deep
network to detect changes between two periods. The experimental change detection results
of the optical and SAR remote sensing images in four different datasets demonstrate the
validity of the proposed method. However, the detection capability of the method for
complex multi-source remote sensing images need to be further improved. The authors
of [23] introduced basic data augmentation operations to address the fundamental data
limitation problem in applying deep learning for remote sensing image processing. It
uses data augmentation to improve the remote sensing scene classification performance
of CNNs.

Attention mechanism was first developed as part of the encoder–decoder framework
in RNN (Recurrent Neural Network) to encode lengthy input statements, and it has been
widely used in RNN subsequently [24]. However, no matter how long the antecedent is
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and how much information it includes, it will finally be compressed into a vector of several
hundred dimensions. This means that the larger the context, the more information will
be lost from the final state vector. In CNN, the feature map was acted on the attention
mechanism, trying to acquire available information in the feature map and achieve a better
task effect [25]. “Attention is all you need” introduced the transformer model with self-
attention as the basic unit [26], which makes the attention mechanism genuinely successful.
The key of Squeeze-and-Excitation Networks (SENet) [27] is SE block, in which the interde-
pendence between feature maps was explicitly modeled by an attention mechanism. The
importance of each feature map is acquired adaptively through learning, and then, the
original data are updated according to the matter. Han Zhang et al. proposed Self-Attention
GAN (SAGAN) [28]. It adopted a non-local so that the network can effectively construct
relationships between different regions. SAGAN considers the global information in each
layer to solve unclear local details in tiny. In addition, it finds a good balance between
increasing the receptive field and reducing the number of parameters. However, it ignores
the relationship between the channels of the feature map, and many abnormal structures
are presented in the generated images.

It is different from the present work [29]: in this research, not only CelebA but also
MNIST and CIFAR-10 are used; the method of regular training was introduced; the classifi-
cation method was used to indicate the validity of DA further.

A summary of the prime contributions in this paper follows:

(1) Through research and experiments, a mixed attention mechanism was introduced
into the generator and discriminator so that the GAN can capture structure, texture,
and other details of images. Meanwhile, the geometry and distribution of the image
can be captured effectively, and more detailed and realistic images can be depicted.

(2) Spectral Normalization (SN) was applied to the generator and discriminator, respec-
tively, to make the training process more stable.

(3) Compared with the baseline method, data generated by the proposed method can
efficaciously improve classification accuracy and convergence, indicating that the DA
of small sample data is reliable and effective.

This paper is organized as follows. Section 2 introduces the related work, including
GAN and DCGAN. Section 3 introduces the proposed method in detail, including the
overall framework, the theory of self-attention and channel-attention, and spectral normal-
ization. Section 4 presents experimental process and analysis, the datasets and parameter
settings of the experiment, and the quantitative evaluation method and experimental
results. Section 5 analyzes time efficiency and complexity. The final section concludes
this paper.

2. Related Work
2.1. Generative Adversarial Network

GAN consists of the generator and the discriminator. The generator generates images
from a given noise z; at the same time, the discriminator determines whether the sample is
real or fake by measuring the divergence between the distribution of generated samples
and real samples.

For real data x, random noise z, generator G, and discriminator D, the objective
function of an original GAN is:

minGmaxDV(D, G) = Ex∼pdata(x)[logD(x)] + Ez∼pz(z)[log(1− D(G(z)))] (1)

pdata(x) represents the distribution of real samples, and pz(z) represents the distribu-
tion of generated samples. D(x) is a probability, and it indicates the possibility that the
input of D are real samples. The training of GAN is a process of the max–min game. In the
training process, D is optimized after G is fixed, and G is optimized after D is fixed.
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2.2. Deep Convolution Generative Adversarial Network

DCGAN is mainly composed of a generator (G) and discriminator (D). The generator
and discriminator compete with each other to reach the equilibrium.

Figure 1 shows the structure of DCGAN. The hidden variable z is generally a random
noise subject to Gaussian distribution, putting z into the generator and obtaining G(z).
After the discriminator obtains G(z), it compares it with the real data, making a true or
false judgment and feeding it back to the generator. The discriminator optimized process is
similar to the two-classification problem.

Figure 1. The structure of DCGAN.

The first step is to fix the generator and train the discriminator, sampling x from the
real data distribution and sampling z from the prior distribution, and then generating data
G(z) through the generator. x and G(z) input a discriminator for training to maximize the
objective function.

3. Proposed Method

This paper proposed a GAN model based on the Mixed Attention Mechanism (MAM)
called MA-GAN to solve the problem that the original GAN cannot effectively capture
the geometry and shape of images. By capturing the importance of features at different
positions, this model can obtain the weight parameters of corresponding areas, accelerating
the network’s convergence. Meanwhile, our method can acquire the utmost out of the
features of each layer for image generation. In this way, the model can flexibly capture
the local and global connections, achieving a high expressive ability and a low model
complexity. Figure 2 displays the network structure of the MA-GAN.

Figure 2. Network structure of the proposed MA-GAN.

3.1. Self-Attention Mechanism

Traditional convolutional GAN can easily generate images from simple geometric
figures such as ocean and sky, but it fails on images with specific geometric shapes (such as
dogs, horses, etc.). For example, it can produce the skin textures of a cat but cannot generate
the legs. In addition, it pays great attention to details when generating face images. Taking
a left and right eye as an example, as long as there is a slight asymmetry, the generated
faces will be unreal. It is difficult for convolutional kernels to cover a large area. When
a convolutional operation is performed on the left eye, it does not know the impact of
the right eye on the left eye. In this case, the generated images will lack the integrity of
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facial structure features. Since the convolutional operation has a receptive field, resulting
in low model learning efficiency and loss of details. Some traditional methods use a deeper
CNN or directly use a fully connected layer to obtain global information, generating many
parameters and computations. Therefore, in order to establish a balance between the
efficiency and an enormous receptive field and increase the size of the receptive field, the
self-attention mechanism is added.

The self-attention provides self-attention-based remote dependency. Figure 3 displays
the structure of the self-attention mechanism.

Figure 3. Schematic diagram of the self-attention structure.

In the self-attention module, the features of the previously hidden layer x ∈ RC×N

are converted into two feature space functions f, g to calculate the attention, where C is
the number of channels and N is the product of width times height. f (x), g(x) and h(x)
are all 1× 1 convolutions, and they are respectively called the query, key, and value. The
output has a different channel. The role of 1× 1 convolution is to reduce the number of
channels, and the size of the generated images is affected by the size and stride of the
convolutional kernel. For a 1× 1 convolutional kernel with a stride of 1, then the size of the
generated image will not be changed. Since the convolutional process usually involves an
activation function, much non-linearity is introduced without changing the size of the input,
which enhances the expressive ability of the neural network. f (x) = W f x, g(x) = Wgx.

Wg ∈ RC×C and Wh ∈ RC×C are the learning weight matrices.

C = C/8 (2)

As shown in Formula (3), the output of f (xi) is transposed and multiplied with g(xj).
Then, the result is normalized by softmax to obtain an attention map.

β j,i =
exp(sij)

N
∑

i=1
exp(sij)

(3)

where β j,i represents the influence degree of the model at the i-th position when the j-th area
is synthesized. These learning weight matrices are called “attention maps” that essentially
quantify the importance of pixel j relative to image i.

The output of the attention layer is:

o = (o1,o2, . . . , oj, . . . , oN) ∈ RC×N (4)

h(xi) is multiplied with the obtained attention map pixel-by-pixel to obtain the feature map
of the adaptive attention, where xi is the i-th extracted feature map.

h(xi) = Whxi (5)
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v(xi) = Wvxi (6)

oj = v

(
N

∑
i=1

β j,ih(xi)

)
(7)

In addition, the output of o is further multiplied by the scale parameter γ. The result
is added to the input feature map x to obtain the final output. The formula is as follows:

yi = γoi + xi (8)

To take into account the relevance of domain information and long-distance features, a
transition parameter γ with an initial value of 0 is introduced. It makes the model gradually
assign weights to other long-distance feature details starting from the domain information.

3.2. Channel-Attention Mechanism

As shown in Figure 4, the channel-attention module automatically obtains the impor-
tance of each feature channel by learning. Then, according to this importance, it enhances
useful features and suppresses less valuable features for the current task. Assuming that
the neural network uses global information to enhance the helpful information while
suppressing the useless information, for channel-dimensional characteristic fusion, the
convolutional operation fuses all the channels of the input feature map by default. Figure 4
displays the structure of the channel-attention mechanism.

Figure 4. Structure of the channel-attention mechanism.

X ∈ RH′×W ′×C′ , U ∈ RH×W×C, V = (v1,v2, . . . vc) represents the learning set of convo-
lutional kernels, and vc represents the parameters of the c-th convolutional kernel. The
output is U = (u1,u2, . . . uc).

uc = vc ∗ X =
C′

∑
i=1

vs
c ∗ xs (9)

∗ defines a convolution operation. vc = (v1
c , v2

c , . . . , vc′
c ), X = (x1, x2, . . . , xc′), and

uc ∈ RH×W . vs
c is a two-dimensional convolutional kernel with s channels, and xs repre-

sents the s-th input. The spatial feature on a channel is input to learn the spatial feature
relationship. However, after the convolutional results of each channel are added, the chan-
nel feature relationship is mixed with the spatial relationship learned by the convolutional
kernel. To this end, the channel attention module is designed to abstract this mix so that
the model directly learns the channel feature relationship. After Ftr, the extracted features
are obtained, and the size of convolution at this time is H ×W × C.

Since convolution only operates in a local space, it is difficult for U to obtain enough
information to extract the relationship between channels. Therefore, the squeeze is pro-
posed. It first encodes the entire spatial feature on a channel into a global feature. Then,
by using Global Average Pooling (GAP), it compresses the spatial information into a
channel descriptor.

zc = Fsq(uc) =
1

H ×W

H

∑
i=1

W

∑
j=1

uc(i, j) (10)

Feature compression is performed in the spatial dimension, and each two-dimensional
feature channel becomes a real number that has a global receptive field to a certain extent.
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The output dimension matches the number of input feature channels, representing the
feature channel that is the global distribution of responding. The dimension of the original
feature map is H ×W × C, where H, W, and C are respectively the height, width, and the
number of channels. After the feature map is compressed from H ×W × C to 1× 1× C, it
has only one dimension. In this way, the parameter in the dimension can be used to obtain
the previous H ×W global field of vision, and the perception area is more comprehensive.
Then, the excitation operation is performed to use the information gathered in the squeezed
operation and completely capture the dependence of the channel. After the 1× 1× C
representation of the squeeze is obtained, a fully connected layer is added to predict the
importance of each channel. Finally, the importance of different channels is obtained and
applied to the corresponding channel of the previous feature map.

s = Fex(z, W) = σ(g(z, W)) = σ(W2ReLU(W1, z)) (11)

σ represents a sigmoid activation function; W1 ∈ R
c
r×c, W2 ∈ Rc× c

r , W1 and W2 are weight
matrices of the two fully connected layers; r equals 16. The use of this parameter is to
reduce the number of channels and the amount of computation. The output weight of the
excitation is regarded as the importance of each channel of the feature.

In Formula (11), the result of the squeeze is z, and W1×Z is a fully connected operation.
The dimension of W1 is c

r × c, and the dimension of z is 1× 1× c, so the dimension of
W1× Z is 1× 1× c

r . After the multiplication by W2, the dimension of the output is 1× 1× c.
Finally, s is obtained through sigmoid function. c represents the number of channels that are
used to describe the weight of each feature map, and the weight is learned through previous
fully connected layers and nonlinear layers. The function of the two fully connected layers
is to fuse the feature map information of each channel. After s is obtained, U is processed,
where uc is a matrix. sc is the activation value of each channel learned, and it is multiplied
with uc to complete the Fscale operation. After this operation, the useless information tends
to 0 while the useful information is still useful. Corresponding to:

X′c = Fscale(uc, sc) = scuc (12)

To reduce the complexity of the model and improve its generalization ability, two fully
connected (FC) layers are involved in the model. The first FC layer performs dimensionality
reduction before the ReLU activation function is used, while the second FC layer restores
the original dimension. Figure 5 displays the network of the channel-attention mechanism.

Figure 5. Structure of channel-attention network.

3.3. Weight Standard Technique of Spectral Normalization

To handle the problem that the GAN model is easy to collapse and difficult to converge,
the spectral norm normalized parameter matrix is introduced to limit the gradient to a
fixed range and slow down the convergence of the discriminator, thereby improving the
training stability of GAN.

A feedforward neural network can be expressed as a cascading operation:

xl = Dl
θ,xWl xl−1 (13)

where l represents the number of layers, l ∈ {1, . . . , L}; xl−1 is the input of the l-th layer,
and xl is the output of the l-th layer; Wl , respectively, represents the weight matrix and bias
vector of a layer. To facilitate derivation, bias is omitted in this paper.
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Dl
θ,x represents the diagonal matrix that is used in the activation function. The diagonal

value of the matrix is 0 when the input is negative; otherwise, it is 1. Let θ denote the set of

all parameters that need to be learned, θ =
{

Wl , bl
}L

l=1
. The function formed by the entire

layer is denoted as fθ . Given K sets of training data, i.e., (xi, yi)
K
i=1, the loss function is

defined as 1
K

K
∑

i=1
L( fθ(xi), yi). As for the parameters in θ, σ(Wθ,x) denotes the calculational

of the spectral norm. It is mathematically equivalent to the calculation of the maximum
singular value of matrix Wθ,x, which is shown as follows:

σ(A) := max
h:h 6=0

||Ah||2
||h||2

= max
||h||2≤1

||Ah||2 (14)

For Lipschitz continuity, an additional restriction is imposed on a consecutive function
f , which requires a constant 0 ≤ K to make any two elements in the domain to meet the
following:

| f (x1)− f (x2)|≤ K|x1 − x2| (15)

The constant K is called the Lipschitz constant of function f.
To satisfy the Lipschitz limit, the value of θ can be obtained by minimizing f (x + ξ)− f (x),

where ξ is a perturbed vector with a small modulus. Considering the small area of x, fθ

can be regarded as a linear function with affine mapping x →Wθ,xx + bθ,x , where Wθ,x is
a matrix and bθ,x is a vector. Both Wθ,x and bθ,x depend on the values of θ and x. Then, for
a minor disturbance ξ, thus,

|| fθ(x + ξ)− f (x)||2
||ξ||2

=
||Wθ,x(x + ξ) + bθ,x − (Wθ,xx + bθ,x)||2

||ξ||2
=
||Wθ,xξ||2
||ξ||2

≤ σ(Wθ,x)

(16)
Wθ,x can be rewritten as:

Wθ,x = DL
θ,xWLDL−1

θ,x WL−1 . . . D1
θ,xW1 (17)

Since LeakyReLU and ReLU satisfy the 1-Lipschitz constraint, then for each l ∈ {1, . . . L},
there is σ(Dl

θ,x) ≤ 1 so that:

σ(Wθ,x) ≤ σ(DL
θ,x)σ(W

L)σ(DL−1
θ,x )σ(WL−1) . . . σ(D1

θ,x)σ(W
1) ≤ σ(WL)σ(WL−1) . . . σ(W1) ≤

L

∏
l=1

σ(Wl) (18)

To limit the spectral norm of Wθ,x, only the spectral norm of each l ∈ {1, . . . L} limiting
Wl is sufficient. For a linear layer function g(h) = Wh, the Lipschitz paradigm can be
calculated as follows:∣∣∣∣g∣∣∣∣Lip = suphσ(∇g(h)) = suphσ(W) = σ(W) (19)

If the Lipschitz paradigm of the activation function
∣∣∣∣al
∣∣∣∣Lip = 1 , the following in-

equality constraint holds: ∣∣∣∣g1 ◦ g2
∣∣∣∣Lip ≤

∣∣∣∣g1
∣∣∣∣Lip·

∣∣∣∣g2
∣∣∣∣

Lip (20)

where ◦ represents a composite function. Based on the inequality constraint, the restriction
of fθ Lipschitz paradigm can be expressed as:

||f||Lip ≤ ||hL →WL+1hL||Lip·||aL||Lip·||hL−1 →WLhL−1||Lip . . . ||a1||Lip·||h0 →W1h0||Lip =
L+1

∏
l=1

∣∣∣∣∣∣(hl−1 →Wl hl−1)
∣∣∣∣∣∣Lip =

L+1

∏
l=1

σ(Wl) (21)
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Therefore, by ensuring that σ(W l) is always equal to 1, this function can meet the
1-Lipschitz limit. Let the parameters of each layer of the network be divided by the spectral
norm of the layer number matrix. The division is represented as follows:

W(W) :=
W

σ(W)
(22)

In the training process, different learning rates are given to balance speed of the
generator and discriminator. To investigate the effects of spectrum normalization on the
model performance, ablation experiments were performed.

Figure 6a illustrates the result of the generator without spectral normalization after
600 iterations. It can be seen that generated images contain much noise, and the training is
very unstable. Figure 6b illustrates the result of the generator with spectral normalization
after 600 iterations. We can see that the generated images have better quality than those
shown in Figure 6a, and the training is more stable.

Figure 6. The samples generated by different models. (a) 600 iterations without SN, (b) 600 iterations
with SN.

As for CelebA, the generator and discriminator network structures each have five
layers. As for CIFAR-10 and MNIST, the network structure of the generator and discrimina-
tor each have four layers. The experimental result shows that after the channel-attention
mechanism is added to the first two layers of the generator and discriminator, the quality
of the generated images is improved. However, adding this mechanism does not result
in excessive parameters and time overhead, because the low-level layers extract detailed
information. Meanwhile, the self-attention mechanism is added to the last two layers of the
generator and discriminator. The reason is that for larger feature maps, the self-attention
mechanism is a supplement to convolution but works similar to local convolution for mod-
eling the dependencies on smaller feature maps. The network structures of the generator
and discriminator in CelebA, CIFAR-10, and MNIST are shown in the following tables.

The network structure of the generator in CelebA is shown in Table 1. The generator
receives a 100-dimensional noise vector, and then, the vector goes through the first layer
of transposed convolution. The size of the input channel is 100, while that of the output
channel is 512. A 4 × 4 kernel with a stride of 1 is used here. Next, the data are processed
by SN, BN, and channel-attention, respectively. Finally, the ReLU activation function is
used, and the size of the output feature map is 4 × 4 × 512. After the second layer of
transposed convolution, the size of the input channel is 512, and that of the output channel
is 256. A 4 × 4 kernel with a stride of 2 is used here. Then, the data pass through SN, BN,
and channel-attention, respectively. Finally, the ReLU activation function is used, and the
output feature map is 8 × 8 × 256. After the third layer of transposed convolution, the size
of the input channel is 256, while that of the output channel is 128. Then, the data pass
through SN, BN, and self-attention, respectively. Finally, the ReLU activation function is
used, and the size of the output feature map is 16 × 16 × 128. After the fourth layer of
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the transposed convolution, the size of the input channel is 128, while that of the output
channel is 64. Then, the data are processed by going through SN, BN, and self-attention,
respectively. Finally, the ReLU activation function is used, and the size of the output feature
map is 32 × 32 × 64. After the fifth layer of transposed convolution, the size of the input
channel is 64, while that of the output channel is 3. Finally, the Tanh activation function is
used, and the size of the output is 64 × 64 × 3.

Table 1. The network structure of the generator in CelebA.

Input Operation Output

— ConvTranspose2d (100, 512, k = 4 × 4, s = 1)
SN + BN + channel-attention + ReLU 4 × 4 × 512

4 × 4 × 512 ConvTranspose2d (512, 256, k = 4 × 4, s = 2)
SN + BN + channel-attention + ReLU 8 × 8 × 256

8 × 8 × 256 ConvTranspose2d (256, 128, k = 4 × 4, s = 2)
SN + BN + ReLU 16 × 16 × 128

16 × 16 × 128 +self-attention 16 × 16 × 128

16 × 16 × 128 ConvTranspose2d (128, 64, k = 4 × 4, s = 2)
SN + BN + ReLU 32 × 32 × 64

32 × 32 × 64 +self-attention 32 × 32 × 64

32 × 32 × 64 ConvTranspose2d (64, 3, k = 4 × 4, s = 2)
Tanh 64 × 64 × 3

The network structure of the discriminator in CelebA is shown in Table 2. The size
of the input image to the discriminator is 64 × 64 × 3. After the first layer of convolution,
the size of the input channel is 3, while that of the output channel is 64. A 4 × 4 kernel
with a stride of 2 is used here. Then, the data are processed by SN and channel-attention,
respectively. Finally, the LeakyReLU activation function is used, and the size of the output
feature map is 32 × 32 × 64. After the second layer of convolution, the size of the input
channel is 64, while that of the output channel is 128. Finally, the LeakyReLU activation
function is used, and the size of the output feature map is 32 × 32 × 64. After the fifth layer
of convolution, the size of the input channel is 512, while that of the output channel is 1. A
4 × 4 kernel with a stride of 1 is used.

Table 2. The network structure of the discriminator in CelebA.

Input Operation Output

64 × 64 × 3 Conv2d (3, 64, k = 4 × 4, s = 2)
SN + channel-attention + LeakyReLU 32 × 32 × 64

32 × 32 × 64 Conv2d (64, 128, k = 4 × 4, s = 2)
SN + channel-attention + LeakyReLU 16 × 16 × 128

16 × 16 × 128 Conv2d (128, 256, k = 4 × 4, s = 2)
SN + LeakyReLU 8 × 8 × 256

8 × 8 × 256 +self-attention 8 × 8 × 256

8 × 8 × 256 Conv2d (256, 512, k = 4 × 4, s = 2)
SN + LeakyReLU 4 × 4 × 512

4 × 4 × 512 +self-attention 4 × 4 × 512
4 × 4 × 512 Conv2d (512, 1, k = 4 × 4, s = 1) —

The network structure of the generator in CIFAR-10 is shown in Table 3. The generator
receives a 100-dimensional noise vector, and then, the vector goes through the first layer
of transposed convolution. The size of the input channel is 100, while that of the output
channel is 256. A 4 × 4 kernel with a stride of 1 is used. Then, the data are processed by
SN, BN, and channel-attention, respectively. Finally, the ReLU activation function is used,
and the size of the output feature map is 4 × 4 × 256. After the second layer of transposed
convolution, the size of the input channel is 256, while that of the output channel is 128.
The size of the output feature map is 8 × 8 × 128. After the third layer of transposed
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convolution, the size of the input channel is 128, while that of the output channel is 64.
The size of the output feature map is 16 × 16 × 64. After the fourth layer of transposed
convolution, the size of the input channel is 64, while that of the output channel is 3. The
size of the output is 32 × 32 × 3.

Table 3. The network structure of the generator in CIFAR-10.

Input Operation Output

— ConvTranspose2d (100, 256, k = 4 × 4, s = 1)
SN + BN + channel-attention + ReLU 4 × 4 × 256

4 × 4 × 256 ConvTranspose2d (256, 128, k = 4 × 4, s = 2, p = 1)
SN + BN + channel-attention + ReLU 8 × 8 × 128

8 × 8 × 128 +self-attention 8 × 8 × 128

8 × 8 × 128 ConvTranspose2d (128, 64, k = 4 × 4, s = 2, p = 1)
SN + BN + ReLU 16 × 16 × 64

16 × 16 × 64 +self-attention 16 × 16 × 64

16 × 16 × 64 ConvTranspose2d (64, 3, k = 4 × 4, s = 2, p = 1)
Tanh 32 × 32 × 3

The network structure of the discriminator in CIFAR-10 is shown in Table 4. The size
of the input image to the discriminator is 32 × 32 × 3. After the first layer of convolution,
the size of the input channel is 3, while that of the output channel is 64. A 4×4 kernel
with a stride of 2 and a padding of 1 is used. Then, the data pass through SN and channel-
attention, respectively. Finally, the LeakyReLU activation function is used, and the size of
the output feature map is 16 × 16 × 64. After the second layer of convolution, the size of
the input channel is 64, while that of the output channel is 128. Finally, the LeakyReLU
activation function is used, and the size of the output feature map is 8 × 8 × 128. After the
fourth layer of convolution, the size of the input channel is 256, while that of the output
channel is 1. A 4 × 4 kernel is used.

Table 4. The network structure of the discriminator in CIFAR-10.

Input Operation Output

32 × 32 × 3 Conv2d (3, 64, k = 4 × 4, s = 2, p = 1)
SN + channel-attention + LeakyReLU 16 × 16 × 64

16 × 16 × 64 Conv2d (64, 128, k = 4 × 4, s = 2, p = 1)
SN + channel-attention + LeakyReLU 8 × 8 × 128

8 × 8 × 128 +Self-Attention 8 × 8 × 128

8 × 8 × 128 Conv2d (128, 256, k = 4 × 4, s = 2, p = 1)
SN + LeakyReLU 4 × 4 × 256

4 × 4 × 256 +self-attention 4 × 4 × 256
4 × 4 × 256 Conv2d (256, 1, k = 4 × 4) —

The network structure of the generator in MNIST is shown in Table 5. The generator
receives a 100-dimensional noise vector, and then, the vector goes through the first layer
of transposed convolution. The size of the input channel is 100, while that of the output
channel is 512. A 3 × 3 kernel with a stride of 1 is used. Then, the data go through SN,
BN, and channel-attention, respectively. Finally, the ReLU activation function is used, and
the size of the output feature map is 3 × 3 × 512. After the second layer of transposed
convolution, the size of the input channel is 512, while that of the output channel is 256.
The size of the output feature map is 7 × 7 × 256. After the third layer of transposed
convolution, the size of the input channel is 256, while that of the output channel is 128.
The size of the output feature map is 14 × 14 × 128. After the fourth layer of transposed
convolution, the size of the input channel is 128, while that of the output channel is 1. The
size of the output is 28 × 28 × 1.
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Table 5. The network structure of the generator in MNIST.

Input Operation Output

— ConvTranspose2d (100, 512, k = 3 × 3, s = 1, p = 0)
SN + BN + Channel-Attention + ReLU 3 × 3 × 512

3 × 3 × 512 ConvTranspose2d (512, 256, k = 5 × 5, s = 2, p = 1)
SN + BN + Channel-Attention + ReLU 7 × 7 × 256

7 × 7 × 256 +Self-Attention 7 × 7 × 256

7 × 7 × 256
ConvTranspose2d (256, 128, k = 5 × 5, s = 2,

outpadding = 1)
SN + BN + ReLU

14 × 14 × 128

14 × 14 × 128 +Self-Attention 14 × 14 × 128

14 × 14 × 128
ConvTranspose2d (128, 1, k = 5 × 5, s = 2, p = 2,

outpadding = 1)
Tanh

28 × 28 × 1

The network structure of the discriminator in MNIST is shown in Table 6. The size
of the input image to the discriminator is 28 × 28 × 1. After the first layer of convolution,
the size of the input channel is 1, while that of the output channel is 128. A 5 × 5 kernel
with a stride of 2 and a padding of 2 is used. Then, the data pass through SN and channel-
attention, respectively. Finally, the LeakyReLU activation function is used, and the size of
the output feature map is 14 × 14 × 128. After the second layer of convolution, the size
of the input channel is 128, while that of the output channel is 56. Finally, the LeakyReLU
activation function is used, and the size of the output feature map is 7 × 7 × 256. After the
fourth layer of convolution, the size of the input channel is 512, while that of the output
channel is 1, using a 3 × 3 kernel.

Table 6. The network structure of the discriminator in MNIST.

Input Operation Output

28 × 28 × 1 Conv2d (1, 128, k = 5 × 5, s = 2, p = 2)
SN + channel-attention + LeakyReLU 14 × 14 × 128

14 × 14 × 128 Conv2d (128, 256, k = 5 × 5, s = 2, p = 2)
SN + channel-attention + LeakyReLU 7 × 7 × 256

7 × 7 × 256 +self-attention 7 × 7 × 256

7 × 7 × 256 Conv2d (256, 512, k = 5 × 5, s = 2, p = 1)
SN + LeakyReLU 3 × 3 × 512

3 × 3 × 512 +self-attention 3 × 3 × 512
3 × 3 × 512 Conv2d (512, 1, k = 3 × 3, s = 1, p = 0) —

4. Experimental Process and Analysis

The experimental environment is shown in Table 7.

Table 7. The experimental environment.

Item Configuration

CPU Intel (R) Core (TM) i7-10700K CPU@3.80 GHz
GPU NVIDIA GeForce RTX 2080 SUPER

GPU memory 8 G
OS Windows 10 64 bits

Language Python 3.6
Framework PyTorch

IDE PyCharm

4.1. Experimental Datasets

The datasets used in the experiment include CelebFaces Attributes (CelebA) [30],
CIFAR-10 [31], and MNIST.
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CelebA: CelebA includes 202,599 face images. Each image has a size of 178 × 218
and contains multiple perspectives and backgrounds. It is generally used for face-related
learning.

CIFAR-10: CIFAR-10 was collected and organized by Hinton et al. It contains chromatic
images with a length of 32× 32 of 10 categories such as cars, frogs, horses, and boats. There
are 1000 images in each class. In the training dataset, each category consists of 5000 images,
a total of 50,000 images.

MNIST: MNIST contains handwritten digits of 0–9 from 250 different people. The
training and testing datasets respectively contain 60,000 and 10,000 grayscale images with
a size of 28 × 28.

4.2. Experimental Design

For CelebA, the size of the generated images is 64 × 64, and the total steps of the
generators of MA-GAN, SAGAN, and WGAN-GP are set to 200,000. The generated images
and the pre-trained weights during the training process are saved every 100 iterations.

For MNIST, the size of the generated is 28 × 28, and the total steps of the generators
of MA-GAN, SAGAN, and WGAN-GP are set to 2000. The generated images and the
pre-trained weights during the training process are saved every 100 iterations. A total of
500 images are randomly extracted from each category of the original dataset, and a total
of 5000 images are put into the three GAN models for image generation.

For CIFAR-10, the size of the generated images is 32 × 32, and the total steps of the
generators of MA-GAN, SAGAN, and WGAN-GP are set to 200,000. The generated images
and the pre-trained weights during the training process are saved every 100 iterations. A
total of 500 images are randomly extracted from each category of the original dataset, and
a total of 5000 images are put into the three GAN models for image generation.

Gradient penalty is used as the loss function to strengthen the Lipschitz constraint on
the training target: if and only if the regular term of a differentiable function gradient is less
than or equal to 1, it satisfies the 1-Lipschitz constraint. Gradient penalty can observably
improve speed and astringency during training. Its selection is not performed in the whole
network but sampled between the true and false distributions. The model applies gradient
penalties to each sample independently. The gradient penalty coefficient λ is set to 10,
and the batch size is set to 64. Using the Adam optimizer [32] with β1 = 0.0 and β2 = 0.9,
the learning rate attenuation is set to 0.95, and the learning rates of the generator and
discriminator are set to 0.0001 and 0.0004, respectively.

On the classification experiment on a small-scale dataset, to focus on the impact of
the DA method rather than the classifier performance, a classification network is designed
based on LeNet5. For MNIST, 500 images are randomly selected from each category,
creating a total of 5000 images. Before DA, the training dataset contains 3500 images while
the test dataset contains 1500 images. Through DA, the training dataset is enhanced by five
times to contain 17,500 images in total. CIFAR-10 contains colorful images, and the structure
of these images is more complex than that of MNIST. A total of 500 images are randomly
selected from each category, and a total of 5000 images are chosen from Cifar10. Before
DA, the training dataset includes 3500 images while the test dataset contains 1500 images.
Through DA, the training dataset is enhanced by 10 times to contain 35,000 images in total.
To verify the effectiveness of DA, the classification accuracy on the test set before and after
using real images and different GAN methods is compared. The higher the accuracy, the
better the quality of the generated images.

4.3. Sample Quantitative Indicators

Inception score (IS) [33] is an initial scoring algorithm proposed by Salimans et al.
to evaluate the semantics of generated images. Originated from Google’s Inception Nets,
this image evaluation index can measure the clarity of a single generated image and a
variety of generated images. For each generated image, its category can be expressed by
conditional probability p(y|x) . The greater the probability, the better. Meanwhile, the
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entropy of p(y|x) should be as small as possible, where x represents the given images and
y represents the main objects contained in the image. For a diversity of images, it is hoped
that the label distribution is uniform. Since the model is not expected to generate a specific
type of image, the edge probabilities p(y) need to be considered. It contains p(y1), p(y2),
. . . , and p(yn). As shown in the following formula:

p(y1) = p(y2) = . . . = p(yn) =
1
n

(23)

The larger the entropy, the better. Denoting the entropy as E, as shown in the following
formula:

E(p(y|x)) = −
m

∑
1

p(yi|xi) ∗ log(p(yi|xi)) (24)

m is the number of generated images.
KL-divergence is also called relative entropy, which measures the degree of difference

between two probabilistic distributions and integrates the quality and diversity of images.
Based on KL-divergence, the value of IS can be calculated as follows.

IS(G) =exp

[
1
N

N

∑
i=1

DKL(p(y
∣∣∣x(i))∣∣∣∣∣∣p(y))] (25)

The calculation of KL-divergence DKL is shown as follows.

DKL(Q||P) = ∑
i=1

Q(i)Ln(
Q(i)
P(i)

) (26)

Next, the relationship between the above two entropies and KL divergence is found:

KL(p(y|x) ∗ p(y)) =
m

∑
i=1

p(yi|xi) ∗ log(yi|xi)−
m

∑
i=1

p(yi|xi) ∗ log(p(yi)) (27)

According to the conditional probability and the joint probability of mutually inde-
pendent variables, then,

KL(p(y|x) ∗ p(y)) = −E(p(y|x)) + E(p(y)) (28)

Based on this,

IS(G) =exp

[
1
N

N

∑
i=1

(−E(p(y|x)) + E(p(y)))

]
(29)

The smaller the conditional entropy, the larger the entropy.
The training set with different DA methods is input into the classification network for

training, and then, the average accuracy of classification is evaluated on the test set. The
higher the accuracy, the closer the generated images are to real images, and the better the
DA effect.

4.4. Experimental Results

The baseline model in this paper is DCGAN. To verify the effectiveness of MA-GAN,
the results are qualitatively and quantitatively compared with those of WGAN-GP and
SAGAN that also use attention mechanisms. The common feature of these models is
that DCGAN is their baseline method. These models have a simple structure and few
parameters and only occupy a small GPU memory, so they can better verify the availability
of the MA-GAN. For CelebA, it can be seen from Figure 7a, b that when the generator
executes 100 times iteratively, the images generated by WGAN-GP and SAGAN still contain
much noise. From Figure 7c, it can be seen that when the generator of MA-GAN executes
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100 times iteratively, the outline of the human face has already been presented in the
generated images. For the number 8 in MNIST, WGAN-GP, SAGAN, and MA-GAN all
outline the number after the generators of these models execute 100 times. However, there
are still irregular shapes in WGAN-GP and SAGAN. By contrast, the MA-GAN has a
relatively stable performance, and there are not many abnormal structures in the generated
images. For CIFAR-10, the images generated by the three models after 1000 iterations are
challenging to distinguish with eyes, and there will be a quantitative evaluation later.

Figure 7. The samples generated by different models. (a) WGAN-GP, (b) SAGAN, (c) MA-GAN.

Figure 8 shows that compared with SAGAN, the images generated by MA-GAN are
more slippery. Meanwhile, the edges of the images generated by WGAN-GP have a sharp
sawtooth pattern. SAGAN has more abnormal images. The reason is that SAGAN cannot
capture the connections between channels. It cannot integrate the dependencies between
various categories or capture all the geometric features and structures of images.

It can be seen from Figure 9 that the MA-GAN can generate relatively smooth images
for complex handwritten numbers such as 2, 3, 5, and 8, and there is no noticeable noise
in the generated images. However, abnormal structures can be observed in the images
generated by WGAN-GP and SAGAN for the handwritten numbers 4, 5, and 8.

It can be seen from Figure 10 that there are apparent content and background segmen-
tation in the images randomly generated by the MA-GAN. Meanwhile, it is difficult to
distinguish the subjects in the images generated by WGAN-GP and SAGAN. By contrast,
the images generated by MA-GAN can distinguish “aircraft”, “deer”, “trucks”, and other
objects. In addition, the bright saturation of the colorful images is better than those gen-
erated by SAGAN. The images generated by WGAN-GP have much noise and different
degrees of structural abnormalities on the objects such as “cats”, “frogs”, “ships”, and
“trucks”, while these problems are rare in the MA-GAN.
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Figure 8. CelebA generated by different models.

Figure 9. Comparison of the MNIST generated by different models.

Figure 10. Comparison of CIFAR-10 generated by different models.

Since MNIST contains single-channel images and IS quantitatively evaluates three-
channel images, this paper directly uses classified accuracy instead of IS for quantitative
evaluation of the generated images.

After 2000 images are randomly generated by the pre-trained model, ten IS average
evaluations are performed on these images. The larger the value is, the better the quality
and diversity of the generated images are, as shown in Table 8.
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Table 8. The IS of different models on CelebA.

Model IS

WGAN-GP 2.189
SAGAN 2.238

MA-GAN 2.315

It can be seen from Table 8 that for CelebA, compared with WGAN-GP, the IS of
MA-GAN is increased by 5.76% and that of SAGAN with the same attention mechanism is
increased by 3.44%.

As shown in Table 9, for CIFAR-10, the IS of MA-GAN is the highest for all classes.
For the class of truck, compared to WGAN-GP, the IS of MA-GAN is increased by 12.16%,
and that of SAGAN with attention mechanism is increased by 3.26%.

Table 9. The IS of different models on CIFAR-10.

Class WGAN-GP SAGAN MA-GAN

air-plane 3.738 3.756 3.958
automobile 3.156 3.273 3.552

bird 3.018 3.042 3.374
cat 2.990 2.971 3.066

deer 2.491 2.627 2.920
dog 3.354 3.523 3.635
frog 2.496 2.506 2.594

horse 3.426 3.619 3.755
ship 3.206 3.073 3.273
truck 2.853 3.099 3.200

4.5. Classification Performance Analysis

It can be seen from Figure 11 that under the same iteration steps, the training loss
of the MA-GAN with DA decreases the fastest, and loss is close to 0 after 50 iterations,
indicating that the model converges easily.

Figure 11. The change of training loss after MNIST augmentation.

Figure 12 shows that without augmentation, the classification accuracy of each class in
the training set and test set fluctuates the most. However, the WGAN-GP augmentation
presents greater fluctuations than other methods. The classification accuracies of the classes
with SAGAN augmentation and real images augmentation are equivalent, while that with
MA-GAN augmentation shows the slightest fluctuation.
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Figure 12. Classified accuracy of the training set and testing set (a) before and (b) after
MNIST augmentation.

It can be seen from Figure 13 that under the same iteration steps, the training loss of
the MA-GAN DA decreases the fastest, and the loss becomes stable after 400 iterations,
indicating that the model converges easily. After real images augmentation, the training
loss does not reduce as fast as that of the GAN DA.

Figure 13. The change of the training loss after CIFAR-10 augmentation.

Figure 14 shows that without augmentation, the classification accuracy of each class
fluctuates the most. However, real images augmentation leads to greater fluctuations than
other methods. The classification accuracy of each class with SAGAN augmentation and
real images augmentation is equivalent, while the flux of classification accuracy is the
smallest after the MA-GAN augmentation is used. Moreover, the classification accuracy
in the test set reaches 100% for the three classes of “truck”, “boat”, and “horse” after the
MA-GAN is used.

As shown in Table 10, after the MA-GAN is used for augmentation, the accuracy
of the remaining numbers is 100% except for the complex number “5” in the training
set. Compared with real images, SAGAN, and WGAN-GP augmentation, the MA-GAN
achieves the highest average accuracy.
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Figure 14. Classified accuracy of the training set and testing set (a) before and (b) after CIFAR-
10 augmentation.

Table 10. Classified accuracy of MNIST training set after augmentation by different methods (%).

Class No DA Real Images
DA

WGAN-GP
DA

SAGAN
DA

MA-GAN
DA

0 100.00 100.00 100.00 99.12 100.00
1 96.00 100.00 100.00 100.00 100.00
2 100.00 98.17 99.11 99.07 100.00
3 96.30 99.08 100.00 99.04 100.00
4 95.45 99.08 96.97 100.00 100.00
5 100.00 98.21 98.52 97.98 98.33
6 100.00 100.00 99.07 100.00 100.00
7 100.00 100.00 96.12 99.00 100.00
8 86.96 98.39 99.12 100.00 100.00
9 100.00 96.58 100.00 99.04 100.00

average accuracy 97.06 98.51 99.02 99.64 99.71

It can be seen from Table 11 that the augmentation of MA-GAN achieves the highest
average accuracy.

Table 11. Classified accuracy of MNIST training set after augmentation by different methods (%).

Class No DA Real Images
DA

WGAN-GP
DA

SAGAN
DA

MA-GAN
DA

0 91.67 100.00 100.00 100.00 100.00
1 100.00 100.00 100.00 100.00 100.00
2 90.00 100.00 100.00 90.00 90.00
3 90.00 90.00 90.00 100.00 90.00
4 100.00 100.00 100.00 100.00 100.00
5 91.67 100.00 100.00 100.00 91.67
6 87.50 100.00 87.50 87.50 87.50
7 87.50 87.50 75.00 87.50 100.00
8 75.00 100.00 100.00 91.67 91.67
9 100.00 100.00 100.00 100.00 100.00

average accuracy 94.07 97.87 96.27 96.27 96.73

Table 12 shows that compared with SAGAN and WGAN-GP, MA-GAN achieves the
highest average accuracy.



Electronics 2022, 11, 1718 20 of 22

Table 12. Classified accuracy of CIFAR-10 training set after augmentation by different methods (%).

Class No DA Real Images
DA

WGAN-GP
DA

SAGAN
DA

MA-GAN
DA

airplane 95.24 76.72 94.63 90.95 97.65
automobile 100.00 88.35 99.56 96.67 97.78

bird 77.27 78.02 95.48 86.50 96.48
cat 45.00 61.54 92.65 89.24 94.31

deer 66.67 62.82 90.99 93.47 93.44
dog 88.89 63.84 97.35 95.28 93.24
frog 73.08 80.18 96.19 98.61 98.10

horse 77.78 82.33 98.52 98.52 98.12
ship 82.14 72.94 95.55 100.00 99.55
truck 63.16 85.51 95.26 94.57 96.52

average accuracy 72.31 76.34 95.27 94.80 96.15

Table 13 shows that the MA-GAN achieves the highest average accuracy compared
with real images, SAGAN, and WGAN-GP augmentation.

Table 13. Classified accuracy of CIFAR-10 training set after augmentation by different methods (%).

Class No DA Real Images
DA

WGAN-GP
DA

SAGAN
DA

MA-GAN
DA

airplane 66.67 66.67 75.00 83.33 91.67
automobile 66.67 87.50 87.50 75.00 75.00

bird 20.00 80.00 70.00 70.00 70.00
cat 30.00 70.00 60.00 50.00 60.00

deer 37.50 50.00 50.00 62.50 75.00
dog 66.67 66.67 83.33 66.67 83.33
frog 50.00 75.00 87.50 75.00 75.00

horse 62.50 87.50 100.00 87.50 100.00
ship 83.33 91.67 83.33 100.00 100.00
truck 25.00 100.00 87.50 87.50 100.00

average accuracy 51.20 75.93 74.33 76.20 79.47

5. Time Efficiency Discussion and Complexity Analysis

Table 14 presents the computational cost comparison of the models on a Nvidia’s RTX
2080 Super GPU. For CelebA, the training time of MA-GAN increased by 6.8 h compared
to WGAN-GP, while it increased by 4 h compared to SAGAN. For CIFAR-10, the training
time of MA-GAN increased by 3.2 h compared to WGAN-GP, while it increased by 0.9 h
compared to SAGAN. For MNIST, there is no significant difference in the training time
between the three models.

Table 14. Computational cost comparison of the models.

Dataset WGAN-GP SAGAN MA-GAN

CelebA
epoch 200,000 200,000 200,000

data size 100,000 100,000 100,000
training time (hour) 5.2 8 12

CIFAR-10
epoch 200,000 200,000 200,000

data size (each class) 500 500 500
training time (hour) 11.9 15.1 16

MNIST
epoch 2000 2000 2000

data size (each class) 500 500 500
training time (hour) 0.13 0.17 0.2
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The proposed MA-GAN is unconditional GAN. When the dataset includes many
classes, different classes need to be input into the model to generate images so as to meet
the needs of DA. This may take a lot of time, and it is a limitation of the proposed method.
However, the experimental results of and model comparison show that the proposed
method can improve the quality of generated images and then meet the needs of DA.

6. Conclusions

This paper proposes MA-GAN to augment small samples. The proposed method
consists of two modules. These two modules respectively deal with local features and
global dependencies. Meanwhile, the relationship between each channel and the spectral
normalization technique is introduced to the proposed method. Through experiments on
CelebA, CIFAR-10, and MNIST, it is verified that the MA-GAN performs better than other
methods in the standard IS metric and classification applications. The proposed method
improves the quality of the generated images and speeds up network convergence. In
addition, the classification accuracy of the classifier with MA-GAN is better than other
comparison methods, indicating the effectiveness of the proposed method for DA. However,
this method still has some shortcomings: the highest resolution of generated samples by
this method is 64 × 64; we will focus on generating higher resolution images for DA tasks
in the future.
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