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Abstract: Image registration is the base of subsequent image processing and has been widely utilized
in computer vision. Aiming at the differences in the resolution, spectrum, and viewpoint of infrared
and visible images, and in order to accurately register infrared and visible images, an automatic
robust infrared and visible image registration algorithm, based on a deep convolutional network, was
proposed. In order to precisely search and locate the feature points, a deep convolutional network
is introduced, which solves the problem that a large number of feature points can still be extracted
when the pixels of the infrared image are not clear. Then, in order to achieve accurate feature point
matching, a rough-to-fine matching algorithm is designed. The rough matching is obtained by
location orientation scale transform Euclidean distance, and then, the fine matching is performed
based on the update global optimization, and finally, the image registration is realized. Experimental
results show that the proposed algorithm has better robustness and accuracy than several advanced
registration algorithms.

Keywords: image extraction; image matching; deep convolutional network; infrared and visible
image; image registration

1. Introduction

In recent years, Unmanned Aerial Vehicles (UAV) have played an increasingly impor-
tant role in many fields due to their high flexibility, low cost, and easy operation [1]. In the
military, they are often utilized to perform reconnaissance, battlefield situation monitoring,
and other tasks. Since infrared images have thermal radiation properties and visible images
have light reflection properties, if the two are accurately registered and fused, the result
not only preserves the clear details and edges of the visible image but also preserves the
brightness information in the infrared image, making the target easier to identify [2]. As
these two sensors are more common, at present, small UAVs are usually equipped with
infrared and visible sensors for target detection or tracking. Using the above principles
can make it easier for small UAVs to lock the target [3]. However, due to differences in the
time period, distance, shooting angle, etc., of UAV aerial photography, the images obtained
by multi-source sensors may not be strictly aligned due to the existence of translation,
rotation, scaling, and other spatial transformation relationships. Therefore, registration
needs to be carried out before fusion [4]. However, the information has a low overlap in
the reconnaissance area, so the inconsistence of the information amplitude and resolution,
large differences in viewing angles, etc., due to the constraints of terrain, time, climate,
UAV flight trajectory, and other conditions, as well as the mutual constraints between the
various loads when the infrared and visible sensors work simultaneously, mean that image
registration is still a difficult task.

Existing image registration technology can be roughly divided into three categories:
calibration-based registration technology [5], region-based registration technology [6],
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and feature-based registration technology [7]. Calibration-based methods are fixed at a
specific distance, so they are not suitable for UAV image registration applications. Region-
based methods usually use the whole image information to establish a similarity measure
of two images. They directly judge the intensity differences between images without
extracting salient features. Under the condition that the image has a certain deformation in
the local area or the heterogeneous image, the region-based registration methods usually
fail to match successfully, so they are not suitable for the research in this paper. The feature-
based methods are the most commonly used registration methods at present, and they are
also a class of methods that have been widely improved by scholars. The algorithm in this
paper is also an image registration algorithm based on feature point design. The detailed
research process of image registration will be described in Section 2.

The above methods have been widely discussed in the past; however, registration of
infrared and visible images for UAVs is still a difficult task. First, the spectra of infrared
images is different from visible images, resulting in large differences in the corresponding
regions and difficult registration implementation. Second, the resolutions of infrared images
are different from visible images, resulting in a point in an infrared image that may not have
matching areas in a visible image. Third, the low resolution of infrared images will lead
to difficulty in feature point extraction. Fourth, there are viewpoint differences between
infrared images and visible images, which will lead to difficulty in image matching.

In response to the above problems, a new feature point-based deep convolution
automatic robust registration algorithm, named the deep convolutional network–rough
to fine registration algorithm, was proposed for infrared and visible images. First, the
feature points are fully extracted by the improved convolutional neural network, which
solves the problem of feature point location between images; secondly, the problem of
resolution difference is solved by the rough to fine feature matching method, which obtains
an accurate image transformation matrix and solves the problem of inaccurate matching.
The proposed registration algorithm fully utilizes image features and combines deep
convolutional networks and the R2F method, which achieves accurate registration of
infrared and visible images on UAVs. The main contributions of this paper are:

(1) A multi-scale feature descriptor is generated by utilizing a pre-trained deep convo-
lutional network to obtain the feature points of the images. The advantages of convolutional
neural network are effectively utilized in feature extraction to obtain accurately positioned
feature points.

(2) A rough-to-fine feature point matching method is designed, which introduces the
concept of location orientation scale transform Euclidean distance and fine matching, based
on update global optimization, to obtain high-precision registration images.

(3) The feature point extraction comparison experiment and the image registration
comparison experiment, respectively, prove that the proposed algorithm has a good per-
formance in the feature point extraction and the overall image registration effect, which
verifies the effectiveness and robustness of the proposed algorithm.

The paper is organized as follows. Section 2 outlines the research progress of image
registration algorithms. Section 3 introduces the proposed registration algorithm, which
mainly consists of deep convolutional feature extraction and the rough to fine method. The
experiment results and analysis are presented in Section 4. Finally, the conclusion is given
in Section 5.

2. Related Works

Image registration technology was developed in the 1970s, and it was generally used
in military fields, such as missile guidance and aircraft navigation systems, in the early
stage of development. With the advancement of software and hardware technology, image
registration technology is applied in more and more fields. After years of development and
accumulation, many excellent research results have been produced in the field of image
registration. Initially, image registration algorithms were mostly based on image grayscale.
Barnea et al. [8], in 1972, proposed the use of similarity metric functions to match images.
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In 1995, Viola et al. [9] introduced the concept of mutual information, which opened a new
door for image registration, and scholars have performed a great deal of research on this
basis. For example, the multi-source medical image matching method, based on mutual
information proposed by Maes et al. [10] in 1997, still inspires the processing of medical
images. In 2005, Fan et al. [11] combined the advantages of wavelet transform and the
mutual information method to propose an image registration method, which had gained
extensive attention in the field of multi-source remote sensing registration images. The
advantage of the grayscale-based image registration algorithm is that it is relatively simple
to implement and has strong robustness; the disadvantage is that it requires significant
computation and requires a strong grayscale correlation between images. It is difficult to
obtain the best registration effect for grayscale information.

With the continuous development of technology, a large number of new image reg-
istration schemes continue to emerge, multi-source image registration research has been
vigorously developed, and the image registration accuracy has also been greatly improved.
At present, the research of image registration technology can be roughly divided into three
categories: calibration-based image registration technology, region-based image registration
technology, and feature-based image registration technology.

Calibration-based methods rely on calibrated cameras and can simply align images
taken at the same time and view. The registration error of these methods is fixed at a certain
distance, so it is not suitable for registration applications of UAV images. Unlike calibration-
based methods, region-based registration methods and feature-based registration methods
are automatic. However, region-based methods usually use the whole image information
to establish a similarity measure of two images, directly compare and match the intensity
difference between the images, and do not extract salient features. There are generally three
region-based methods: the cross-correlation methods, the mutual information methods,
and the Fourier methods. The registration accuracy of such methods can reach the pixel
level, but there are occlusion and affine transformations. The region-based registration
methods usually fail to match successfully under the conditions of local deformation of the
images or with heterogeneous images.

Feature-based image registration methods are important tools for solving image regis-
tration problems due to their good invariant properties. In 1981, Moravec [12] proposed a
method to detect the corners of image contours. In 1988, Harris [13] was inspired by it and
developed a corner detection method that is not affected by image rotation, which is known
as the famous Harris operator. Then, Lindeberg et al. [14] proposed scale space theory
to solve the problem of scale invariance, and they designed operators, such as Hessian-
Laplace and Harris-Affine, to perform affine transformation on images. After summarizing
the previous research results and learning from each other’s strengths, Lowe proposed
the SIFT operator [15], with trans-epoch significance, in 2004. This operator can solve the
problem of image registration in most complex situations, and it has been influential to
this day. At the ECCV conference in 2006, Bay first proposed another famous operator: the
SURF operator [16]. The SURF operator is an improvement of the SIFT algorithm, which
greatly reduces the computational complexity in the feature extraction process, and it has
higher robustness. After years of development, scholars have also proposed many excellent
algorithms, such as BRISK [17], ORB [18], and multiple phase congruency directional
patterns [19], which make the feature-based image registration methods more widely used.

With the widespread development of deep learning, convolutional neural networks
(CNNs) have been utilized for image registration tasks [20]. In 2017, Ma et al. [21] proposed
a feature registration method for full image representation based on CNN features. The
features of the CNN were used to find keyframes with a similar appearance from the
topological map. Then, the geometric features were checked by the consistency of the
vector field to obtain the most similar key features and achieve the matching performance.
DeTone et al. [22] used an end-to-end neural network to learn the homography between
images, showing the superiority that is difficult to achieve by traditional image registration.
The algorithm learned the homography between network parameters and images at the
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same time, and it obtained the homography between images by outputting the offset
of four coordinate points. Japkowicz et al. [23] proposed a dual convolutional neural
network for image registration. Four of the convolutional layers are used to process two
images simultaneously, and the other four are used to concatenate the feature maps to
generate homography estimates, resulting in superior accuracy. However, because the
network processes a pair of images in parallel and is trained hierarchically, the amount
of parameters and computation of the network is greatly increased. Ty Nguyen et al. [24]
proposed an unsupervised learning neural network, which achieved more robustness by
computing the loss by exploiting the similarity between images. Li et al. [25] proposed a
multiple vector (VLAD) encoding method, with local classification descriptors and CNN
features, for image classification. Wen et al. [26] proposed a depth-guided color-coarse-
to-fine image processing method based on convolutional neural networks, which solves
the phenomenon of texture duplication and can effectively reserve the edge details of
super-resolution images.

In summary, the image registration algorithm based on feature points is suitable for
the research in this paper. Through the analysis of the literature, it is found that the above
algorithm still has some shortcomings for the registration of infrared and visible images
of UAVs. In this paper, the feature point-based image registration algorithm is used, and
the feature point extraction is realized by using the advantages of the convolutional neural
network for feature point location. Then, the traditional algorithm is used for subsequent
matching and transformation.

3. Materials and Methods

In order to improve the problem of poor registration performance, a new image
registration model is framed, as shown in the Figure 1. Different from the traditional
image registration algorithm, in order to better extract feature points and perform correct
matching, firstly, the deep convolution feature extraction network model is utilized to
extract feature points from the image (i.e., step 1 in Figure 1), and then, the concept of
location orientation scale transform Euclidean distance is introduced. The extracted feature
points are roughly matched (i.e., step 2 in Figure 1); finally, a fine matching, based on update
global optimization, is introduced to reduce the positional deviation of the feature points
(i.e., step 3 in Figure 1). After the above operations, all the feature points corresponding to
the infrared and visible images are correctly matched, and the final registered image pair is
obtained by corresponding to the images.
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3.1. Feature Point Extraction by Deep Convolutional Network

The VGG-16 [27] network is an image classification network that can classify a large
number of categories. It is often utilized in various computer vision feature extraction links.
Its advantages are: (1) it has excellent image resolution ability; (2) it relies on connecting
convolutional layers, pooling layers, and fully connected layers to build a network model.
The structure is very simple and concise, so the network can be used for a variety of
image processing tasks. (3) Its network structure is deep and can be trained with a large
amount of diverse image data. Therefore, partial convolutional layers of VGG-16 were
adopted, in this paper, to construct a deep convolutional network for feature descriptor
extraction. The VGG-16 network is frequently utilized for feature detection in the field
of image processing, such as the automatic detection of corn kernels from UAV images
using the VGG-16 network [28] and Super-Resolution Generative Adversarial Networks
(SRGAN) [29].

In order to obtain a single feature descriptor output, while taking into account the
universality of the convolution filter and the size of the receptive field, multiple network
layers are selected to construct the experimental model. The size of the input image can
be arbitrarily set to a multiple of 32, but it may affect the computational efficiency, make
the receptive fields of each feature point different, and even influence the performance of
the network construction. Therefore, in order to maximize the network performance and
be computationally efficient enough, the size of the input image is set to 224 × 224. The
maximum pooling layer pool5_1, added after the three output layers pool3, pool4, and pool5,
is utilized to construct the deep convolutional output network in this paper. Compared
with the original VGG-16 model, our model removes the fully connected layer and adds a
pool5_1 layer after the pool5 layer that can detect more general features.

As shown in Figure 2, the network structure model of this paper contains five convo-
lution blocks, the first two blocks contain two convolutional layers, the third and fourth
convolutional blocks contain three convolutional layers, and the last convolutional block
contains one convolutional layer, each with a max-pooling layer at the end of them. A
Pool5_1 layer, as a max pooling layer, is added to the end. A 28× 28 grid is utilized to divide
the input image into blocks, where each block corresponds to a 256-dimensional vector
in the output of pool3, which is also the feature descriptor of pool3, and a central feature
descriptor is produced by each 8 × 8 square. The feature map M1 is directly obtained from
the output of pool3. Different from how the pool3 output layer is processed, the feature map
M2 output by the pool4 layer (with a size of 14 × 14 × 512) is shared by four feature points
in each 16 × 16 region, obtained by Kronecker (denoted by ⊗):

M2 = OUTpool4 ⊗ I2×2×1 (1)

where OUTpool4 represents the output of the pool4 layer, I represents the tensor subscript
shape and fills it with 1s.

The feature map M3 of the pool5_1 layer is possessed by 16 feature points, which are
represented as:

M3 = OUTpool5_1 ⊗ I4×4×1 (2)

Figure 3 shows the distribution of the above key points-descriptors. The gray circles
represent M1, which are produced in each 8 × 8 region. The blue circles represent M2,
which are generated in each 16 × 16 region. The yellow circle represents M3, which are
generated in the 32 × 32 region. Additionally, the shared relationship between them can be
clearly seen in the figure.
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After obtaining M1, M2, and M3, the feature maps are normalized to unit variance.

Mi ←
Mi

σ(Mi)
, i = 1, 2, 3 (3)

where σ(·) represents the standard deviation of each element in the matrix. The descriptors,
pool3, pool4, and pool5_1, of point a are represented by F1(a), F2(a), and F3(a), respectively.

3.2. Rough-to-Fine Feature Point Matching
3.2.1. Rough Matching

The spatial transformation of images usually includes translation, rotation, and scaling.
Under the spatial transformation model, the correct feature point matching has the same
position, main orientation, and scale in most cases. Therefore, correct matching can be
performed by judging the spatial transformation information of each feature point in the
two images.

Two feature point sets, F = f1, f2, · · · , fM and F′ = f ′1, f ′2, · · · , f ′N , are extracted from
the visible and infrared reference images, respectively. (xi, yi), αi, and ri, respectively,
represent the position, main direction, and zoom scale of the key point fi in the visible
reference image. (x′j, y′j), α′j, and r′j, respectively, represent the position, main direction, and
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scale of the key point f ′j in the infrared images. The position transformation error εp of fi

and f ′j , of the corresponding feature points, is represented:

εp

(
fi, f ′j

)
= ‖(xi, yi)− S(

(
x′j, y′j

)
, γ)‖ (4)

where S(
(

x′j, y′j
)

, γ) is the spatial transformation model, and γ is the transformation vari-
able. The main direction transformation error and scaling transformation error of feature
points are expressed as

εα

(
fi, f ′j

)
= abs

(
∆αi,j − ∆α∗

)
, εr

(
fi, f ′j

)
=

∣∣∣∣∣1− (s∗)
r′j
ri

∣∣∣∣∣ (5)

where ∆α∗ and s∗ represent the main direction difference and scaling transformation be-
tween the visible and infrared reference images, respectively, and ∆αi,j = αi − α′j represents
the difference of main direction between fi and f ′j . These parameters can be obtained from
the histograms. In addition, ri and r′j represent the scale of the key point fi and scale of the
key point f ′j , respectively, and they can be obtained from the algorithm commands. Next, a
robust connection distance called location orientation scale transform Euclidean distance
(LOSTED) is defined as:

LOSTED
(

fi, f ′j
)
=
(

1 + εp

(
fi, f ′j

))(
1 + εα

(
fi, f ′j

))(
1 + εr

(
fi, f ′j

))
ED
(

fi, f ′j
)

(6)

where ED
(

fi, f ′j
)

represents the Euclidean distance of the descriptors in the feature points

fi and f ′j . Additionally, εp

(
fi, f ′j

)
, εα

(
fi, f ′j

)
, and εr

(
fi, f ′j

)
represent the position transfor-

mation error, main direction transformation error, and scaling transformation error of the
corresponding feature points mentioned above, respectively. LOSTED is minimal in most
scenarios, as point pairs are matched accurately. The rough matching process in this paper
is as follows:

(1) Initial matching: A ratio threshold is set as T, and the ratio of the nearest neighbor
Euclidean distance to the next nearest neighbor Euclidean distance of the corresponding
feature point is calculated. Then, we compare the calculated ratio with T and match
the feature points that meet the threshold to obtain the key point pair set FF′. To build
histograms of horizontal displacement, vertical displacement, scaling scale, and principal
direction difference, the image transformations ∆x∗, ∆y∗, ∆α∗, and s∗ are obtained from
the histograms, as shown in Figure 4. According to the description in [30], the FSC
algorithm can find the largest consistent sample set from the extracted sample set by setting
the threshold relationship, and then finding the corresponding relationship through the
transformation error, so the transformation parameters can be obtained. Therefore, we use
this algorithm to calculate the initial transformation parameter γ from the feature point
pair set FF′.

(2) Rematch: Since the circumferential angles at −180◦ and 180◦ are not continuous
[see Figure 5], there are two main situations of the main direction difference. Actually,
there should only be one main modal for the rotation angle. Once one of the two models is
known, the other can be calculated as:

∆α′ =

{
∆α + 360◦, ∆α ∈ [360◦, 0◦)
∆α− 360◦, ∆α ∈ [0◦, 360◦)

(7)
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∆α and ∆α′ represent the two angles in the main direction difference histogram,
respectively. Figure 5 presents the two angles of the principal direction difference and the
single mode of the rotation angle.

Based on the above, there are two combinations of ∆x∗, ∆y∗, ∆α∗, and s∗. For each
combination, the distance metric is performed by LOSTED, and keypoints are matched by
the ratio of the nearest Euclidean neighbor distance to the next nearest Euclidean neighbor
distance. The ratio threshold is set as T′. Since two matchings are done, the feature points
of one image may be matched more than once in the other image, so the point pair with the
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smallest LOSTED is selected as the candidate matching pair to obtain a relatively accurate
key point pair set FF′1.

3.2.2. Fine Matching

After rough matching, the set of key point pairs FF′1 = {Fvi, Fir} is obtained, but due
to the difference in resolution and viewpoint between infrared and visible images, there
are still positional deviations in many matches. Aiming at this problem, a fine matching,
based on update global optimization, is introduced to lower the positional deviation of
key points.

The projection matrix is calculated by the least squares method:

min f = ‖Fvi M− Fir‖2 (8)

The least squares solution of M is called:

M =
(

FT
viFvi

)
FT

viFir (9)

Then, the fitting point corresponding to Fir is expressed as:

Fir f it = Fvi M (10)

The residuals of Fir f it and Fir are expressed as:

σ(i) = ‖Fir f it(i)− Fir(i)‖2, i = 1, . . . , Nc (11)

where Nc is correct matching numbers.
Extensive experiments show that the point closest to the correct position is usually the

fitted point with a large residual. Therefore, {σ(i)}Nc
i=1 is used to find the 1/4 element of

the whole, with a large residual, by descending order. Then, replace the 1/4 element in Fir
with the fitted points.

Fir =
{

Fir(1), . . . , Fir f it(i), . . . , Fir f it(j), . . . , Fir(n)
}

(12)

where Fir f it(i) and Fir f it(j) are the points with large residuals.
Then, all points in Fir are updated by repeating (9)–(12) until the residual summation

equals 0 (considering the storage of floating-point numbers in the computer, 0 is replaced
by a threshold of σp = 10−4).

After updating the position of Fir through global optimization, the matching items with
obvious position errors are corrected, and finally, the final image registration is obtained by
calculating the position transformation matrix of infrared and visible images.

To summarize, the flow of the proposed registration method is shown in Figure 6.
First, the infrared images and visible images are initialized to 224 × 224, respectively, and
then, the trained VGG-16 model parameters are called. The images are passed through
the modified deep convolution feature extraction network in this paper, and the obtained
output goes through the process of rough matching feature points and fine matching
feature points. Finally, the final image registration is obtained by calculating the position
transformation matrix of infrared and visible images.
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4. Experiments and Discussion

In order to verify the validity and robustness of the proposed registration algorithm,
the algorithm parameters and data sets are first configured. Then, the feature extraction
part of the algorithm and the whole algorithm are experimentally verified, respectively,
and the results are analyzed through qualitative and quantitative evaluation.

4.1. Experimental Setting

The training dataset is the classic ImageNet dataset at https://image-net.org/ (ac-
cessed on 13 February 2022), which can obtain more general feature extraction capabilities.
In addition, our experiment is tested on visible and infrared image datasets, which consist of
pictures taken by ourselves and a dataset created by Ma et al. at https://github.com/jiayi-
ma/RoadScene (accessed on 2 March 2022). In our dataset, the buildings around the labo-
ratory were selected by infrared and visible sensors for different time periods and different
angles, with a total of 500 pairs of images. The dataset of Ma et al. is an infrared and visible
dataset obtained by photographing some roads, vehicles, and pedestrians, with a total of
221 pairs of images. As shown in Figure 7, several groups of representative pictures were
selected to display the results. The algorithm was built in Tensorflow and based on the
PyCharm platform. The experimental platform, PyCharm and MATLAB 2018a, is adopted
on a PC with a twelve Intel (R) Core (TM) i7-8700 CPU @ 3.2 GHz and NVIDIA GeForce
RTX 2060. In the feature matching step, the ratio threshold T is automatically generated by
the relatively reliable 256 pairs of key points. Analogously, T′ is obtained by 128 pairs of
key points. The algorithm in this paper is compared with several state-of-the-art algorithms,

https://image-net.org/
https://github.com/jiayi-ma/RoadScene
https://github.com/jiayi-ma/RoadScene


Electronics 2022, 11, 1674 11 of 17

including SI-PIIFD-LPM [31], HOSM [32], RIFT [33], and CNN [34]. Root mean square
error (RMSE), peak signal-to-noise ratio (PSNR), structural similarity (SSIM),mean abso-
lute distance (MAE), and matching points accuracy (MPA) were selected to quantitatively
evaluate the experimental results. Among them, the RMSE and MAE can be expressed as:

RMSE =

√
1
Q ∑ Q

q=1

[(
xq

1 − xq
2

)2
+
(

yq
1 − yq

2

)2
]

(13)

MAE =
1
Q ∑ Q

q=1

∣∣∣xq
1 − xq

2

∣∣∣+ ∣∣∣yq
1 − yq

2

∣∣∣ (14)

where
(

xq
1, xq

2

)
and

(
yq

1, yq
2

)
are the qth pair of matching points of the visible images and

infrared images, respectively, and Q is the number of matching point pairs.
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The matching points accuracy (MPA) can be expressed as:

MPA =
accuracy numbers

total numbers
(15)

where accuracy numbers represents the number of correct matching point pairs, and
total numbers represents the total number of matching point pairs.

4.2. Comparison Results of Feature Point Extraction

To verify the superiority of the proposed algorithm, for extracting feature points
with deep convolutional networks, the method is compared with SIFT, SUFT, and phase
congruency-based methods, and the performance of the proposed algorithm is evaluated
by computing repeatability [35]. Experiments illustrate the feature extraction capabilities of
various algorithms by changing viewpoints, scales, and orientations of four pairs of images.
The algorithm proposed in this paper ranks close to second among all tested methods, as
shown in Figure 8. However, we believe that relying on repeatability results alone is not
comprehensive, as the number of feature points changes with image rotation. For example,
although the algorithm based on phase congruency always ranks first, after the image is
rotated, it detects more invalid feature points, resulting in a sharp increase in the number
of feature points, as shown in Figure 9. Although SIFT and SUFT do not have feature point
explosion after image rotation, their performance is not as good as our algorithm. Since
the convolutional feature extraction algorithm is more robust to changes in appearance
and can better extract and retain important contours and details, we can conclude that the
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proposed algorithm is more robust to feature point extraction from infrared and visible
images, as shown in Figure 10.

4.3. Comparison Results of Image Registration

On the two datasets, the registration algorithm, in this paper, is compared with the
HOSM, SI-PIIFD-LPM, RIFT, and CNN algorithms to test the overall performance of the
proposed algorithm. The verification results are shown in Figures 11 and 12, and Figure 13
shows the quantitative evaluation results obtained by four evaluation indicators: RMSE,
PSNR, SSIM, and MAE.
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In order to test the registration performance of the algorithm in the pictures taken
at night, we selected some night picture pairs for testing. Due to the existence of image
distortion and parallax interference, most of the algorithms performed in general. It can be
seen, from Figures 11 and 12, that the registration performance of HOSM and SI-PIIFD-LPM
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is better than that of the other two comparison methods, but the feature points are not
extracted enough. Although the CNN method performs better in feature point extraction,
its feature point matching ability is poor, resulting in poor registration results, and its
RMSE, PSNR, and MAE indicators are also the largest among these methods. It can be
seen, from Figure 13, that the results of the algorithm in this paper are all better in the four
indicators. The values of RMSE, PSNR, and MAE are all the smallest, and the value of
SSIM is the largest. Among them, the RMSE and PSNR indicators have smaller values than
other algorithms, and their performance is more prominent. In contrast, the indicators of
the SI-PIIFD-LPM algorithm are also lower, which corresponds to its visual performance.
From the quantitative indicators, it can be seen that the registration effects of the other
algorithms have shortcomings to varying degrees. According to Table 1, it can be seen
that the MPA value of the proposed algorithm is much higher than that of the other four
algorithms, which also verifies the registration performance of the proposed algorithm from
another perspective. In short, the proposed algorithm performs well, on the whole, in both
subjective visual performance and the value of evaluation indicators. The experimental
results show that the proposed algorithm can effectively eliminate the interference of image
distortion and parallaxing. At the same time, the method has good robustness under
different scenes and different camera relations.

Table 1. The average matching points accuracy (MPA) of five methods.

Method HOSM SI-PIIFD-LPM RIFT CNN The Proposed Method

MPA/% 82.79 88.64 85.79 85.21 91.13

4.4. Computational Efficiency Comparison

In order to verify the efficiency of the proposed algorithm, the proposed algorithm
and the four comparison algorithms are tested on the same test dataset. The differences in
the registration efficiency of the five algorithms were compared by calculating the average
time required to register each pair of images. The experimental results are shown in Table 2.
It can be seen that the efficiency of the proposed algorithm ranks second among the five
algorithms in the test. Although it is not optimal, its efficiency is also remarkable. In the
next step, it is also one of our research directions to further improve the algorithm structure
and improve the overall efficiency of the algorithm.

Table 2. Average computational efficiency comparison of five methods.

Method HOSM SI-PIIFD-LPM RIFT CNN The Proposed Method

Time/s 0.98 1.34 2.15 1.21 1.03

5. Conclusions

An automatic robust infrared and visible image registration algorithm, based on a
deep convolutional network, was proposed in this paper. It makes full use of the feature
extraction performance of the deep convolutional network to accurately locate feature
points, and a rough-to-fine feature matching method is introduced. The initial screening
is carried out by location orientation scale transform Euclidean distance, and the final
accurate matching is achieved by optimizing the position of the global matching point,
thereby solving the registration problem of infrared and visible images on UAVs. Image
registration tested on two datasets shows that, compared with four advanced registration
algorithms, the proposed algorithm can achieve good registration results by overcoming
the shortcomings of obvious pixel differences between infrared and visible images, as
well as blurred infrared image feature points. In the future, we will continue research in
improving the efficiency and generalizability of our algorithm to improve its performance.
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