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Abstract: In this work, the bolometric parameters of Sierpinski fractal antenna-coupled SWCNT semi-
metallic films are obtained by thermoelectric characterization, this in order to find out the performance
as bolometer. The method was based on an experimental setup considering a line-of-sight wireless
link between two identical planar fractal antennas, infrared thermography, and electrical resistance
measurements. The experimental setup considered the antennas resonant frequencies. Both the
transmitting and receiving antenna were third-iteration Sierpinski fractal dipoles designed to work at
UHF frequencies. Films made either of cracked or uncracked SWCNT films were each separately
coupled to the receiving fractal antenna. Measurements showed that the receiving antenna that was
impinged with radiation at UHF frequencies coming from the transmitting antenna, experienced as it
was expected an induction of electric current, the induced current flowed through the film producing a
temperature change, which in turn caused changes in the radiated heat of the film, as well as changes
in the electrical resistance known as Temperature Coefficient of Resistance TCR. The maximum
value of TCR for uncracked SWCNT films was −3.6%K−1, higher than the one observed for cracked
SWCNT films which exhibited a maximum value of −1.46%K−1. Measurements for conversion of
incident radiation to electrical signals known as the Voltage Responsivity <v, exhibited values of
9.4 mV/W and 1.4 mV/W for uncracked SWCNT films and cracked SWCNT films, respectively.

Keywords: bolometric parameters; thermoelectric characterization; uncracked and cracked SWCNT;
Sierpinski fractal antenna; UHF frequencies

1. Introduction

Carbon nanotubes (CNT) have been used as detectors for different applications, in-
cluding microwave and terahertz detection [1–7]. Bolometers have been especially applied
to early detection of biological abnormalities in humans and animals as well as in living
tissue samples, space radiometry, optical communication, thermal imaging for military
applications, or for non-contact temperature measurements among others [8].

One of the most common thermal detectors is the bolometer. The term ‘bolometer’
is a composite word with a Greek origin, formed by bole (beam, ray) and metron (meter,
measure) [9]. In practice, it is a temperature-sensitive electrical resistor. As a consequence, a
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significant change in the electrical resistance occurs when the detector is heated by incident
radiation measured by an external electrical circuit [10,11]. The electrical resistance of the
film is controlled while the radiation is absorbed and its temperature increases. If the film is
a semiconductor, the resistance decreases as the temperature rises, hence, it is said to have a
negative temperature coefficient of resistance [12]. The temperature coefficient of resistance
is measured as a percent change of resistance per degree Kelvin (%K−1). The TCR values
of materials used as bolometric detectors, such as vanadium oxide (VOx) or amorphous
silicon (a-Si), are around−4 and –2.5%K−1 respectively [13–15]. Smaller bolometers heat up
faster which speeds up their frequency response [16] and if they are coupled to an antennas
it is possible to tune the frequency and the polarization of the incoming radiation, as well
as take advantage of the capture region provided by the area occupied by the antenna [17].

Previous investigations reported that a holey carbon nanotube network was designed
with the vision of improving the TCR for ultra-fast broadband bolometers. The obtained
films demonstrate a high TCR over a wide temperature range, up to −2.8%K−1, however,
those values were measured at temperatures much lower than room temperature, i.e., at
liquid nitrogen temperature [18]. On the other hand, reported work indicates that a radio
frequency bolometer was implemented using a thermistor fabricated from a carbon nan-
otube thin film deposited on a sapphire substrate, with the thermistor held at a temperature
of 15 ◦C. The bolometer sensitivity at 915 MHz was found to be 0.36 mV/mW, however
these values of data points were collected while sweeping the bias up from 1 to 30 V [19].

Regarding antennas and carbon nanotubes, there have been many developments of
antennas or other electromagnetic devices made by carbon nanotubes for diverse purposes
such as a multiband wireless antenna working at 900 MHz, 2.4 GHz, and 5.5 GHz [20], or
data transmission lines for ultrawideband medical wireless body area networks [21,22],
while in our study the multiband antenna is made of cooper on a dielectric substrate, being
a SWCNT film coupled between the terminals of the feed.

In this work, the thermoelectric performance was focused on two key figures of
merit in bolometric detectors: Temperature Coefficient of Resistance (TCR) and Voltage
Responsivity (<v). The study was conducted for cracked and uncracked films of single-
walled carbon nanotubes (SWCNT) coupled to a receiving third-iteration Sierpinski fractal
dipole antenna working at UHF frequencies. In addition, the heat radiated in each of
the samples was calculated and thermoelectric characterizations were performed at room
temperature and atmospheric pressure.

This article is organized as follows: Section 2 shows a brief description regarding
single-walled carbon nanotube (SWCNT) films used as bolometers. It also includes the
antenna design, i.e., the fractal shape, dimensions, resonance frequencies corresponding to
each of the fractal iterations, the coupling of bolometers to the receiving antenna, and the
experimental setup used to perform the measurement of thermoelectric characterization.
In Section 3, the bolometric performance of both uncracked and cracked films is shown as a
result related to electrical resistance, the temperature, and incident radiation frequency. In
addition, an analysis of conversion of incident radiation into electrical signals and radiated
heat in each of the samples is performed. Finally, the conclusions are provided in Section 4.

2. Materials and Methods
2.1. SWCNT Films as Bolometers

The detailed preparation and device fabrication of each of the samples are described
in [23–26], briefly, both films of nanotubes there was the same density of deposit, but
different drying conditions.

The ink dispersion is deposited onto a doped polycrystalline-silicon substrate capped
with a silicon oxide surface in an oven at 80 ◦C for 48 h, for a relative humidity lower than
20% is due to that, after deposition the ink is then cured under a 60 ◦C lamp for several
hours to remove any remaining moisture. This is possible to observe that the continuity in
the SWCNT film on the silicon substrate is highly reduced, the composite formed exhibits
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micron-scale cracks, as well as in the dried composite contain highly aligned SWNTs
suspended above the substrate perpendicular to the crack. (Figure 1b).

Electronics 2022, 11, x FOR PEER REVIEW 3 of 11 
 

 

2. Materials and Methods  
2.1. SWCNT Films as Bolometers 

The detailed preparation and device fabrication of each of the samples are described 
in [23–26], briefly, both films of nanotubes there was the same density of deposit, but dif-
ferent drying conditions.  

The ink dispersion is deposited onto a doped polycrystalline-silicon substrate capped 
with a silicon oxide surface in an oven at 80 °C for 48 h, for a relative humidity lower than 
20% is due to that, after deposition the ink is then cured under a 60 °C lamp for several 
hours to remove any remaining moisture. This is possible to observe that the continuity 
in the SWCNT film on the silicon substrate is highly reduced, the composite formed ex-
hibits micron-scale cracks, as well as in the dried composite contain highly aligned 
SWNTs suspended above the substrate perpendicular to the crack. (Figure 1b). 

In contrast, when the humidity is high and the drying occurs slower, very few if any 
cracks are observed, relative humidity higher than 80% (Figure 1a), the deposit shows a 
SWCNT film with high continuity and alignment. The film thickness was 2 μm; SEM im-
ages (Scanning Electron Microscope) were taken using FEC-SEM model INSPECT RF50. 

 
Figure 1. SEM images for (a) high continuity on SWCNT uncracked film and (b) low continuity on 
SWCNT cracked film. 

2.2. The Antenna-Coupled SWCNT Bolometers 
The antenna that was coupled to SWCNT films is a planar dipole formed by two 

equilateral Sierpinski fractal triangles (10 cm long and 1 cm apart). Its fabrication was 
based on third-iteration level [27,28] and it was fabricated of a copper thin film (FR2 paper 
resin copper clad laminate) using conventional printed circuit board (PCB) techniques. 
The SWCNT thin films deposited on a 1 cm × 0.4 cm doped polycrystalline-silicon sub-
strate were fixed at the antenna feed gap (between the dipole arms) and were electrically 
coupled to two silver stripes (3 mm long, 1 mm wide and 8 mm apart) deposited atop the 
SWCNT using a conductive silver ink and anchoring copper wires to create electrical con-
tacts to allow thermal and electrical characterization. The fractal antenna which was cou-
pled to the SWCNT bolometers, is wideband and it itself has 4 well-defined theoretical 
resonant frequencies values for iterations from 0 to 3 [29–33]. To confirm the 4 frequency 
bands at which the antenna operates, by measurements a graph corresponding to param-
eter S11 in dB was obtained by using an N5222A vector network analyzer (VNA) from 
Keysight Technologies® (Santa Rosa, CA, USA) and considering 50 Ω 1-port SOLT calibra-
tion. The graph that was taken directly from the measurement instrument includes mark-

Figure 1. SEM images for (a) high continuity on SWCNT uncracked film and (b) low continuity on
SWCNT cracked film.

In contrast, when the humidity is high and the drying occurs slower, very few if any
cracks are observed, relative humidity higher than 80% (Figure 1a), the deposit shows
a SWCNT film with high continuity and alignment. The film thickness was 2 µm; SEM
images (Scanning Electron Microscope) were taken using FEC-SEM model INSPECT RF50.

2.2. The Antenna-Coupled SWCNT Bolometers

The antenna that was coupled to SWCNT films is a planar dipole formed by two
equilateral Sierpinski fractal triangles (10 cm long and 1 cm apart). Its fabrication was
based on third-iteration level [27,28] and it was fabricated of a copper thin film (FR2 paper
resin copper clad laminate) using conventional printed circuit board (PCB) techniques. The
SWCNT thin films deposited on a 1 cm × 0.4 cm doped polycrystalline-silicon substrate
were fixed at the antenna feed gap (between the dipole arms) and were electrically coupled
to two silver stripes (3 mm long, 1 mm wide and 8 mm apart) deposited atop the SWCNT
using a conductive silver ink and anchoring copper wires to create electrical contacts to
allow thermal and electrical characterization. The fractal antenna which was coupled to
the SWCNT bolometers, is wideband and it itself has 4 well-defined theoretical resonant
frequencies values for iterations from 0 to 3 [29–33]. To confirm the 4 frequency bands at
which the antenna operates, by measurements a graph corresponding to parameter S11
in dB was obtained by using an N5222A vector network analyzer (VNA) from Keysight
Technologies® (Santa Rosa, CA, USA) and considering 50 Ω 1-port SOLT calibration. The
graph that was taken directly from the measurement instrument includes markers pointing
the resonances (minimum values within each of the 4 bands), i.e., the frequencies at which
the antenna has better impedance matching with the transmission line. Figure 2 shows
the resonance frequencies which are 0.331, 1.644, 3.006 and 8.418 GHz corresponding
to iterations 0 to 3. It is worth mentioning that in Section 2.3 a frequency of 554.5 MHz
belonging to the first band of the fractal antenna will be used to perform the characterization
at which the antenna itself has an S11(dB) of at least −7.16 dB [34]. The characterization
at 554.5 MHz was performed as a proof of concept that verifies that an electromagnetic
wave at UHF frequencies incident on the antenna induces a current in the antenna arms
that circulates through the bolometer. The rest of the resonant bands are available for other
future applications.
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Figure 2. Parameter S11 in dB corresponding to the third–iteration Sierpinski fractal dipole.

2.3. Characterization Based on a Line-of-Sight UHF Link

The radiation source that was used consisted of a transmitting third-iteration Sier-
pinski fractal antenna (TA) which had the same dimensions, polarization, and shape as
the receiving one, i.e., the antenna under test (AUT). The TA was fed by a radiofrequency
generator (RFG), that works from 554.5 MHz to 678.5 MHz (UHF frequencies) and it is
able to supply a 1.5 W output. The RFG was connected to the TA through a 75 Ω coaxial
transmission line whose length was 1 m. The RFG was chosen for the thermoelectric charac-
terization since bolometric detectors coupled to the AUT are wavelength independent [35]
and are able to work at UHF frequencies. The AUT was placed at a distance of 0.25 m from
the TA which ensured the position in the far-field region for the entire frequency sweep
from 554.5 MHz to 678.5 MHz that was carried out existing a line-of-sight link [36].

Thermal and electrical properties of the AUT-coupled SWCNT bolometers were ob-
tained by using a high-resolution infrared (IR) camera with a thermal sensitivity higher
than 50 mK and a 240 × 256 focal plane array of VOx microbolometers (FLIR T400, FLIR
Systems Inc., Wilsonville, OR, USA) in order to measure temperature, and a Fluke 289 digi-
tal multimeter with data logging capabilities to measure electrical resistance, respectively.
Thermoelectric measurements for the AUT-coupled SWCNT bolometers were performed
by means of taking a total of 10 IR thermographs of them, of which only the first one
was taken without receiving radiation from de TA connected to the RFG, while for the
subsequent IR images a sweep in the RFG feeding the TA including 9 frequencies between
0-th and 1st AUT iterations was performed. Electrical resistance measurements were also
performed for each of the aforementioned frequencies. These thermoelectric measurements
were performed placing the IR camera at a distance of 0.6 m facing the AUT-coupled
SWCNT bolometers in order to obtain a numerical value of the mean temperature for
the different thermographs. Figure 3 shows the experimental setup while in Figure 4 the
thermographs appear showing average temperatures taken by means of a FLIR T400 IR
camera at a frequency of 554.5 MHz for: (a) AUT-coupled SWCNT uncracked bolometer
and (b) AUT-coupled SWCNT cracked bolometer. The bolometers were located between the
dipolar antenna arms i.e., the antenna feed and each IR image were processed performing
the integral of the bolometer temperature pattern.
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3. Results and Discussion

The radiation heat transfer between a surface and the surfaces that surround it is given
by Equation (1):

•
qr = εσAs(T

4
s − T4

arround

)
(1)

where ε is the emissivity of the surface, σ = 5.67 × 10−8 W/m2K is the Stefan-Boltzmann
constant, As is the superficial area, Ts is the superficial temperature and Tarround is the
surround temperature [37].

The experimental TCR was calculated by the method [38] defined by Equation (2):

TCR =
1
R

dR
dT

(2)



Electronics 2022, 11, 1665 6 of 10

where R is the material electrical resistance at T the operation temperature, while the voltage
responsivity <v of the bolometer was calculated given by Equation (3) for ibias = 0.1 mA
and for an emitted power of 1.5 W [39].

<v =
ibias · ∆R

Pinc
(3)

Performance of Bolometers

The thermoelectric measurements were performed by monitoring the temperature
and electrical resistance of AUT-coupled SWCNT bolometers (cracked and uncracked)
as a function of the incident radiation frequency (RFG). The first measurement for the
AUT-coupled SWCNT bolometers was conducted feeding the TA at 554.5 MHz, which
is the first frequency provided by the RFG. The AUT then experiences electric current
flowing through its arms and also a flow by the central part of it (antenna feed), where the
bolometer is located. For that reason, the bolometer temperature increased as a result of
Joule heating, resulting in a maximum temperature value of 297.81 K for uncracked film,
and 298.02 K for cracked film respectively, which decreased the bolometer resistance value
to a minimum of 40,283 Ω for uncracked film and 8775 Ω for cracked film also respectively.
When tuning the RFG at 678.5 MHz, which was the last frequency available, it occurred the
opposite effect, a minimum temperature value of 297.5 K for uncracked film and 297.72 K
for cracked film were measured respectively, which increased the bolometer resistance
to a maximum value of 40,424 Ω for uncracked film and 8796 Ω for cracked film also
respectively, occurring for both films a rise in temperature of SWCNT films upon exposure
to radiofrequency radiation which was about 0.31 K. However, the delta resistance (∆R) is
higher in the uncracked sample, which can be seen in Figure 5 and Table 1, where resistance
and temperature as a function of the incident frequency are shown.
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Table 1. Measured temperature and resistance in terms of the frequency for uncracked and cracked
SWCNT composite films.

Frequency (MHz) Temperature (K) Resistance (KΩ)

Uncracked Sample
Initial measurement 554.5 297.81 40.283

Final measurement 678.5 297.50 40.424

Cracked Sample
Initial measurement 554.5 298.02 8.775

Final measurement 678.5 297.72 8.796

Thermo-electrical parameters of the bolometers were obtained: TCR, responsivity,
radiation heat, and electric conductivity depending on the sample which was characterized.
It is relevant to indicate that, from the original plots (Figure 5), an interpolation on Resis-
tance and Temperature, with 101 points was carried out, to eliminate possible noise peaks,
from which a polynomial fit of degree 4 was obtained, substituting the points in each of
the Equations (1) and (2). Figure 6 shows TCR for an uncracked film of SWCNT which
has an average of −1.036%K−1, with a minimum value of −3.6%K−1 at 297.82 K and a
Standard Deviation (SD) of 0.76. In the same figure for the cracked film sample of SWCNT,
it shows an average TCR of −0.55%K−1, with a minimum vale of −1.46%K−1 at 298.01 K
and SD = 0.54, respectively. It can be observed that the sample of uncracked film of SWCNT
exhibits a variability close to 2.5 above the minimum TCR value with respect to the sample
of the cracked film of SWCNT, the negative TCR value of the two samples is indicative of
semiconductor bolometers, moreover, when metallic SWCNTs are in bundles, as they are
in the current work, they exhibit semiconducting behavior due to the interactions between
the tubes [40]. Table 2 concentrates thermo-electrical parameters for uncracked and cracked
films of SWCNT.
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Table 2. Thermo–electrical parameters for uncracked and cracked films of SWCNT.

SWCNT Minimum Value of
TCR (%K−1) ±SD

Temperature at
Which TCR is
Minimum (K)

Maximum
Responsivity

(V/W)

Maximum
Radiation Heat

(µW)

Electric
Conductivity

(µS m−1)

Uncracked −3.6 ± 0.76 297.82 9.4 × 10−3 81.7 1.23

Cracked −1.46 ± 0.5 298.01 1.4 × 10−3 148.1 5.69
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The voltage responsivity was calculated from the experimental results, as shown in
Table 1, the uncracked sample has a ∆R = 141 Ω and the cracked sample has a ∆R = 21 Ω,
which corresponds to values of incident radiation, for the initial frequency of 554.5 MHz
and the final frequency of 678.5 MHz, both calculations for an ibias = 0.1 mA, dividing these
by the incident power [41]. The responsivity value for each cracked and uncracked films
are listed in Table 2.

Finally, it is important to mention that if the AUT is in resonance or working near
it, as a result of Joule heating, there is a higher temperature concentration in the antenna
feed, where the samples were located. The sample with the highest electrical resistance
(uncracked film) has an earlier detection of maximum temperature with 297.81 K obtaining
from Equation (1) a maximum radiated heat of 81.7 µW, compared to the cracked sample
with lower electrical resistance, which detects with a shift of 0.21 K in relation to the sample
of uncracked film with the maximum temperature of 298.02 K and with a maximum radiated
heat reading of 148.1 µW. It is also important to note that according to

.
qr, from Equation (1),

the surface temperature is proportional to the emissivity, the Boltzmann constant, and the
surface area. Therefore, with a higher temperature value, there will be more radiated heat,
which can be seen in Figure 7 and Table 2. The electric conductivity value of these films were
1.23 µS m−1 for uncracked and 5.69 µS m−1 for cracked sample, respectively.
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4. Conclusions

Results show a significant increase in dissipated heat due to Joule heating at the
antenna feed at 554.5 MHz. These results show that it is possible to tune relevant bolometric
parameters according to the resonance frequency of interest with which it is required to
work, related to each of the iterations of the Sierpinski antenna, as well as the film resistance
and TCR by changing the relative humidity of the film. Higher humidity concentrations,
i.e., for a relative humidity higher than 80% (uncracked samples) it will result in films
with higher electrical resistance, TCR and <v, which may be due to greater continuity and
alignment of the nanotube throughout the sample, while in the case of cracked films the
continuity of the film is reduced as does its electrical resistance, therefore, by decreasing the
electrical resistance, there is a greater flow of heat over the sample. This effect is observed
in each of the thermal images, in the case of the cracked sample can be seen that there is a
higher concentration of temperature in the area where the bolometer is located which is
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derived from the greater radiated heat, compared to the same area of the uncracked sample.
This can be due to the fact that the electrical resistance of the cracked sample is close to five
times smaller than the uncracked sample, which makes the cracked sample to be close to
five times more conductive than the uncracked sample.

Finally, it is worth mentioning that although the frequency sweep was set from
554.5 MHz to 678.5 MHz, which was the frequency range of the RFG and a range of
frequencies between 0-th and 1st AUT iterations, not covering 2nd and 3rd iterations, the
bolometric properties of SWCNT bolometers were successfully obtained and demonstrated.
A good future work would be to obtain these parameters for AUT-coupled bolometers
using an RFG with a wider frequency range to cover 2nd and 3rd iterations and a vector
network analyzer to know the impedance behavior.
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