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Abstract: A large number of nonlinear loads and distributed energy sources are connected to the
power system, leading to the generation of broadband dynamic signals including inter-harmonics and
decaying DC (DDC) components. This causes deterioration of power quality and errors during power
measurement. Therefore, effective phasor estimation methods are needed for accurate monitoring
and effective analysis of harmonics and interharmonic phasors. For this purpose, an algorithm is
proposed in this paper that is implemented in two parts. The first part is based on the least square
method in order to obtain accurate DDC component. In the second part, a Taylor-Fourier model of
broadband dynamic harmonic phasor is established. The regularization optimization problem of the
sparse acquisition model is solved by harmonic vector estimation method. Finally, the piecewise
Split-Bregman Iterative (SBI) framework is used to obtain the estimated value of the harmonic
phasor measurement and to realize the reconstruction of the original signal. Through simulation
and performance test, the proposed algorithm significantly improves the accuracy of the phasor
measurement and estimation, and can provide a reliable theoretical basis for the PMU measurement.

Keywords: DDC component; broadband dynamic signal; sparse acquisition model; SBI

1. Introduction

With the rapid development of smart grids and new energy generation, a large number
of nonlinear devices [1] are being applied in the power systems, leading to an increase
in harmonics, interharmonics, and DDC components in power grids [2]. On one hand,
harmonics and interharmonics have spectral interference with the frequency of interest [3],
which affects the measurement accuracy of the electrical energy in the networks [4]. On the
other hand, when a fault occurs in the power system, the attenuated DC components of
electrical signals cannot be filtered out using traditional algorithms and thus leads to large
errors in the calculation results. Therefore, effective phase estimation algorithms [5] are
needed to accurately measure the wideband dynamic phase [6].

Currently available phase measurement methods can be divided into two main cate-
gories: the discrete Fourier transform (DFT) algorithms [7-9] and non-DFT algorithms. A
DFT algorithm is based on equally spaced sampling of the spectrum of a discrete signal
in the finite time domain and discretization of the frequency domain function. When
the traditional DFT transform algorithm is used to measure the phase, the actual fre-
quency shift results in information redundancy, mutual harmonic interference [8], and
information leakage, which cause large measurement errors. Some studies have proposed
to introduce over-zero detection method, wavelet transform method, and instantaneous
value method [10] to optimize the DFT algorithm. However, these types of methods still
have large errors at non-nominal frequencies. The study presented in [11] describes the
application of an improved second harmonic filtering technique for single-phase phase
measurements at non-nominal frequencies. The method can integrate uniform sampling
and fixed-window-length phase measurement with a good performance without changing
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the structure of the conventional phase estimation method. However, the DFI-based phase
estimation algorithm under the static model offers a poor dynamic performance.

To eliminate the disadvantage that the DTF model is limited to static signal analysis
only, some investigations propose to extend the dynamic phase estimation [12-21] to a
different mathematical framework, which step up a new generation of phase measurement
methods. Such methods apply a specific mathematical model to define the amplitude and
phase variations of the signal over a stable sampling interval that is free from the limitations
of the period in Fourier analysis.

Currently, dynamic harmonic analysis methods, such as Taylor—Fourier transform
(TFT), can achieve phase estimation in the presence of power oscillations, but are susceptible
to interference from interharmonics and higher harmonics [12]. In the literature [13], a
dynamic harmonic synchronization algorithm based on interpolation function is proposed
which broadens the frequency range of TFT and overcomes the limitation of DFT periodicity.
However, the method has several complex system parameters and there is a problem of
large error after multiple fitting, and the measurement error increases with the increase of
the order. The DFT interpolation method with high resolution is proposed in [14], which
greatly improves the estimation accuracy. This algorithm has the ability to recover the stage
information and suppress the noise by blocking the number of iterations. However, the DFT
sequence in this method can only be re-sampled at the nominal rate, which undoubtedly
adds uncertainty to the effect.

Based on the above-mentioned methods, the matrix transformation coefficients are
obtained by inverse operations of higher-order matrices [15]. Although a number of
efficient error reduction algorithms are available, still they cannot address the effects
of the superposition of harmonics and noise at higher orders. Thus, machine learning
algorithms [16-18] are considered to reduce the computational complexity of the phase
solution. The literature [17] limits the effect of interharmonics by identifying the most
relevant components of the signal and effectively tracking the harmonics for modeling
estimation. However, this methodology is only applicable to low frequency band harmonic
vectors. Furthermore, the phase estimation parameters cannot be obtained directly due to
the time-varying nature of higher harmonic signals and the high complexity of solving the
higher order pseudo-inverse matrices. Considering the field of dynamic harmonic analysis,
the work presented in [18] uses the STWLS algorithm for iterative estimation of harmonic
parameters and compensates the effect of harmonic parameters on the estimation. This
method can improve the frequency measurement accuracy and allocate more space for
dynamic information, but it is still difficult to avoid the interference of inter-constrained
harmonics. In the literature [19], O-sample dynamic harmonic analysis is proposed, which
reduces the computational complexity of DTTFT in closed form and provides the best
data compression algorithm for oscillations. However, under non-ideal conditions, the
interharmonic interference becomes more and more severe as the order increases due to
the large noise in the spatial step reconstruction process.

To solve the synchronous phase estimation solution problem, the study presented
in [20] proposes the complex wavelet transform based on the fast Fourier transform (FFT)
algorithm to segment the original waveform and perform the signal reconstruction. How-
ever, in continuous multiscale analysis, this may lead to severe phase distortion and loss of
time information for the next steps of signal processing. In [21], the estimation of frequency,
amplitude, and phase in harmonics are obtained by improving the Taylor weighted least
squares algorithm. As this method is only applicable to measure third-order continuous
waves but not to high-precision harmonic analysis, the algorithm is still not applicable for
the measurement of higher-order harmonics.

To address the aforementioned problems, this paper firstly uses Sinc interpolation
function to parameterize the attenuated DC component, and uses the least square method to
rapidly fit the DDC component in the signal with high precision within the time required by
PMU. This method has the advantages of high estimation accuracy and fast response time,
which provides reliable research help for the existing DDC component detection. Then, for
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broadband harmonic component estimation, an improved Taylor-Fourier model is used
which is combined with a machine learning algorithm for accurate recovery of a specific
signal with fewer data points. This in turn transforms the harmonic phase reconstruction
problem into a sparse acquisition model solving problem. In the regularization-based
framework, this paper formulates the phase reconstruction problem as a minimization
function. The above underdetermined inverse problem is efficiently solved by using the
iterative minimization operation in the SBI system, thereby obtaining the harmonic phase
estimation efficiently and accurately. To justify the model, the cross-entropy objective
function is used to evaluate the error range of the estimates. The simulation results show
that the algorithm has high accuracy and speed in estimating the dynamic phase for wide
frequency, and maintains a certain superiority among the compared algorithms. The
dynamic performance and anti-interference capability of the algorithm are also validated.

2. Estimation of Attenuated DC Component in Broadband Dynamic Signals
2.1. Broadband Dynamic Signal Model

For the power system waveform U(t) with DDC component and basic component,
the expression is shown in (1):

u(t) = U(t)+Uo(t)
— ¥ Py(t) cos(2rfit + pilt)) + A(B)e 7O @
=0

u
L

where Uj (t) is the signal containing fundamental, harmonic, and interharmonic compo-
nents. P;(f) is the time-varying amplitude, ¢;(t) is the time-varying phase angle, the
reference frequency is f;, and Z refers to the highest harmonic component. Uy(t) is the
attenuated DC component signal, A(t) is the attenuated DC component amplitude, and
T(t) is the time constant.

The dynamic phase model of the signal U; (f) containing fundamental, harmonic and
interharmonic components at a time ¢ is given by:

Pi(t) .
E:(t) ~ 2 oiei(t) )
i(t) 7 2
Substituting Equation (2) into Equation (1) yields the dynamic expression for the
wide-band dynamic signal U(t):
U(t) =Re ﬁEi(t)emfff} + Uy ()

_ % E;(t)e2fit +Ei(t)*e*2”fft} + Uo(t)

®)

where * is the conjugate operator.

2.2. Attenuated DC Component Estimation

The attenuated DC component Uy (t) can be represented by the cosine component sum
of the amplitude and phase time variation:

Y
Uo(t) = Y Pay(t) cos(27 fant + @an (1)) (=T/2 < t < =T/2) )
n=1

where f;,, Py, (t), and @ ,(f) denotes the nth cosine component frequency, amplitude,
and phase, respectively, while T is the observation interval. In order to meet the accuracy
requirements, Y is set to 3 in this study.

Based on the frequency domain sampling theorem, the time domain signal parametric
modeling of the decaying DC component is performed using the Sinc interpolation func-
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tion, where the dynamic phase of the DDC component is denoted as x; = Pdef Palt) / \/E,
expressed as:
3 K :
sin(rtft — w(k — 1))
) ~

n=1k=0

where f}, is the sampling frequency and K represents the maximum model order. K is set to
2 in this study. x ,, is the sample phase of the nth cosine component of Equation (4) at time
t=k/fp.

Sampling the attenuated DC component Uy (t), the discrete form of the fitted DDC
component in Equation (4) can be represented by (5):

V2ox, ®)

2
Up = £(‘13dxaz T ) =

2
where Uy ,, denotes the column vector of the cosine signal for the phase Uy (t). The elements
of the matrix @, are the sample points of @y, in the sampling window. @ denotes the
matrix (@@, and @y, is defined as in (6):

Dy = Sm;&?ﬁizk(ﬁ)l)) ef27 fant -
n=123 k=0,1,...,K)

The estimated value of the phase £; is found by the least squares method. The
calculation procedure is presented in Equation (7). In the matrix £, £ ,, is the element of
this matrix.

=2 (@H@) ety (8)

where H is the conjugate transpose symbol.

The @y ,, of each cosine component is constructed using Equation (8). The matrix &
is reconstructed with @y ,. The amplitude and phase of each cosine signal is obtained by
Equation (5) which leads to the estimation of the DDC component Up(t).

3. Harmonic Phase Estimation in Wideband Dynamic Signals
3.1. The Establishment of Harmonic Phasor Estimation Model

In this paper, the authors consider that the Taylor Fourier method is able to describe
the amplitude and phase transformations in terms of time during the observation interval.
Thus, the K order Taylor expansion model is used to define the dynamic phase quantities as:

b o w T T
E;(t) = Zk! X; <t< 5 )

where x(¥) represents the order derivative of E(t) at t = 0, K is the order of Taylor expansion,
and T is the duration of the observation interval.

In practical applications, sinusoidal signals containing harmonics and interharmonics
are generally in the form of discrete sequences U [1] with sequence length N and —N/2 <
n < N/2 — 1. The dynamic phase method is extended to the actual sequence model by
multi-frequency phase analysis and the Taylor-Fourier coefficient for each component of
the phase of the discrete signal can be expressed as:

1 K
Ul[”]zﬁz Z(:) i

k K k
(”h") () 2efintt |y (”5) 0 —j2n finH (10)
= =

ki i

where H is the sampling interval and the observation interval T = NH. Here, xl{O) is the

(k)

average harmonic and interharmonic phase and x; " is the kth order derivative of the phase
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frequency at f;. f; is an integer multiple of the fundamental frequency f; representing the
harmonic frequency and a non-integer multiple representing the interharmonic frequency.
The harmonic signal frequency is normalized at a sampling rate of size 1/H. The
sampling length is N to obtain the harmonic component frequency § = f;H. The normalized
frequency of the Taylor-Fourier basis vector is 6, = /N, r = 0,1,2--- ,N —1. The
frequency resolution corresponding to the set of N coefficients is A = 1/NH. Considering
that the Taylor open order of each i is K, Equation (10) can be written in matrix form (11):

Uy =Ax+e (11)

where Uy = [Uy[-N/2],- - -, U [N/2 — 1]]7 is the sample column phase. The sensing matrix A
of size N x [(K + 1) N] is the Taylor—Fourier basis phase, e denotes the noise or measurement
error, and x is the column phase of length d, describing the set of x; = [xl.(o), ces xl(K)]
the harmonici € {0,...,N —1}.

As a common practice, the phase solution can be converted to a pseudo-inverse matrix
solution using the least squares method. The solution obtained by the pseudo-inverse
matrix calculation corresponds to the smallest Euclidean norm, when it is the optimal

solution satisfying the constraints described as:

for

min||Ax—Ui||, (12)

where |||, denotes the Euclidean parametrization. Based on Lagrangian operator the
dynamic phase coefficient estimation matrix £ is obtained as:

£ = (AHA) “laHy, (13)

However, as the maximum harmonic order increases, the matrix dimension increases
rapidly, the computational complexity to solve the multivariate linear equation corre-
sponding to Equation (13) increases significantly. For high-frequency harmonics, the
least-squares-based phasor method has the lowest computational complexity. Therefore,
this phasor method suffers from low efficiency in solving multidimensional matrices. In
addition, the conflicting observation time and frequency resolution can lead to less accurate
frequency analysis and low time resolution.

3.2. Reconstructed Harmonic Phase Estimation Model

Broadband harmonic phasor has certain sparse characteristics [22], which can be
transformed into a compressed sensing problem. In order to obtain more accurate results in
frequency domain, this paper introduces a correction factor in the harmonic phase analysis
7. The frequency resolution of each group reaches A’ = A/, the length of the sampling
sequence is N' = v - N, and the sampling length H is 5 fundamental periods. The harmonic
component normalized frequencies can be expressed as 6, =~ r/N’,r=0,1,2--- ,N' — 1.

An improved formulation for the Taylor-Fourier coefficients is obtained under more

precise correction conditions, expressed as:

ajorst = A [ () ()

k=

(w) P } (14)

where 0 < w < N, ¥ denote the curvilinear wave transform matrix of size AN’ x (K + 1)AN’
and W) is the kth order derivative of ¥.

According to Equation (10), the approximate second-order dynamic phase estimate E;,
harmonic frequency f; and rate of change of frequency df /dt are obtained by:

B~ v2:20 (15)

1
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fi = A'N'SL+ % Im |5V /20| (16)
7 /
% = % -Im [3?1(1)/921-(0) )
2 2
= &t 25 - ()] (27}

Since the number of harmonic unknowns is much larger than the observed values, it is
assumed that x is compressible in the curvelet transform domain [23]. When the correction
factor v — 0, and if the sensing matrix A is highly uncorrelated with the sparse matrix ¥x,
Equation (14) is transformed into matrix form as:

U, =y +e (18)

where U is the measurement matrix and x denotes the sequence of samples corresponding
to each data block of length AN’ x 1. Wx is the superposition of a small number of
phases extracted from the original sample segmentation and @' is an orthogonal matrix of
dimension N x N. Each column of this matrix is the base phase of the DFT where e denotes
the noise signal phase.

After the above method realizes the construction of a sparse sampling measure-
ment model, this paper uses the Euclidean search algorithm to matrix chunk x based
on the sparsity of the harmonic frequency domain distribution. The m best matching
data points are found in the search range, and all data points are combined into a matrix
X; = [xio, Xi1, - xi(m—l)} , i being the coordinates of the coefficient matrix. Curvilinear
transformation is performed on the matrix, and the insignificant curvilinear coefficients are
removed using the curvilinear threshold criterion, and the extracted coefficients require ef-
fective denoising and compression algorithms. The curvilinear transform is performed, the
insignificant curvilinear coefficients are removed using the curvilinear threshold criterion,
and the extracted coefficients require an effective denoising and compression algorithm.

To ensure the local smoothness feature of harmonic detection, the sparse matrix ¥x
contains only a small set of non-zero valid terms. The phase quantity of the transform
coefficient column obtained by arranging this set of valid terms in the dictionary order is Q,.
As the transform coefficients Qy are concentrated around the zero region and distributed in
the form of fine peaks, the distribution characteristics of the transform coefficients are used
to characterize the repeatability of the signal and are denoted as:

P(x) = [|Qx]y (19)

where ||-||;; denotes the parametric number /1. A more accurate estimation of the harmonic
signal for each group can be achieved by inverting the transform coefficients as:

¥=y Q) (20)
where 1 (x) ! is the inverse operator of $(x).

3.3. Solution of Harmonic Estimation Model

In order to obtain a suitable estimation accuracy and robustness against noise, firstly
the harmonic phase recovery model is established based on the above presented method.
This leads to the reconstruction of the Taylor coefficient matrix x by solving the optimization
problem of the regularized linear least squares cost function, using:

min 1HU —d)H‘I’xHZ + oR(x) (21)
|20t 2
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T
w1 — {IPT<(DH) (DHII,JF(M_FM)IH}

where ||-||;, denotes the parameter [2. R(x) denotes the regularization term R(x) = p||¥Wx||;; +
|Qx||;; and ¢ is the regularization factor. || ¥x|;;, |[Q2x]|;; denote the local and non-local
sparse terms, respectively. p is a regularization parameter to balance the two sparse terms.

To solve the above minimization problem, an alternating SBI algorithm is used in
this paper [24]. Two auxiliary phase quantities p and ¢ are introduced, and the following
scheme is finally obtained:

1 2 2
e T Y L R

12
(W) = argming!| Wi, + 11| wx - wab @)
L = argming || Q. |, + %kaﬂ —X— qulzz (24)
Pl = pk — (Wx)F T ksl (25)
gL = gk — k1 g g (26)

where y11 and pp are constants that serve to improve the stability of the algorithm values.
p' = op. p, g are the SBI algorithm auxiliary iterative phase quantities.

The minimization of a strictly convex quadratic function is described by Equation (22).
The corresponding closed solution can be obtained by setting the gradient of the objective
function to 0:

o [yllFT((lPx)k — pk) + i (a?k n qk> +yT ((DH>TU} 27)

where [, is a unit matrix of size n x n. The problem of minimization of the function can
be solved using the step-optimal, which is considered as a faster method [25], and can be
expressed as:

xk+l — xk _ dkgk (28)

where g is the gradient of the objective function and d is the optimal step size expressed as:
Ty ol (wT (gH) gpH
d=abs\g g/g (¥ (<1> )<P‘I’+(u1+uz)ln g)

Considering the estimated value Yx = Wx + p, the problem of (23) can be solved by
applying the minimum mean square error theorem as:

1 ~ '
min || Wx — W7, + | @), (29)
H1
Similarly, the problem of (24) can be written as:
1 2 (%
minz [|¥ =8l + -~ |2« |l (30)
H2

Here, 8 = x — g (omitting k). Due to the cumbersome definition of Q,, it is difficult to
solve the above equation intuitively. In this paper, a set of closed solutions is thus obtained
by making reasonable assumptions. Treating 8 as some type of observation X with noise
and denoting the error phase by e = X — 6, the error of each elementise(i) (i =1,2,3---n),
respectively. Further, assuming that e is independently distributed over (i,i,d) with mean
0 and variance v?, it follows from the law of large numbers that for any e > 0, there are:

. Ids 200 o
J%P{‘n;ei (i) —v

S
<2}=1 (31)
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This leads to the expression:
limPd | 27— 0% - 2| < £l =1 (32)
n—o00 n 12 2

The transformed error phase is Q. = Qy — Qr, Q.(j) (j =1,2- - - m) denotes the error
phase of each element, and m is the number of data points for the best match. According
to the orthogonal nature of the matrix, the transformation does not change the variance
of each group. It follows that Q, of each group is independently distributed over (i,7,d),
(with zero mean and variance v?), and the large number theorem yields that for any & > 0,
the obtained expression is:

~ 1v 2 2
nggr;oP{‘miZ%QE(J)—v

€
<2}:1 (33)

This results in:

. 1, 1
lim P{‘||x—9||122—||ﬂx—(29|122 <e} =1 (34)
n— oo n m
m — 00
Therefore, it can be concluded that:
1. 2 1 2
;||x*9||zz: %HQx*Qesz (35)
Combining it with the problem (24) results in:
1 mo
argminz |1Q2x — 99”122 + — Q|3 (36)
Q pan

'z

Since the unknown quantity £y is separable in the above equation, each component
can be reduced to:

) .1 . . .
() = axgmind 312401 - 20 () + 1057} @)
Q.(j) K2

where |-| is the mode corresponding to the phase quantity.
The expression for the estimated value of x in vector contraction form can be written
as:

¥ =~ [Qo(|Q0| — o)/ (|Qp|p2n)] (38)

Estimating the Taylor coefficient matrix x (described above), the reorganization of the
harmonic signal Uy [n] is achieved through the harmonic sampling equation U; ~ ®"Wx
for accurate detection of the harmonic phase changes. To ensure the accuracy of the model,
the cross-entropy [26] objective function is used to measure the difference in probability
distribution between the estimated value x and the theoretical value x in the framework of
logistic regression, expressed as:

L(x,x) = —%Xi:xi log X; — (1 — x;) log(1 — x;)
= —yLxlog(H (@) — (1-x)log(1 - ¢~ ())

Assuming that the error is binary distributed, L — 0 enables the predicted probability
distribution to become closely correlated with the actual probability distribution, which
proves that the assumptions are consistent with the expected model.

In summary, the specific steps of the algorithm harmonic phase estimation imple-
mented in this paper are shown in Scheme 1.

(39)
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v

The sparse reconstruction algorithm is -
Input data U, and matrix Setting parameters k=0 ,
used to reconstruct U,[n] to obtain
H

[N

(r°a")=(0.0), py pas asp

§

Equation (20)

Obtain the broadband dynamic phase magnitude, frequency, and
frequency change rate by Equations (15), (16), and (17), respectively

Solving regularized linear optimization
problems (21) based on harmonic phase
recovery model (18)

[ ] g

%, and use the law of large numbers to find
the estimate of x

In the segmented SBI iterative framework (22-26), the

Consider 6 as some class of noisy observations - most rapid descent method with optimal step size is

used to solve the minimization problem of the
function

Scheme 1. Algorithm flow.

4. Simulation Analysis

In this section, the results of the proposed wideband dynamic phasor measurement
algorithm (BMP) proposed are discussed considering different test scenarios. Four al-
gorithms compared in this paper are: FFT algorithm [27], Prony algorithm [28], Taylor
weighted least squares (TWLS) algorithm [21], and Sinc interpolation function based dy-
namic simultaneous phase measurement (SIFE) algorithm [13]. Test scenarios include basic
performance test, frequency ramp test, step transform test, and interference test.

To compare the estimation effects of different methods, the total phase error (TVE)
is determined to describe the relative deviation between the theoretical phase and the
estimated phase. TVE is closely related to the amplitude error and phase angle error, but
cannot reflect the variation of a single aspect alone. Therefore, this paper also suggests
two metrics: frequency error (FE) and absolute rate of change of frequency error (RFE) to
comprehensively evaluate the effect of phase estimation. Measurement requirements for M
class PMU [29] are selected as the limits for different operating conditions according to the
IEEEC 37.118.1 standard.

All five algorithms use the same rectangular observation window with a fundamental
frequency bandwidth of 1 Hz. The sampling window length is set to 5 working frequency
cycles. Taking into account the complexity of the algorithm and the accuracy of the
algorithm, the value of 1 is set to 20, to improve the frequency domain resolution.

4.1. Basic Performance Test

In order to test the basic performance of the proposed algorithm, the wideband
dynamic signal model with DDC components is constructed by using:

U(t) = Re /@t 4 1/ fit+oult)) | 4 A(t)el ) (40)

where fj is the fundamental frequency which is set to 50 Hz, ¢y (t) and ¢y, () denote the
fundamental and each harmonic phase angle, respectively. This value of frequency is
chosen arbitrarily in the (—7, 71) range. The number of harmonics % in the low frequency
band is taken as 2-13 and in the high frequency band / is taken as 77, 79, 80, and 83,
respectively. The sampling frequency is set to 10 kHz. The values of the DDC component
amplitude A(t) are taken as 0.3, 0.4, 0.5, . .. 1. The time constant 7(t) of the DDC component
starts from 0.01 s and varies in steps of 0.01 s to 0.1 s.
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When applying the BMP algorithm, iterating the initial value of the phase (po, qo) = (0,0),
the regularization factor is considered as o = 2.7. For the fixed-value parameters y; = {j,
py = (1—=0)u, p = 2.7 x 1073, ¢ can vary in the range [0.05, 0.3]. The number of data
points that are best matched in the search window is set to m. In the process of matrix
chunking, if the number of matching blocks is too large, there must be data points in the
block array with high noise impact and low matching. Conversely, the influence of chance
on the construction matrix is unavoidable. In this paper, the maximum number of iterations
is J. The higher the number of iterations, the higher the computational accuracy. However,
the computational cost becomes significantly higher. This paper combines the analysis of
reconstruction effect and algorithm running time by changing the parameters m and J. The
corresponding results are shown in Figure 1.

1| Time ® 1.0-2.0s
® 2.0-5.0s

Figure 1. Reconfiguration effect and running time range with parameters.

As can be seen from Figure 1, the total phase error tends to decrease as the number of
parameters (m and ]) increases, but the running time algorithm increases as well. When the
number of data points m = 240 and the number of iterations ] is less than 100, changing
the number of iterations has a minor impact on the computational cost (small change
in running time). In this case, the reconstruction effect tends to be stable. When the
number of iterations increases, the computational complexity increases significantly (large
change in running time) and the TVE shows an unstable decreasing trend. Therefore, an
appropriate reduction of m can effectively improve the reconstruction effect. Considering
both reconstruction performance and running time, the parameters m = 240 and the number
of iterations | = 100 are used in the algorithm.

FFT, Prony, TWLS, and SIFE are chosen as the comparison algorithms, and the results
of the total phase error estimation, frequency and frequency change rate error estimation
are shown in Table 1.
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Table 1. Comparison of estimation accuracy among algorithms.

Index h BMP Prony FFT TWLSSIFE Index h BMP Prony FFT TWLSSIFE Index h BMP Prony FFT TWLS SIFE

TVE FE RFE

(%) 1 279 579 866 829 255 (Hz) 1 0.092 078 1.88 193 097 (Hz/s) 1 2437 673 513 612 485
2 267 445 862 541 225 2 0.084 076 123 1.32 0.99 2 2376 552 496 596 236
3 27 33 602 531 23 3 0.096 07 116 124 087 3 2403 42 476 58 123
4 261 265 437 527 21 4 0.076 0.66 075 098 0.72 4 1377 38 44 556 0957
5 249 22 336 521 225 5 0.064 07 074 096 071 5 1161 3.88 438 55 0845
6 237 19 503 437 19 6 0.047 062 081 095 0.65 6 0972 344 412 518 0.613
7 219 17 599 421 235 7 0.048 058 074 091 0.62 7 0.837 292 386 486 0576
8 213 15 31 312 21 8 0.048 052 071 0.87 054 8 0729 268 394 474 0491
9 216 135 312 365 2 9 0.036 054 068 0.81 051 9 0.648 248 372 438 0369
10 207 125 206 312 205 10 004 052 067 0813 0.61 10 0543 236 328 4.06 0341
11 186 115 175 3.07 245 11 0.028 05 064 0812 052 11 0513 184 318 398 0312
12 162 105 168 278 19 12 0.016 046 057 0.765 047 12 0459 176 3.06 3.78 0311
13 021 05 091 123 17 13 0.013 038 039 058 0.75 13 0517 14 252 19 0307
56 018 055 087 109 0.16 56 0004 036 04 054 003 56 0405 14 246 18 0318
71 009 045 08 099 011 71 0008 03 037 05 007 71 0351 124 152 158 0.313
74 027 025 075 101 0.15 74 0004 022 034 04 014 74 0406 116 118 146 032
82 009 04 064 093 0.07 82 0009 022 026 044 0.09 82 0275 112 094 156 0.311

As can be seen in Table 1, the maximum values of TVE, FE and RFE indices of
the BMP algorithm are 2.79%, 0.096 Hz, and 2.437 Hz/s, respectively. When harmonic
components are included, the IEEE standard limits for TVE and FE are determined as 3%
and 0.1 Hz, respectively, and the limit for RFE is reported as 2.7 Hz/s [28]. Compared
with other comparative algorithms, the estimation metrics of this algorithm fully satisfies
the requirements of the IEEE standard. The results show that the algorithm still provides
a good detection considering the condition of broadband harmonics containing DDC
components with the highest accuracy of phase estimation. The BMP algorithm uses the
sparse distribution of the harmonic frequency domain distribution to identify the most
relevant components of the signal. This improves the accuracy of the measurement results
significantly.

The estimation error of the SIFE method near the lower harmonics does not meet
the IEEE measurement standard. This is because the SIFE method is based on a low-pass
filter for baseband signal filtering. Therefore, it is difficult to obtain zero-error results.
However, the algorithm performs better than FFT and TWLS because of its wide passband
and wide stopband, which can efficiently estimate the harmonic simultaneous phase. The
FFT measurement results are most affected by spectral leakage which will reduce the
accuracy of harmonic parameter identification significantly. The maximum total phase
error exceeds 8% and the accuracy of its FE and RFE measurements is also unsatisfactory.
Under dynamic conditions, the Fourier transform model is not able to track the phase
changes in the observation window, resulting in incorrect phase evaluation. The TWLS
method uses a second-order Taylor order to fit the signal components. However, the Taylor
signal model has large errors and limited accuracy. Increasing the Taylor model order can
reduce the model error. The drawback of this approach is that the higher the order, the
worse the passband performance of the filter. The Prony algorithm uses a parametric model
to calculate the signal parameters. However, its estimation order limits the number of
estimated frequency components and the frequency estimation error gradually increases.

4.2. Frequency Ramp Test

The power imbalance between the load and the generator causes a decrease in the
frequency of the wideband signal as the load increases while it increases as the input
power increases. To analyze the performance of the BMP algorithm considering frequency
ramping, the provided signals can be expressed as:

U(t) = Re o Qrft+mRi4e1(1) 4 0.12ej(2nhft+nhR1t2+g0h(t)) + A(t)e(’é) (41)
h
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12.0

11.57

11.07

10.57

where f is the fundamental frequency and takes the value of 50 Hz. R; is the fundamental
frequency slope and takes the value of 1 Hz/s in this paper. ¢;(t) and ¢(t) are the
fundamental phase and harmonic phase, respectively, and the phase is set as a random
number uniformly distributed in the (—7, 7r) range.

The results of harmonic phase estimation, frequency estimation, and rate of change of
frequency estimation for this paper and the comparison algorithm are shown in Figure 1.
It is assumed that the sampling frequency is 10 kHz and the sampling window length is
set to 5 work frequency cycles. The FFT, Prony, TWLS, and SIFE are used as comparison
algorithms to analyze the signal of Equation (41). The estimation results generated by each
method considering the frequency ramp condition are shown in Figure 2.

TVE(%) —  BMP
. _ I FFT i i -
1.5 SIFE 1.6 7.6
— TWLS "
——  Pron - 66
o -7.4
~1.57
1.47 | o ul72
-1.4r
~7.0
- 6.2}
1.37
-1.3F [6.8
- 6.0 6.6
1.2 T T T T T T T T T T T T T T T T T T T T 1.2 .
123456 789101112135671748286 h

(a)

Figure 2. Cont.
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Figure 2. Maximum errors of TVE, FE, and RFE under frequency ramp conditions. (a) TVE. (b) FE.
(c) RFE.

In Figure 2, it can be seen that the maximum error of TVE algorithm is 1.46%, the
maximum frequency error is 0.095 Hz, and the maximum error of frequency conversion rate
is 2.97 Hz/s. The obtained error values meet the requirements of IEEE standard [28]. The
results show that the proposed TEV algorithm can maintain high accuracy even when the
fundamental frequency varies widely and linearly. Its estimation accuracy is better than the
other four algorithms. The BMP algorithm uses Taylor’s order to approximate the dynamic
signal model which not only can estimate the frequency and phase angle accurately, but also
is least affected by the linear frequency variation. Therefore, it can be stated that the BMP
algorithm has the capability to achieve the highest accuracy of phase estimation. Among
the remaining algorithms, the FFT method is not able to track frequency changes in real time
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under dynamic conditions, and therefore has a large frequency variation rate. It is observed
that the error calculation results of both Prony and TWLS algorithms are smaller than
those of FFT. The reason is that the TWLS is a dynamic model-based estimation algorithm
and Prony algorithm can accurately extract the low-frequency oscillation eigenvalues of
the dominant mode. Furthermore, the error characteristics of parameters such as phase
angle and frequency of the algorithm are less affected by the frequency change. However,
the measurement results are not able to meet the requirements of IEEE standard to an
acceptable level. If enough information about the time-varying characteristics of the signal
is unknown, obtaining accurate mode parameters is challenging by using Prony algorithm.
Similarly, it is found that TWLS algorithm is also unable to estimate the higher-order
harmonic phase quantities accurately due to the influence of the fundamental components.

4.3. Step-Transformation Test

In order to simulate fault conditions with sudden changes in the amplitude and phase
of voltage/current signals, it is necessary to simulate the proposed algorithm considering
these conditions in order to evaluate the response time and delay. At the beginning of the
test, the amplitude of each component is set to 115% of the initial amplitude while the
phase changes to (71/6). The broadband dynamic signals can be expressed as:

U(t) = Re|e/@fot+eo(t)) +0.1Zef(2ﬂfhf+%(f))) —I—/\(t)e( ) (42)
h

The tests in this section assume a sampling rate of 5 kHz and a sample period length
of 5 cycles. In the standard, the speed of response time is used to evaluate the performance
of each algorithm under step-change conditions. It is defined as the time interval between
the first and the last instant greater than a given threshold. According to the IEEE standard
for the test conditions observed in this section, the thresholds for the maximum TVE, FE,
and RFE values are 1.5%, 0.13 Hz, and 0.78 Hz/s, respectively. The obtained simulation
results are presented in Figure 3.

1% = 0.1568s

BMP
9.2% -
8.3% SIFE
34.3%
RFE(HzIS) 2 30.8% 7.8% 16.7% TWLS
FE(Hz) _ 19.5%
= 32 Prony
TVE(%) _ 18.8%
17.9%
23.5%
18.5%
22.%% 19.1%
20.7%

Figure 3. Runtime ratio of each method under the step.
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U(t) = Re|e/@mfot+e0(t) 4 01y el 27 fut+ ()
h

As can be seen in Figure 3, the BMP algorithm takes less time to reach the IEEE stan-
dard based TVE, FE, and RFE values under the amplitude and phase step-transformation
conditions as compared to other algorithms. It can be concluded that the BMP algorithm
has the highest estimation accuracy and the response time fully satisfies the standard
requirements for P-class PMU under the step-transform condition. For the estimation of
the entire Fourier transform of the stepwise smooth function, the FFT algorithm requires a
complex multiplication operation. The performance of TWLS algorithm can be improved
by recalculating its coefficients in each reporting frame. However, this approach signifi-
cantly increases the computational burden and requires the calculation of pseudo-inverse.
In order to implement the SIFE algorithm to meet the accuracy requirements, a complex
matrix with 70 rows and 1400 columns needs to be stored in memory. Considering the
processing practicalities, 21¢ real multiplications and 2'° real additions need to be carried
out in real time, which is very limited in terms of memory and processing power. In order
to get more accurate results for the Prony algorithm, the model order of the algorithm needs
to be increased, thus increasing the computational effort. In this paper, the BMP algorithm
uses a machine learning algorithm to collect the key information of the signal and construct
the sparse matrix. This solution greatly reduces the complexity of the operation and results
in faster and accurate detection of broadband dynamic signals.

4.4. Anti-Jamming Test

Typically, the signals flowing in the power grid contains a certain amount of inter-
harmonics and noise, which can seriously affect the estimation of harmonic phase. In
this section, Gaussian white noise is introduced with a signal-to-noise ratio of 55 dB. The
broadband dynamic signals can be expressed as:

. __t_
+Re [0.05e2”ffff} + A(t)e! T 4 noise (43)

where f; is the interharmonic frequency and its values are considered in the order of
9652.5 Hz, 9751.5 Hz, 9850.5 Hz, 9949.5 Hz, 10,048.5 Hz, and 10,147.5 Hz. Where ¢; and ¢y,
are the phases of the fundamental and harmonics and their values are random numbers
in the range of (0,2 7). The sampling frequency is assumed as 10 kHz and the sampling
window length is set to 5 L.F. periods. The obtained simulation results are shown in Figure 4.

It can be observed in Figure 4 that the TVEmax of the proposed algorithm is 2.43%,
FEmax is 0.071 Hz, and RFEmax is 0.184 Hz/s. The calculation based results of the
algorithm are found better than the rest of the comparison algorithms. In the presence
of interharmonic interference, the IEEE standard limits for TVE, FE and RFE are 3.5%,
0.2 Hz, and 3 Hz/s, respectively. Similarly, the results of TVEmax, FEmax, and RFEmax
parameters for SIFE algorithm are 6.64%, 0.115 Hz and 7.39 Hz/s, respectively, while those
for Prony algorithm are 19.73%, 0.136 Hz, and 9.207 Hz/s, respectively. The calculation
based results of each index of Prony algorithm are better than the other comparative
algorithms. The indexes of BMP algorithm meet the requirements of IEEE standard. In
case of noise interference in this segment, serious interference and spectral leakage occurs
between adjacent harmonics of the FFT algorithm, which affects the resolution and accuracy.
Similarly, in case of noise interference in this segment, the TWLS and SIFE algorithm
increase the amplitude of the transition band for their harmonic filters, causing interference
between adjacent harmonics which leads to large estimation errors. In addition, the TWLS
algorithm is severely affected by interharmonic interference, making it challenging to
estimate each high-frequency component accurately. For higher-order components, the
model parameters of the Prony algorithm are constantly modified as the harmonic order
increases. Therefore, Prony algorithm has good results for estimation of interharmonic
phase and frequency. This can suppress the effect of spectral leakage of interharmonic
components to some extent. However, this method requires pre-estimation of the order of
the dynamic time-varying signal.
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Figure 4. Maximum error of TVE, FE, and RFE under interharmonic and noise interference. (a) TVE.
(b) FE. (c) RFE.

The BMP algorithm uses a modified Taylor-Fourier model to recover a specific signal
with fewer data points accurately. This leads to accurate reconstruction of the harmonic
phase to solve with a sparse acquisition model, which effectively improves the recon-
struction performance and noise immunity of the algorithm. In addition, the algorithm
reconstructs the spectrum with a resolution of 1 Hz, which facilitates the accurate detection
of interharmonic components.

4.5. Measurement Validation and Analysis

In order to demonstrate the BMP’s practical values, we use the current field data
recorded at a high-speed rail converter station for testing. The measuring instrument is
MHD-AE301 multi-functional power monitoring instrument. In Figure 5, the field data
and its spectrum are shown. As seen, there are significant fundamental and third-harmonic
components.

We investigate the BMP algorithm in this paper by sampling data in matlab simulation
platform. The parameter estimates for the BMP method are shown in Figure 6.

It can be observed in Figure 6 that the amplitude, frequency, or ROCOF estimates
for the BMP method are almost identical to those for the power monitor. Therefore, BMP
method can be used to estimate harmonic parameters of unknown signals.
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Figure 5. (a) Current recorded data. (b) spectrum.
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Figure 6. Parameter estimates of the BMP. (a) Amplitude estimates. (b) Frequency estimates.
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5. Conclusions

In this paper, a new wideband dynamic phase measurement algorithm is proposed
that offers efficient processing of wideband dynamic phase s containing DDC components.
The algorithm is based on the idea of regularized sparse capture matrix. The results of
phase estimation are obtained by solving the sparse regularization problem. The results
obtained from simulation and experiment based studies show that the proposed algorithm
identifies the key information of the wideband dynamic phase and significantly reduces
the computational complexity. This demonstrates the ability to obtain more accurate results
in a short time and thus effectively detect the transient characteristics of broadband signals.
Meanwhile, the measurement results can meet the test requirements of M-class PMU under
static and dynamic conditions such as noise interference, interharmonic interference, and
frequency ramp. However, the algorithm is still not able to solve the dense frequency
signal analysis problem effectively. In order to continuously improve the accuracy of phase
estimation, the next research direction is to consider the algorithm of broadband phase
measurement under dense frequency signals.
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