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Abstract: Object detection plays an essential role in the computer vision domain, especially the
machine learning-based approach, which has developed rapidly in the past decades. However,
the development of convolutional neural networks in the marine field is relatively slow, such as
in ship classification and tracking. In this paper, ship detection is considered as a central point
classification and regression task but discards the non-maximum suppression operation. We first
improved the deep layer aggregation network to enhance the feature extraction capability of tiny
targets, then reduced the number of parameters through the lightweight convolution module, and
finally employed a unique activation function to enhance the nonlinearity of the model. By doing
this, the improved network not only suits unbalanced sample ratios in classifying, but is more robust
in scenarios where both the number and resolution of samples are unstable. Experimental results
demonstrate that the proposed approach obtains outstanding performance and especially suits tiny
object detection compared with current advanced methods. Furthermore, in contrast to the original
CenterNet framework, the mAP of the proposed approach increased by 5.6%.

Keywords: deep learning; object detection; anchor-free; neural network; artificial intelligence

1. Introduction

Recently, vision-based object detection has attracted significant interest from both indus-
trial and research domains, due to the progress of deep learning techniques [1–4]. The purpose
of object detection requires the computer to automatically identify the object from the origi-
nal images concerning its category, position, and confidence. The developments of object
detection have also achieved significant milestones in various domains such as autonomous
driving [5,6], robot vision [7], video surveillance [8,9], and medical imaging [10]. However,
in contrast to the scenarios mentioned above, deep learning has still been underappreciated
in ocean exploitation [11].

Transportation departments can significantly facilitate the workforce supervising ships
because they can dispatch and provide early warning according to artificial intelligence
technologies. In addition, in the case of electromagnetic signal interference, ship detection
can also assist in completing the perception of the surrounding environment. Hence, more
and more scholars and research institutions have paid attention to artificial intelligence
for ship detection [12–14]. Current mainstream methods could be mainly divided into
traditional machine learning for feature modeling and deep learning for end-to-end solving.
As the former method is mainly applicable to limited scenarios, more and more research fo-
cuses have turned to the latter. However, deep learning-based methods have the following
issues: First and foremost, the efficiency of deep learning depends heavily on the quantity
and quality of the training dataset [15], which is a fatal issue for sparse scenes. The final
performance will be biased if the ship dataset is not comprehensive enough. Second, the
size of the ship varies largely. For example, the length and height between a fishing boat
and an aircraft carrier could lead to the solution to tolerate significant changes in network
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characteristics. Compared with the existing target detection algorithm, the proposed
anchor-free method considers the object detection task as a regression task for the central
point and gets rid of the limitation of NMS [16].

Although various technologies have been developed, no methodology is perfect in
practice. Especially in marine environments, types of ships have been collected with
unbalanced ratios for further training, depending on the availability of online resources.
Meanwhile, both the number and resolution of samples are also unstable, which increases
the burden of training and seriously affects the effect of detection. Our previous work
introduced an anchor-free method, however, only with simple experiments and without
both qualitative and quantitative analysis.

This paper proposes an improved CenterNet approach for ship detection, where a
public dataset is also configured by collecting public and legal photos. After standardizing
the dataset and counting its characteristics distribution, the proposed network structure
and convolution modules have configured fewer parameters. As the improved network
does not depend on anchor setting, the robustness is thus guaranteed. Meanwhile, by
comparing the effects of different activation functions, the flexibility is also exhibited, as the
proposed approach could be modularly applied in other fields with minor modifications.
Compared to our previous work [17], the proposed approach has been evaluated with
rigorous analysis in the experiment, which illustrates that the anchor-free method has
powerful competitiveness in evaluation indicators. The main contributions of this paper
are as follows:

• A large ship detection dataset with 9800 images was open to the public, which contains
different kinds of ships with multi-site and multi-scale characteristics;

• Different from traditional anchor-based methods, ship detection is considered an
object center point classification and regression task. Although the NMS operation is
avoided, its performance is still guaranteed;

• Both the advantages and disadvantages are analyzed to guide the specific scenarios in
the future.

This paper is organized as follows: Section 2 introduces the related work, concerning
traditional feature-based methods and deep learning-based methods for ship detection.
Section 3 presents the improved CenterNet framework. Section 4 analyzes the perfor-
mance of the proposed approach in contrast to the widely utilized methods, and Section 5
concludes the paper and discusses possible directions for future work.

2. Related Work

Before neural networks were widely used, the feature extraction method was essential
for many scientific and industrial interests. However, the synthesis of feature extraction
remains a major challenge, and research has consistently shown that it lacks precision in
most scenarios. Currently, new methods based on deep learning have replaced the former.
Therefore, the work in ship detection is mainly accomplished by adjusting and improving
the methods mentioned above.

2.1. Traditional Ship Detection Algorithm

Many literary studies have been reported involving feature-based ship detection.
Matsumoto [18] used Histograms of Oriented Gradient(HOG) and Support Vector Ma-
chines(SVM) for ship classification. Since the feature extraction process uses the sliding
window to select possible targets, accuracy and speed are limited in practice. Shi [19]
proposed a ship detection method based on a visual attention model, where a wavelet
transforms and extracts the image’s low-frequency and high-frequency features. However,
this method is prone to omission or error detection in high cluttered scenarios. Furthermore,
by considering that the camera is fixed at the dock, Zhu [20] detected moving objects by
using the difference between adjacent video frames and then extracted and classified their
features. However, although it avoids unnecessary calculations, such scenarios are limited
regarding stationary ships. Jin [21] utilized high-resolution images and Harris corner detec-
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tor to detect the sharp part of the ship, which detects not only the ship but also the ship’s
direction. However, relying solely on the above methods is far from enough. In summary,
using traditional methods, ship detection technologies are feasible in mathematical deriva-
tion but not satisfactory in efficiency and accuracy. Moreover, the application scenarios of
these methods are limited, mainly affected by light and noise conditions. Moreover, the
robustness of hand-designed features is relatively low and cannot be applied to multiple
scenes.

2.2. Deep Learning-Based Ship Detection Algorithm

Concerning deep learning-based ship detection approaches, Wang [22] proposed an
improved YOLOv3 [23] end-to-end ship detection system by introducing the CFE [24]
module and modifying the loss function. As a result, its detection accuracy has been signif-
icantly improved compared with the traditional algorithms. Chen [25] addressed the poor
training dataset problem , where an improved Generative Adversarial Networks(GAN)
was proposed to generate new samples, and then YOLOv2 [26] was utilized for detection.
Zhao [27] divided the detection task into two parts—detection, and recognition—which
have been successfully deployed in embedded devices. Zou [12] used the MobilenetV2 [28]
network to extract ship features. The network is pre-trained on the coco dataset and
then fine-tuned. Later, faster and higher precision detection results were obtained by
using Faster R-CNN [29] as the comparison group. Aiming at the problems of missing
detection in small-scale ship images, Yu [13] modified the feature network of YOLOv3 by
adding aspect ratio into the loss function and finally obtained a higher detection result.
Liu [14] combined YOLOv5 and GhostNet [30] to refine image features given the uneven
distribution of horizontal and vertical components of ships to achieve good results.

However, questions have been raised about the manual configuration of the prolonged
use of deep learning methods inevitably relying on anchors. Previous studies have suffered
from several conceptual, comprehensive issues and methodological weaknesses regarding
hyperparameters. Some evidence suggests that learning-based strategy would significantly
reduce the performance in unbalanced sample environments. Furthermore, the anchor-
based method always employs NMS to remove repeated test results, which occupies a
considerable part of the computing resources.

3. Ship Detection with Improved CenterNet
3.1. CenterNet

As aforementioned, anchors are utilized in the strategies for manual configuration.
However, only a few could benefit from the training process. In other words, most back-
ground anchors lead to uneven training and thus drop the accuracy performance. Further-
more, the unbalanced distribution of anchors often leads to the model conduct statistics
issues. Hence, anchor-free models are designed, called CenterNet, as shown in Figure 1.

CenterNet considers the detection task as a critical point estimation problem. First, the
original images are scaled to a fixed size and sent to the backbone, which typically includes
three types: DLA-34 [31], Hourglass-104 [32], and Resnet-18 [33]. Then, the feature map
is obtained with convolution operation and is restored to the original size by upsampling
afterward. Finally, three branches are jointly connected at the back-end of the network layer
to predict categories, sizes, and center bias. The computational cost has been significantly
dropped because the NMS operation has been abandoned.
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Figure 1. The method based on anchor generates a large number of anchors. Candidate boxes with
IOU more than 0.7 are considered as positive samples, while the rest are considered as negative
samples. After feature extraction, CenterNet uses 2D Gaussian distribution to generate a heat map,
whose peak value is considered as the object, and then regress to object attributes according to the
peak point

3.2. Proposed CenterNet

In contrast to earlier detection tasks, learning the statistical features and data distri-
bution is necessary for CenterNet. Figure 2 exhibits the location and size distribution of
the training dataset, which implies that large proportions are constructed of unbalanced
multi-scale and multi-size samples. Most samples are within 0.1 of the image size and
distributed in the center of the dataset. In addition, due to the structural characteristics of
the ship itself, it can be seen that the statistical value in the horizontal direction is more
significant than that in the vertical direction.

Figure 2. The sample distribution.
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Considering the dataset’s characteristics and practical issues such as convenient de-
ployment, the lightest backbone, DLA, is adopted. Hence, a backbone extraction network is
constructed based on DLA, and the detailed process of the proposed method is illustrated
in Figure 3. The input image will first go through DLA for feature extraction. In DLA,
downsampling will be carried out continuously. Therefore, 3 × 3 deformable convolution
is connected to upsampling after the last bit of DLA. Finally, three branches output the
heatmap, the center offset, and the target size. Heatmap is used to predict target categories,
and center offset is used to correct position errors.

Figure 3. The flow chart of the proposed method

In the proposed DLA model, the receptive field and non-linearity representation are
required to enhance feature extraction performance. Meanwhile, different blocks and
modules merge spatial and semantic data by aggregating feature layers. Hence, both
Hierarchical Deep Aggregation(HDA) and Iterative Deep Aggregation(IDA) are developed
for existing and future networks. Here, HDA is used to fuse features from different
modules, whereas IDA is connected across scales and resolutions. Figure 3 also exhibits
that the proposed DLA could take advantage of both feature pyramid and dense connection.
According to the primary structure, the IDA model is utilized to aggregate scales and extract
resolution. Then, representations from various groups are aggregated by HDA through
tree-like structures. Finally, after four down-sampling steps, the IDA fuses different levels,
whereas HDA is stacked on the upper layer for feature extraction.

In this paper, due to the imbalance of data distribution, we focus on strengthening the
second layer feature extraction of HDA. After extracting shallow features such as texture
in the first layer, the combination of HDA and IDA in the second layer is used to fuse
different size features. Then, the last two HDA layers carry out deep feature extraction and
fusion. Hence, the multi-scale and multi-size ship samples could be obtained with standard
formats. Meanwhile, to decline the number of network parameters and enhance detection
speed, the convolution layer varies from two 3 × 3 convolutions to 1 × 1 + 3 × 3 + 1 × 1
convolution, where the first convolution layer can effectively reduce dimension. Finally,
the last convolution layer is employed to fuse the information of other convolution layers.
Furthermore, the proposed model also utilizes a non-monotonic neural activation function,
as follows (Ref. [34]):

f (x) = x ∗ tanh(log(1 + ex)) (1)

The activation function plays an essential role in the trial, introducing nonlinear factors
to neurons and making the network flexible. Various activation functions are shown in
Figure 4. Sigmoid is widely employed, however, with the gradient disappearance problem.
Tanh has a faster convergence rate but with a similar issue. ReLU could alleviate gradient
disappearance, as the derivative is constant on the positive half axis. Moreover, leaky ReLu
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also has a minimal gradient on the negative half axis compared to the original ReLU. Mish
is a self-regularized non-monotone activation function whose curve is smooth everywhere,
allowing helpful information to penetrate the neural network. However, it is not as fast as
the other activation functions due to the complexity of the calculation.

Figure 4. Mish - ReLU comparison.

4. Experiment
4.1. Environment Configuration

The experimental environment in this paper is Ubuntu 18.04LTS, CUDA 10.0, Py-
torch 1.3.1, cuDNN 7.6.5, and NVIDIA RTX 2080 Ti GPU.

4.2. Experimental Data

Due to unbalanced samples’ scales and sizes issues, obtaining plenty of training data
with annotations is quite challenging. Hence, we combined the targets in a significant
dataset with specific tuning. The implemented dataset originated from 9800 tagged images
that include 6 categories: Linear, Container Ship, Bulk Carrier, Sailboat, Island Reef, and
Other Ship, while the total numbers of each type are exhibited in Figure 5. The dataset can be
downloaded from https://drive.google.com/file/d/1XwXfFYmrdTzutelblsDRCWXLhQ0
MyfP-/view?usp=sharing (accessed on 10 December 2021)

Figure 5. Total number of each categories in the experiment.

https://drive.google.com/file/d/1XwXfFYmrdTzutelblsDRCWXLhQ0MyfP-/view?usp=sharing
https://drive.google.com/file/d/1XwXfFYmrdTzutelblsDRCWXLhQ0MyfP-/view?usp=sharing
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Each frame is configured with an associated XML file containing the filename, image
size, type of object, and location during the experiment. Furthermore, the test set, verifica-
tion set, and training set are also divided with the ratio 1:1:8. Figure 6 presents the original
images of the training set.

Figure 6. The dataset images.

4.3. Loss Function

In training, corresponding to the three outputs of the network, there are three loss
functions: (1) heatmap loss, (2) the center point offset loss, and (3) the target’s size loss.
Regarding heatmap loss, the loss function is configured with Focal Loss [35] function
as follows:

Lk = − 1
N ∑

xyc


(
1 − Yp

)α log
(
Yp
)
, if Y = 1

(1 − Y)β
(
Yp
)α

log
(
1 − Yp

)
, otherwise

(2)

where Y illustrates the actual position of the object point, and Yp describes the predicted
position of the object point. α and β are the hyper-parameters of focal loss, where N is the
total number of critical points. Once the weight of Yp is equal to 1, it could be efficiently
detected. Otherwise, the proposed network could not fully calculate the center point.
Hence, the corresponding parameter should be raised. Otherwise, the parameters from
nearby points around the actual center adjusted (Yp)

α to 0. Since the final feature map
only takes 1/4 of the information in contrast to the original one, the center point offset loss
functions are introduced to train the basis:

Lo f f =
1
N ∑

p

∣∣∣∣Op −
(

P
R
− Pp

)∣∣∣∣ (3)

Here P defines the center point of the target box, Op is the prediction of the basis,
and R represents the downsample ratio, which is configured as 4 in the experimentation.
Pp denotes the estimated P/R, so (P/R − Pp) is the absolute offsets. The loss function
concerning the target box is calculated as follows:

Lsize =
1
N

N

∑
k=1

∣∣Sp − S
∣∣ (4)

For class c targets (experiment c = 1, 2, . . . 6), the real target box coordinates of the kth
target are (xk

1, yk
1, xk

2, yk
2), and the estimated target box coordinates are (x̂k

1, ŷk
1, x̂k

2, ŷk
2), then

the real size of the target box is S = (xk
2 − xk

1, yk
2 − yk

1), and the prediction of the target box
is Sp = (x̂k

2 − x̂k
1, ŷk

2 − ŷk
1). The total loss is with different weights assigned, and the formula

is as follows:
Ldet = Lk + ωo f f Lo f f + ωsizeLsize (5)
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where ω denotes the corresponding weight, both ωo f f and ωsize are considered as 1 and
0.1, respectively.

4.4. Network Parameters and Evaluation Indicators

Operating parameters in the training process are exhibited in Table 1, which illustrates
that Batch_size is configured as 16 images. Hence, both the training speed and the gradient
are enhanced. Down_ratio and Lr represent the down-sampling and learning rates, respec-
tively. When the epoch increases, the learning rate is towards 0.1. Then, the network could
accelerate the convergence speed at the beginning phase. The change of loss is shown in
Figure 7.

Table 1. Parameters for training

Parameters Value

Batch_size 16
Down_ratio 4

f lip 0.5
lr 1.25 × 10−4

lr_step 60,90
Reg_loss L1

Val_intervals 5
epoch 150

Figure 7. Loss changes during training.

The mAP (mean average precision) is also employed as a third-party operator for qual-
ities and quantitative investigation. The final indicators and corresponding performances
are summarized in Table 2. Experimental results demonstrate that the proposed approach
has better performance than the state-of-the-art approaches.
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Table 2. Performance comparison.

Model Backbone mAP AP50 AP75

DSSD [36] ResNet-101 44.1 66.3 44.8

DeNet [37] ResNet-101 45.8 68.4 46.0

RetinaNet800 [38] ResNet-101 47.2 72.9 53.4

CenterNet DLA-34 51.0 75.7 55.7

CornerNet Hourglass-104 51.2 72.8 56.9

MaskRCNN [39] ResNeXt-101 51.8 77.5 54.4

ExtremeNet [40] Hourglass-104 52.1 76.8 57.3

Cascade R-CNN [41] ResNet-101 54.9 77.1 57.6

PANet [42] ResNeXt-101 55.7 74.9 59.3

YOLOv5 CSP 56.2 76.7 61.2

Ours DLA-34 * 56.6 77.8 59.7
DLA34 * represents the improved DLA in this paper. Bold showed the best performance in AP75.

4.5. Discussion

As shown in Figure 8, the first column is the output of the branch heatmap, where
each local maximum is considered a target. The size branch regresses the size position of
the object through these points. The second column is the detection results of the proposed
method, and the last column is the results of other approaches (YOLOv5, for example). The
downsampling rate of the proposed method is only 4, which ensures that the complete
image information is retained in convolution. In addition, the modified network structure
can integrate in-depth and shallow features to have a comprehensive understanding of
global information. Thus, the detection effect of both long-range and small targets is more
promising, which can be illustrated in island reefs in columns 1, 2, and 4. Meanwhile,
by improving the DLA module, the proposed strategy gives additional attention to tiny
objects, such as the “other ship” to the right in line 2 and the “other ship” to the upper
left in line 5. However, an anchor-free method also has drawbacks: in scenarios of targets
overlapping, the targets may be combined due to heatmap branch output, resulting in
reduced confidence and even missed detection, as can be seen in columns 2 and 6.
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(a) (b) (c)

Figure 8. Results analysis. (a) heatmap branch output (b) the proposed method detection results (c)
YOLOv5 detection results
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5. Conclusions

This paper proposes a ship detection method that addresses imbalance distribution
issues regarding category, scale, and quantity. The proposed model is within the framework
of the anchor-free object detection; specifically, by redesigning the DLA network structure,
the feature extraction ability of small targets is enhanced. The number of parameters is
significantly reduced by improving the convolution module, and the real-time performance
is guaranteed. Experimental results demonstrate that the proposed method has higher
accuracy than anchor-based methods, especially in small target scenarios. In addition, the
mAP improves by 5.6% compared to the original model.

In the future, a more compact and efficient network architecture will be employed to
solve this problem. Furthermore, given the lack of datasets in this field, weakly supervised
and few-shot learning should be further considered.
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