
����������
�������

Citation: ALGorain, F.T.; Clark, J.A.

Bayesian Hyper-Parameter

Optimisation for Malware Detection.

Electronics 2022, 11, 1640. https://

doi.org/10.3390/electronics11101640

Academic Editor: Juan-Carlos Cano

Received: 31 March 2022

Accepted: 17 May 2022

Published: 20 May 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Bayesian Hyper-Parameter Optimisation for Malware Detection
Fahad T. ALGorain *,† and John A. Clark *,†

Department of Computer Science, University of Sheffield, Sheffield S10 2TN, UK
* Correspondence: ftalgorain1@sheffield.ac.uk (F.T.A.); john.clark@sheffield.ac.uk (J.A.C.)
† These authors contributed equally to this work.

Abstract: Malware detection is a major security concern and has been the subject of a great deal
of research and development. Machine learning is a natural technology for addressing malware
detection, and many researchers have investigated its use. However, the performance of machine
learning algorithms often depends significantly on parametric choices, so the question arises as to what
parameter choices are optimal. In this paper, we investigate how best to tune the parameters of machine
learning algorithms—a process generally known as hyper-parameter optimisation—in the context of
malware detection. We examine the effects of some simple (model-free) ways of parameter tuning
together with a state-of-the-art Bayesian model-building approach. Our work is carried out using
Ember, a major published malware benchmark dataset of Windows Portable Execution metadata
samples, and a smaller dataset from kaggle.com (also comprising Windows Portable Execution
metadata). We demonstrate that optimal parameter choices may differ significantly from default
choices and argue that hyper-parameter optimisation should be adopted as a ‘formal outer loop’
in the research and development of malware detection systems. We also argue that doing so is
essential for the development of the discipline since it facilitates a fair comparison of competing
machine learning algorithms applied to the malware detection problem.

Keywords: hyper-parameter optimisation; automated machine learning; static malware detection;
tree parzen estimators; bayesian optimisation; random search; grid search

1. Introduction

Malware is one of the most pressing problems in modern cybersecurity, and its detection
has been a longstanding focus for both academic and commercial research and develop-
ment [1]. Detection must be effective (low false-positives and false-negatives) but also efficient,
particularly in areas such as forensics or threat hunting, where vast file storage may need
to be scanned for malware. Furthermore, the malware environment constantly changes,
and so the (re-)training speed of detectors must also be considered [2]. Machine learning
(ML) is an obvious avenue to pursue, with various advantages to harnessing it: an ML
approach can significantly reduce manual effort in developing detectors, giving more rapid
deployment; it can play a critical role in the extraction of insight from malware samples;
and it can detect some unseen malware, e.g., unseen malware that has features that are
similar to those of known malware may be detected because of the loose pattern matching
that underpins ML classification approaches. A large number of ML techniques have been
brought to bear on the malware detection problem, often attaining good results. However,
ML must not be seen as a toolkit that can simply be thrown at a problem. Many ML tech-
niques are parametrised, and the choice of parameters may make a significant difference
to performance. In modern, widely used toolkits, ML algorithms often have many tens
of parameters (and sometimes more). This raises the issue of how such parameters may
be best set; a problem generally referred to as hyper-parameter optimisation (HPO). It is
a significant focus of research in the optimisation community. Within malware detection,
it has the potential to improve the results obtained by specific detection approaches that
use default parameter choices and to enable a fair comparison of novel techniques with

Electronics 2022, 11, 1640. https://doi.org/10.3390/electronics11101640 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11101640
https://doi.org/10.3390/electronics11101640
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-0547-1402
https://orcid.org/0000-0002-9230-9739
https://doi.org/10.3390/electronics11101640
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11101640?type=check_update&version=3

Electronics 2022, 11, 1640 2 of 16

existing techniques. (Comparing a novel technique with ‘vanilla’ or untuned variants of
existing techniques is a recurring motif in the literature). The Authors of [3] advocate that
hyper-parametrisation should be a ‘formal outer loop’ in the ML learning process, a view
we very much support.

The size of the parameter space often means that manual tuning is practically impossible.
ML toolkits seek to address this problem by adopting default values for parameters—values
that have been shown to work plausibly well over many problems. However, for any specific
problem at hand, it is far from clear that the default values will be the best, or even good, choices.
Furthermore, we have significant domain incentives to gain the best possible results for
malware detection. Both false-positive (FP) and false-negative (FN) classifications have
major consequences. The former lead to significant wasted effort investigating the (non-)
malware together with denial of service to the application concerned, while the latter
means malware goes undetected, with potentially catastrophic consequences. For ML-
based malware detection, we can conclude that finding high-performing hyper-parameters
matters. In this paper, we explore the use of ML techniques applied to the classification of
a specific form of malware: Windows Portable Execution (PE) files. We show that a specific
technique is highly promising and that HPO still has a significant effect on its malware
detection performance. We argue that HPO should play an important part in ML-based
malware detection research and development,and in security applications more widely.
The contributions of our paper are:

1. a demonstration of how well various ML-based Windows Portable Executable (PE)
file classifiers perform when trained with default parameters.

2. an evaluation of various HPO approaches applied to this problem, including:

(a) established major model-free techniques (Grid Search and Random Search); and
(b) a state-of-the-art Bayesian optimisation model-based approach (Bayesian Optimisa-

tion with Tree-Structured Parzen Estimators).

3. a demonstration for our target problem that the optimal choices of ML hyper-parameters
may vary considerably from the toolkit defaults.

Windows PE files are an important malware vector, and their detection has been
the focus of significant research. The work described in this paper primarily uses the Ember
dataset [4]—a recently published dataset comprising a header and derived information
from a million PE files. The dataset contains samples of malware, benign software, and soft-
ware of unknown status. These samples are labelled accordingly. Ember is now a major
resource for the research community. We augment our Ember-focused work with work
on a smaller PE dataset available from the high-profile competition website kaggle.com.
In Section 2, we highlight previous work related to ML-based Windows PE malware detec-
tion and discuss relevant HPO literature. Section 3 provides the motivation for our work,
defines the HPO problem and describes some major HPO techniques. Section 4 details
the experiments performed. The results are given in Section 5, and Section 6 discusses the
limitations of the work and indicates future work. Section 7 provides conclusions.

2. Related Literature

Numerous works have explored the use of machine learning for Windows PE malware
detection, e.g., [5–7], but work has often been hampered by the absence of a standard
benchmark dataset. The publication of the Ember dataset [4] has resolved this problem.
The dataset is accompanied by various Python routines to facilitate access. Ember’s authors
have also provided baseline applications of various ML techniques to their dataset. In [8],
the authors considered imbalanced dataset issues and model training duration. They also
applied a static detection method using a Gradient-Boosting Decision Tree Algorithm.
Their model achieved better performance than the baseline model with less training time.
(They used feature reduction based on the recommendation of the authors of [4]). Another
approach used a subset of the Ember dataset for their work and compared different ML
models [9]. Their work is mainly concerned with scalability and efficiency. Their goal was

Electronics 2022, 11, 1640 3 of 16

to identify malware families. The proposed Random Forest model achieved a slightly better
performance than the baseline model.

Multiple works in the general optimisation literature have demonstrated the potential
of HPO. For example, Reference [10] indicated the importance of parameter tuning for
increasing accuracy, indicating that Random Search works better than Grid Search when
tuning neural networks. Further, Reference [11] applied standard tuning techniques to
a decision tree on 102 datasets and calculated the accuracy differences between tuned and
traditional models. For all datasets, the experiments showed that tuning could achieve
better performance than with the defaults. References [12,13] are concerned with greedy
forward search, which seeks to identify the most important hyper-parameter to change next.
Reference [14] stressed the importance of single hyper-parameters after using sequential
model-based optimisation (SMBO) tuning. ANOVA was used to measure hyper-parameter
importance. The authors of [15,16] assessed the performance of hyper-parameters across
different datasets. Both have highlighted the importance of knowing which parameters to
include in the hyper-parameter search space in order to see an improvement. Reference [16]
also used surrogate models that allow setting randomly chosen hyper-parameter config-
urations based on a limit on the number of evaluations carried out. A hyper-parameter
search based on Bayesian Optimisation (BO) was used in [15,17] to improve the speed of
the search. The literature reveals that HPO, and in particular BO approaches, have much to
offer. Readers are encouraged to refer to the survey paper [18] for a wider assessment of
different HPO methods.

HPO has clearly given excellent results across many parameter optimisation problems.
Below, in Section 3, we provide a more formal definition of HPO, consider in more detail
its application to malware detection, and describe major HPO approaches.

3. Hyper-Parameter Optimisation
3.1. Formal Definition of HPO and Motivation for Its Use in Malware Classification

Hyper-parameters are parameters of a model that are not updated during the learning
process [17]. The HPO problem is defined in a common way by many researchers as a search
to find x∗ defined in Equation (1).

x∗ = arg min
x∈X

f (x), (1)

where f (x) is an objective function. Commonly, f (x) is an error rate of some form evaluated
on the validation set, e.g., the Root Mean Square Error (RMSE). x∗ is the hyper-parameter
vector that gives rise to the lowest objective score, and x can be any vector of parameters
in the specified domain. HPO seeks the hyper-parameter values that return the lowest score.
For malware and similar classification tasks, suitable choices for the objective functions are
holdout and cross-validation error. Furthermore, if we consider a loss function for the same
problem, then a possible choice is the misclassification rate [19]. For our proposed model,
the loss function is defined by Equation (2).

f (x) = (ROC_AUC− 1) (2)

where ROC_AUC is the Receiver Operating Characteristic (with cross-validation) Area
Under the Curve. (ROC_AUC-related criteria are common in malware detection). For an in-
depth background about validation protocols see [20]. Our work also aims to investigate
evaluation time. There are two clear ways to do this. The first is to use a subset of folds
in testing an ML algorithm [21]. The second is to use a subset of the dataset, especially
if the data set is large [22,23], or to use fewer iterations.

Although HPO has a great deal to offer, it comes at a computational price. For every
hyper-parameter evaluation, we must train the model, make predictions on the validation
set, and then calculate the validation metrics. Developing a robust ML-based classifier
for Windows PE with a credibly sized and diverse dataset such as Ember is, therefore,
a significant undertaking. The computational costs involved act as a disincentive to im-

Electronics 2022, 11, 1640 4 of 16

plementing Bergstra et al.’s formal outer loop. There is a pressing need for traversing
the hyper-parameter space efficiently, and we demonstrate how a leading HPO approach
allows us to do so.

Here, Windows PE files are a means to an end; the same issues apply to detecting
other malware. Although malware is our major interest, our work also seeks to motivate
consideration of HPO, and the use of state-of-the-art approaches, in particular, more widely
in the application of ML in cybersecurity. For more information about HPO, interested
readers should refer to [19].

3.2. Model-Free Blackbox Optimisation Methods

Perhaps the two most common HPO methods are Random Search and Grid Search.
These require only an evaluation function to work, i.e., they are what is commonly referred
to as ‘blackbox’ techniques.

Random Search selects values randomly from the domain of each hyper-parameter.
Usually, the values selected from different domains by Random Search are independent,
i.e., the value selected for one parameter does not affect the value selected for a different
parameter. Furthermore, for an individual parameter, all values have the same probability
of being selected. (Selection is said to be uniform). It is possible to relax such properties,
producing what is referred to as a biased stochastic search. Such bias often encodes for
domain insight, which is not in the spirit of a blackbox approach. In our work, we adopted
a standard unbiased Random Search.

In Grid Search the individual parameters are discretised, i.e., a number of specific
values are selected as ‘covering’ the particular parameter space. For example, the ele-
ments in the set {0.0, 0.25, 0.5, 0.75, 1.0} could be taken to cover a continuous parameter
in the range [0.0, 1.0]. Grid Search evaluates the function over the cross-product of the dis-
cretised hyper-parameter domains and so suffers from the ‘curse of dimensionality’ [24].
As the number of parameters increases or finer grain discretisation is adopted, the compu-
tational complexity mushrooms.

Random Search and Grid Search do not learn from past evaluations; we generally
refer to such approaches as being uninformed. Consequently, they may spend a great deal
of time evaluating candidates in regions where the previous evaluation of candidates
has given rise to poor objective values. Random Search will search the specified space
until a certain number of evaluations, time, or budget has been reached. It works better
than Grid Search when we know the promising hyper-parameter regions, and so we can
constrain the stochastic selection of candidates to lie in such regions [10,25]. Combining
Random Search with complex strategies allows a minimum convergence rate and adds
exploration that can improve model-based searches [19,26].

It is not surprising that uninformed methods can be outperformed by methods that
use evaluation history to judge where to try next; indeed, such guided searches usually
outperform uninformed methods [15,27,28].

3.3. Bayesian Optimisation (BO)

BO has emerged recently as one of the most promising optimisation methods for
expensive blackbox functions. It has gained a lot of traction in the HPO community,
with significant results in areas such as image classification, speech recognition, and neural
language modelling. For an in-depth preview of BO, the reader is referred to [17,29]. BO
is an informed method that takes into consideration past results to find the best hyper-
parameters. It uses those previous results to form a probabilistic model that is based
on a probability of the score given a vector of hyper-parameters. This is denoted by
the formula: P(score|hyperparameter). Reference [30] refers to the probabilistic model
as a surrogate for the objective function denoted by P(y|x), the probability of y given x.
The model or surrogate is more straightforward to optimise than the objective function.
BO works to find the next hyper-parameters to be evaluated using the actual objective
function by selecting the best-performing hyper-parameters on the surrogate function.

Electronics 2022, 11, 1640 5 of 16

A five-step process to do this is given by [30]. The first step builds a surrogate probability
model of the objective function. The second finds the hyper-parameters with the best
results on the surrogate. The third applies those values to the real objective function.
The fourth updates the surrogate using this new real objective function result. Steps 2–4 are
repeated until the maximum iteration or budgeted time is reached [31]. BO has two primary
components: a probabilistic model and an acquisition function to decide the next place to
evaluate. Furthermore, BO trades off exploration and exploitation; instead of assessing
the costly blackbox function, the acquisition function is cheaply computed and optimised.
There are many choices for the acquisition function, but here, we use the most common—
expected improvement (EI) [32]. The goal of Bayesian reasoning is to become more accurate
as more performance data is acquired. The previous five-step processes are repeated to
keep the surrogate model updated after each evaluation of the objective function [15]. BO
spends a little more time generating sets of hyper-parameter choices that are likely to
provide real improvements whilst keeping calls to the actual objective function as low as
possible. Practically, the time spent on choosing the next hyper-parameters to evaluate is
often trivial compared to the time spent on the (real) objective function evaluation. BO can
find better hyper-parameters than Random Search in fewer iterations [27]. In this paper,
we investigate whether AHBO-TPE, a specific variant of BO, can, for Windows PE file
malware detection purposes, find better hyper-parameters than Random Search and with
fewer iterations.

3.4. Sequential Model-Based Optimisation (SMBO)

There are several options for the SMBO’s evaluation of the surrogate model P(y|x) [15].
One of the choices is to use Expected Improvement (EI)m, defined in Equation (3).

EIy∗(x) =
∫ y∗

−∞
(y∗ − y)P(y|x)dy (3)

here y∗ is the threshold value of the objective function, x is the vector of hyper-parameters,
y is the actual value of the objective function using the hyper-parameters x, and P(y|x) is
the surrogate probability model expressing the probability (density) of y given x. The goal
is to find the best hyper-parameters under function P(y|x). The threshold value y∗ is
the best objective value obtained so far. We aim to improve (i.e., get a lower value than)
the best value obtained so far. For such minimisation problems, if a value y is greater than
the threshold value, then it is not an improvement. Only values less than the threshold
are improvements. For a value y less than the threshold y∗, the improvement is (y∗ − y).
By integrating over all such improvements, weighted by the density function, P(y|x) gives
the overall expected improvement given the vector of hyper-parameter values x. When
better values of x are found (i.e., giving rise to actual improvements in the real objective
function), the threshold value y∗ is updated. The above description is an idealised view
of Expected Improvement. In practice, the choice of threshold value is more flexible,
i.e., y∗ need not be the best objective value witnessed so far; this is actually the case for
the Tree-Parzen Estimator approach outlined immediately below.

3.5. Tree-Structured Parzen Estimators (TPE)

The Tree-Structured Parzen Estimators approach constructs its model using Bayesian
rules. Its model P(y|x) is built from two model components, as shown in Equation (4). One
component, l(x), models values less than a threshold and the other, g(x), models values
greater than that threshold.

P(x|y) =
{

l(x) i f y < y∗

g(x) i f y >= y∗
(4)

TPE uses y∗ to be some quantile γ of the observed y values, i.e., such that P(y < y∗) = γ [3].
This allows data to be available to construct the indicated densities. l(x) is the density based

Electronics 2022, 11, 1640 6 of 16

on the set of evaluated values of x that have been found to give objective values less than
the threshold. g(x) is the density based on the remaining evaluated x values. Here, P(x|y) is
the density of hyper-parameter x given an objective function score of y. Following [15] it is
expressed as shown in Equation (5).

P(y|x) = P(x|y) ∗ P(y)
P(x)

(5)

Reference [15] also show that to maximise improvement, we should seek parameters x with
high probability under l(x) and low probability under g(x). Thus, they seek to maximise
g(x)/l(x). The best such x outcome is then evaluated in the actual objective function and
will be expected to have a better value. The surrogate model estimates the objective function;
if the hyper-parameter that is selected does not make an improvement, the model will not
be updated. The updates are based upon previous history/trials of the objective function
evaluation. As mentioned before, the previous trials are stored in (score, hyper-parameters)
pairs by the algorithm after building the lower threshold density l(x) and higher threshold
density g(x). It uses the history of these previous trials to improve the objective function
with each iteration. The motivation to use TPE with SMBO to reduce time and find better
hyper-parameters came from leading HPO papers [15,18,27,33]. SMBO uses Hyperopt [3]—a
Python library that implements BO or SMBO. Hyperopt makes SMBO an interchangeable
component that could be applied to any search problem. Hyperopt supports more algo-
rithms, but TPE is the focus of our work. Our contribution lies in the demonstration of
the usefulness of SMBO using TPE for malware classification purposes.

4. Experiments

Here we outline the experiments carried out and provide sample data and execution
environment details. Discussion of the results is given in Section 5.

4.1. Execution Environment and Dataset

Our work uses two powerful toolkits: Scikit-learn [34] and Hyperopt [3]. The experiments
were carried out using the Windows 10 operating system, with 8GB RAM, AMD Ryzen 5
3550 H with Radeon Vega Mobile Gfc 2.10 GHz, 64-bit operating system, and an x64-based
processor. Further, we used a MacBook Air (running Catalina version 10.15), 1.8 GHz Dual-core
Intel i5, 8 GB 1600 MHz DDR3, Intel HD graphics 6000 1536 MB. Version 2018 of the Ember
dataset [35] was used. This dataset comprises 1 M labelled samples. We used 300 k benign and
300 k malicious samples for training, with 100 k benign and 100 k malicious samples for testing
purposes. The 200 k unlabelled examples of the dataset were not used in our experiments. Our
work concerns supervised learning only. The work also uses a second dataset built by [36] using
PE files from [37]. The dataset has 19,611 labelled malicious and benign samples from different
repositories (such as VirusShare). Its samples have 75 features. It is split into 80% training and
20% testing and can be found in [36]. All results were obtained using Jupyter Notebook version
6.1.0 and Python version 3.6.0. Furthermore, implementation details of our experiments can be
found on our github repository [38].

4.2. Experiments with Default Settings

Table 1 shows the results when various ML techniques are applied with default pa-
rameter settings. The techniques include well-established approaches: Stochastic Gradient
Descent classifier (SGD), Logistic Regression classifier (LR), Gaussian Naïve Bayes (GNB),
K-nearest Neighbour (KNN), and Random Forest (RF) [34,39]. A state-of-the-art approach—
LightGBM [40]—is also used. LightGBM has over a hundred parameters, and so introduces
major challenges for hyper-parametrisation. Some of its categorical parameters (e.g., boosting
type) give rise to conditional parameters. For initial experiments, we adopted the default
parameter settings adopted by the Scikit-Learn toolkit for all techniques other than LightGBM
(which has its own defaults). The evaluation metric is Area Under the Receiver Operating
Characteristic Curve (ROC AUC) [41]. ROC AUC plays an important role in many secu-

Electronics 2022, 11, 1640 7 of 16

rity classification tasks, e.g., it also occurs frequently as an evaluation metric in intrusion
detection research.

Table 1. Score Comparison of ML Models with Default Parameters (Ember Dataset).

ML Model Time to Train Score (AUC-ROC)

GNB 11 min 56 s 0.406
SGD 11 min 56 s 0.563

LightGBM Benchmark 26 min 0.922
RF 57 min and 52 s 0.90
LR 1 h and 44 min 0.598

KNN 3 h 14 min 59 s 0.745

4.3. Model Hyper-Parameter Optimisation

The most promising of the evaluated ML algorithms, taking into account functional
performance and speed of training, was LightGBM. We choose to further explore hyper-
parameter optimisation on this technique. Since LightGBM has over 100 parameters, some
of which are continuous, we simply cannot do an exhaustive search. Accordingly, we have
had to select parameters as a focus in this work. We focused on what we believe are the most
important parameters. For Grid Search, we had to be particularly selective in what we opti-
mised. Moreover, for Random Search, we specified a budget of 100 iterations. We examine
Grid Search, Random Search, and AHBO-TPE as HPO approaches. We, therefore, compare
model-free (blackbox) approaches (Grid Search and Random Search), = and AHBO-TPE,
an approach that uses evaluation experience to continually update its model and suggest
the next values of the hyper-parameters. We applied AHBO-TPE in two phases, the first
one we initially set to 3 iterations, while the second was allowed 100 more iterations for fair
comparison (with Random Search).

5. Results

The 2018 version of Ember was developed to include samples that present challenges to
ML classification approaches [35]. It can, therefore, present an excellent means to stress-test
available ML-based malware detection approaches. Table 1 shows the result of applying
a variety of ML approaches, instantiated with their corresponding default parameters,
to classify the samples of this dataset. All results were obtained under the MacBook Air
environment described in Section 4. Table 1 also shows that the various ML techniques
vary hugely in their suitability for the classification of PE files. We can see that LightGBM
is clearly the best performing approach, taking both time and score into account.

The subsequent tables summarise our attempts to apply HPO approaches to the most
promising of the original ML techniques. Table 2 gives the results of applying a variety of
HPO techniques. The LightGBM Benchmark results are those given in Table 1. Grid Search
results were also obtained using the MacBook environment. The remaining results (AHBO-
TPE and Random Search) were obtained using the Windows 10 laptop. The number of
objective evaluations indicates the default number of evaluations of the approach for Light-
GBM, the total number of evaluations of the Grid Search, and the index of the evaluation at
which the best result was achieved for AHBO-TPE. Random Search and AHBO-TPE were
allowed 100 evaluations. Grid Search required 965 evaluations. The ranges for parameters
subject to variation are shown later in Table 3 (for Grid Search) and Table 4 (for Random
Search). Random Search was allowed to explore a greater number of parameters and
performs well. The meaningful application of Grid Search to this extended set of varied
parameters would be computationally infeasible.

Electronics 2022, 11, 1640 8 of 16

Table 2. Score Comparison of HPO Methods (Ember Dataset).

Search Methods Best ROC AUC
Score

Number of
Objective

Evaluations
Time to Complete Search

Benchmark LightGBM Model 0.922 100 26 min (MacBook)
Grid Search 0.944 965 Almost 3 months (MacBook)

Random Search 0.955 60 15 days, 13 h and 12 min (Windows 10)
AHBO-TPE with 100 iterations

(results after 3 iterations) 0.957 (0.955) 26 (3) 27 days (4 h) (Windows 10)

Table 3. LightGBM Grid Search Hyper-parameter Results (Ember Dataset).

Hyper-Parameter
Grid Search Best
Hyper-Parameter

Settings
Range Default Value

boosting_type GBDT GBDT, DART, GOSS GBDT
num_iteration 1000 500:1000 100
learning_rate 0.005 0.005:0.05 0.1
num_leaves 512 31:2048 31

feature_fraction 1.0 0.5:1.0 1.0
bagging_fraction 0.5 0.5:1.0 1.0

objective binary binary None

Table 4. LightGBM Random Search Hyper-parameter Results (Ember Dataset).

Hyper-Parameter
Random Search Best

Hyper-Parameter
Settings

Range Default Value

boosting_type GBDT GBDT or GOSS GBDT
num_iteration 60 1:100 100
learning_rate 0.0122281 0.005:0.05 0.1
num_leaves 150 1:512 31

feature_fraction 0.8 0.5:1.0 1.0
bagging_fraction 0.8 0.5:1.0 1.0

objective binary binary only None
min_child_samples 165 20:500 20

reg_alpha 0.102041 0.0:1.0 0.0
reg_lambda 0.632653 0.0:1.0 0.0

colsample_bytree 1.0 0.0:1.0 1.0
subsample 0.69697 0.5:1.0 1.0

is_unbalance True True or False False

We can see that HPO can offer significant improvements. Random Search performs
very well, and so does AHBO-TPE. We can see that the initial optimisation for AHBO-TPE is
far more efficient, with the technique achieving 0.955 after only three objective evaluations.
Note that the time to completion is for information only. The LightGBM and Grid Search
are evaluated on a Mac, and the remaining approaches were evaluated on a laptop running
Windows (as described earlier)

AHBO-TPE achieves a very good result very quickly, i.e., after 3 iterations. Figure 1
illustrates the best score values achieved by Random Search and AHBO-TPE for each
iteration (up to 100).

Electronics 2022, 11, 1640 9 of 16

Figure 1. Highest Validation Score at each Iteration for AHBO-TPE (yellow) and Random Search
(blue) (Ember Dataset).

Table 5 shows the performance of the remaining ML models using default parameter
values and after parameter optimisation (using AHBO-TPE). All results were obtained
under the Windows 10 environment indicated in Section 4.

Table 5. Score Comparison of the Remaining ML Models using AHBO-TPE (Ember Dataset).

ML Model Score (AUC-ROC) Score (AUC-ROC) after
Optimisation

GNB 0.406 same
SGD 0.563 0.597
RF 0.901 0.936
LR 0.598 0.618

KNN 0.745 0.774

Table 6 gives the performance in training time based on the results attained by using AHBO-
TPE. All results were obtained using the Windows 10 environment indicated in Section 4.

Table 6. Completion Time Results for Selected ML Models with AHBO-TPE (Ember Dataset).

ML Model Time to Train Training Time Reduction

GNB 11 min 56 s same
SGD 4 min 35 s 14 min 35 s

LightGBM Benchmark 18 min 30 s 7 min 30 s
RF 31 min 14 s 26 min
LR 1 h 5 min 37 s 38 min

KNN 4 h 37 min and 30 s increased by 1 h 23 min 29 s

Table 7 provides the default parameter results for various ML techniques applied to
the kaggle.com dataset together with results after parameter optimisation using AHBO-

Electronics 2022, 11, 1640 10 of 16

TPE. (For LightGBM, it also gives results where Random Search and Grid Search were used
to optimise parameters). The LightGBM and RF Classifiers performed comparably, giving
the highest AUC ROC scores (0.97914 and 0.97965). GNB and LR classifiers performed
worst (0.54479 and 0.5072). The KNN classifier performs well (0.9595). SGD achieved
a reasonable score (0.8432). The increase in score under AHBO-TPE for LightGBM is
considerable (0.97914 to 0.99755). The tool’s default parameter choices cannot be relied
upon to produce the best or even good results.

Table 7. Score comparisons for the Application of HPO (Kaggle Dataset).

ML Model Default AUC
ROC Score

Grid Search
Optimised AUC

ROC Score

Random Search
AUC ROC

Score

AHBO-TPE
AUC ROC

Score

LightGBM 0.97914 0.98247 0.99809 0.99755
RF 0.97965 N/A N/A 0.97819

KNN 0.94888 N/A N/A 0.95954
LR 0.5 N/A N/A 0.50729

SGD 0.84065 N/A N/A 0.84322
* GNB 0.54475 N/A N/A Same

* There are no hyper-parameters for GNB; hence AHBO-TPE results are the same value as for defaults.

Tables 3–8 illustrate the difficulty of manually tuning parameters. In some cases,
the defaults and the best-found values are at the opposite ends of the parameter ranges,
e.g., the bagging fraction in Table 3. Many are significantly different from the default value,
e.g., num_leaves in Tables 4 and 8 and n_estimators in Table 8. Some binary choices are
reversed, e.g., objective and is_unbalanced of Table 4.

The hyper-parameters giving the best performance for each ML model are given
in Tables 8–12. Here, AHBO-TPE was used as the HPO approach. The results are shown
with 10 iterations (a constraint imposed for reasons of computational practicality) and
3-fold cross-validation. All results were obtained using the Windows 10 environment
indicated in Section 4.

Table 8. LightGBM AHBO-TPE Search Hyper-parameter Results (Ember Dataset).

Hyper-Parameter
Random Search Best

Hyper-Parameter
Settings

Range Default Value

boosting_type GBDT GBDT or GOSS GBDT
num_iteration 26 1:100 100
learning_rate 0.02469 0.005:0.05 0.1
num_leaves 229 1:512 31

feature_fraction 0.78007 0.5:1.0 1.0
bagging_fraction 0.93541 0.5:1.0 1.0

objective binary binary only None
min_child_samples 145 20:500 20

reg_alpha 0.98803 0.0:1.0 0.0
reg_lambda 0.45169 0.0:1.0 0.0

colsample_bytree 0.89595 0.0:1.0 1.0
subsample 0.63005 0.0:1.0 1.0

is_unbalance True True or False False
n_estimators 1227 1:2000 100

Subsample_for_bin 160,000 2000:200,000 200,000

Electronics 2022, 11, 1640 11 of 16

Table 9. SGD Model AHBO-TPE Search Hyper-parameter Results (Ember Dataset).

Hyper-Parameter
AHBO-TPE Search
Hyper-Parameter

Results
Range Default Value

Penalty L2 L1, L2, elasticnet L1

Loss Hinge
hinge, log,

modified-huber,
squared-hinge

Hinge

Max-iterations 10 10:200 1000

Table 10. RF Model AHBO-TPE Search Hyper-parameter Results (Ember Dataset).

Hyper-Parameter
AHBO-TPE Search
Hyper-Parameter

Results
Range Default Value

n_estimators 100 10:100 10
max_depth 30 2:60 None

max_features auto auto, log2, sqrt auto
min_samples_split 10 2:10 2
min_samples_leaf 30 1:10 1

criterion gini gini, entropy gini

Table 11. LR Model AHBO-TPE Search Hyper-parameter Results (Ember Dataset).

Hyper-Parameter
AHBO-TPE Search
Hyper-Parameter

Results
Range Default Value

max_iter 200 10:200 100
C 8.0 0.0:20.0 auto

solver sag liblinear, lbfgs, sag,
saga lbfgs

Table 12. KNN Model AHBO-TPE Search Hyper-parameter Results (Ember Dataset).

Hyper-Parameter
AHBO-TPE Search
Hyper-Parameter

Results
Range Default Value

n_neighbors 15 1:31 5

In Figure 2, a comparison is given between the benchmark model results and those
obtained using AHBO-TPE and Random Search to optimise parameters.

Electronics 2022, 11, 1640 12 of 16

Figure 2. ROC AUC Comparison for AHBO-TPE (Cyan), Random Search (Yellow), and Default
Benchmark Model (Red) applied to the Ember Dataset.

Moreover, Table 13 illustrates the highest performing parameters,obtained using
AHBO-TPE for the kaggle.com dataset.

Electronics 2022, 11, 1640 13 of 16

Table 13. ML Models Hyper-parameter results using AHBO-TPE (Kaggle Dataset).

ML Models Hyper-Parameter Range Best Hyper-Parameter Results

LightGBM

num_leaves
Min_child
samples

n_estimators
boosting_type
learning_rate

Subsample_for_bin
Colsample_bytree
feature_fraction

Bagging_fraction
Reg_alpha

Reg_lambda
Is_unbalance

objective

1:512
20:500
10:100
gbdt

0.01:0.5
2000:200,000

0.6:1.0
0.5:1.0
0.5:1.0
0.0:1.0
0.0:1.0

True, False
Binary

10
90
19

Gbdt
0.4418140187193226

80,000
0.7307181013749854
0.6726481091942302
0.5893616201923844
0.195989486417426
0.1939778453324642

False
Binary

RF
n_estimators
max_depth

max_features
min_samples_split
min_samples_leaf

criterion

10:200
10:50

auto, sqrt
10:50
10:50

entropy, gini

100
15

sqrt
19
10

entropy

KNN n_neighbors 1:100 3

GNB N/A N/A N/A

SGD
penalty

loss
max_iter

alpha

none, l1, l2, elasticnet
hinge, log, modified_huber, squared_hinge, perceptron

20:1000
0.0001:0.2

L2
log
790

0.0001

LR
Max_iter

C
solver

20:500
1.0:50.0

lbfgs, sag, saga

155
7

sag

Electronics 2022, 11, 1640 14 of 16

6. Discussion

The results show how the default values of parameters generally give suboptimal
results and how optimal choices of the parameter values for various models can vary
significantly from their defaults. The results also show that applying HPO to malware
detection can be computationally practical. Where there are a great number of hyper-
parameters (for example, LightGBM has more than one hundred), some efficient automated
means of determining effective choices are essential. Credible manual tuning will not be
feasible, and many HPO approaches may be computationally impractical.

The work has shown the utility of using proxy evaluation functions for determining
hyper-parameter values. In particular, AHBO-TPE has been shown to be a very effective and
efficient informed approach. Other forms of surrogates may bring benefits. For example,
a deep neural network could be used as a function approximator (learned from real objective
function evaluations). Such an approximator could be used in place of the computationally
intensive real objective function in almost any search-based approach. The search could
revert to using the real objective function starting from the best vector of hyper-parameters
obtained by optimising using the neural network approximator.

We have used a single (albeit highly effective) ‘informed’ hyper-parametrisation
approach. The use of other informed hyper-parametrisation approaches could provide
further insight and possible improvements. For practical purposes, we informally identified
plausible parameters that should be subject to variation and allowed the remaining ones
to be set at the defaults. It is possible that improvements in results could be obtained
by allowing variation in the parameters that were fixed at their default values. It also
suggests the possibility of adopting a sequential approach to optimising over the full
range of parameters, i.e., once investigated parameters have been subject to variation and
evaluation, they could be fixed at their optimal values and previously fixed parameters then
be allowed to vary. The focus of our work has been Windows PE files. Similar investigations
of other malware types are now needed to determine how well our approach generalises.

7. Conclusions

We have shown that HPO matters a great deal for ML-based malware detection.
The use of default parameters will generally not be optimal, and the results overall would
suggest researchers in malware and ML are missing a significant opportunity to use HPO
to improve results attained by specific techniques of interest. Every improvement matters
to the security of the protected systems and reduces costs in one form or another: getting
the best out of malware detectors matters a great deal, and HPO has much to offer. We have
also shown that a specific informed technique (AHBO-TPE) has particular potential for
application to malware detection.

Using HPO to provide Bergstra et al.’s ‘formal outer loop’ should be normal practice
to ensure any targeted technique is exploited fully. Adopting HPO in this way brings
methodological benefits: for the development of the field, we need to be able to compare
competing techniques at their best, and HPO can provide a principled and repeatable
way to get the best (or close to it) from all competing techniques. We propose that HPO
be an essential element of the ML process for malware detection applications, i.e., that
Bergstra et al.’s ‘formal outer loop’ be adopted, and recommend further research into
the use of HPO for tuning malware detectors.

Author Contributions: Supervision, J.A.C.; Writing—original draft, F.T.A.; Writing—review and
editing, F.T.A. and J.A.C. All authors have read and agreed to the published version of the manuscript.

Funding: The APC was funded by NTNU’s IDUN project.

Data Availability Statement: Ember Dataset can be found in (https://github.com/elastic/ember,
accessed on 19 November 2021) and Kaggle dataset can be found in (https://www.kaggle.com/
datasets/amauricio/pe-files-malwares, accessed on 11 October 2021).

Conflicts of Interest: The authors declare no conflict of interest.

https://github.com/elastic/ember
https://www.kaggle.com/datasets/amauricio/pe-files-malwares
https://www.kaggle.com/datasets/amauricio/pe-files-malwares

Electronics 2022, 11, 1640 15 of 16

References
1. Pandey, A.K.; Tripathi, A.K.; Kapil, G.; Singh, V.; Khan, M.W.; Agrawal, A.; Kumar, R.; Khan, R.A. Trends in Malware Attacks:

Identification and Mitigation Strategies. In Critical Concepts, Standards, and Techniques in Cyber Forensics; IGI Global: Hershey, PA,
USA, 2020; pp. 47–60.

2. Al-Sabaawi, A.; Al-Dulaimi, K.; Foo, E.; Alazab, M. Addressing Malware Attacks on Connected and Autonomous Vehicles:
Recent Techniques and Challenges. In Malware Analysis Using Artificial Intelligence and Deep Learning; Springer: Berlin/Heidelberg,
Germany, 2021; pp. 97–119.

3. Bergstra, J.; Komer, B.; Eliasmith, C.; Yamins, D.; Cox, D.D. Hyperopt: A python library for model selection and hyperparameter
optimization. Comput. Sci. Discov. 2015, 8, 014008. [CrossRef]

4. Anderson, H.S.; Roth, P. Ember: An open dataset for training static pe malware machine learning models. arXiv 2018,
arXiv:1804.04637.

5. Schultz, M.G.; Eskin, E.; Zadok, F.; Stolfo, S.J. Data mining methods for detection of new malicious executables. In Proceedings of
the 2001 IEEE Symposium on Security and Privacy, S&P 2001, Oakland, CA, USA, 14–16 May 2000; IEEE: New York, NY, USA,
2000; pp. 38–49.

6. Kolter, J.Z.; Maloof, M.A. Learning to detect and classify malicious executables in the wild. J. Mach. Learn. Res. 2006, 7, 2721–2744.
7. Raff, E.; Barker, J.; Sylvester, J.; Brandon, R.; Catanzaro, B.; Nicholas, C.K. Malware detection by eating a whole exe. In

Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence, New Orleans, LA, USA, 2 February 2018.
8. Pham, H.D.; Le, T.D.; Vu, T.N. Static PE malware detection using gradient boosting decision trees algorithm. In International

Conference on Future Data and Security Engineering; Springer: Berlin/Heidelberg, Germany, 2018; pp. 228–236.
9. Fawcett, C.; Hoos, H.H. Analysing differences between algorithm configurations through ablation. J. Heuristics 2016, 22, 431–458.

[CrossRef]
10. Bergstra, J.; Bengio, Y. Random search for hyper-parameter optimization. J. Mach. Learn. Res. 2012, 13, 281–305.
11. Mantovani, R.G.; Horváth, T.; Cerri, R.; Vanschoren, J.; de Carvalho, A.C. Hyper-parameter tuning of a decision tree induction

algorithm. In Proceedings of the 5th Brazilian Conference on Intelligent Systems (BRACIS), Recife, Brazil, 9–12 October 2016;
IEEE: New York, NY, USA, 2016; pp. 37–42.

12. Van Rijn, J.N.; Hutter, F. Hyperparameter importance across datasets. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, London, UK, 19–23 August 2018; pp. 2367–2376.

13. Biedenkapp, A.; Lindauer, M.; Eggensperger, K.; Hutter, F.; Fawcett, C.; Hoos, H. Efficient parameter importance analysis via
ablation with surrogates. In Proceedings of the AAAI Conference on Artificial Intelligence, San Francisco, CA, USA, 4–9 February
2017; Volume 31.

14. Eggensperger, K.; Lindauer, M.; Hoos, H.H.; Hutter, F.; Leyton-Brown, K. Efficient benchmarking of algorithm configurators via
model-based surrogates. Mach. Learn. 2018, 107, 15–41. [CrossRef]

15. Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings of the 25th Annual
Conference on Neural Information Processing Systems (NIPS 2011), Neural Information Processing Systems Foundation, Granada,
Spain, 12–15 December 2011; Volume 24.

16. Probst, P.; Boulesteix, A.L.; Bischl, B. Tunability: Importance of hyperparameters of machine learning algorithms. J. Mach. Learn.
Res. 2019, 20, 1–32.

17. Shahriari, B.; Swersky, K.; Wang, Z.; Adams, R.P.; De Freitas, N. Taking the human out of the loop: A review of Bayesian
optimization. Proc. IEEE 2015, 104, 148–175. [CrossRef]

18. Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. Neurocomputing 2020,
415, 295–316. [CrossRef]

19. Feurer, M.; Hutter, F. Hyperparameter optimization. In Automated Machine Learning; Springer: Cham, Switzerland, 2019; pp. 3–33.
20. Bischl, B.; Mersmann, O.; Trautmann, H.; Weihs, C. Resampling methods for meta-model validation with recommendations for

evolutionary computation. Evol. Comput. 2012, 20, 249–275. [CrossRef] [PubMed]
21. Thornton, C.; Hutter, F.; Hoos, H.H.; Leyton-Brown, K. Auto-WEKA: Combined selection and hyperparameter optimization of

classification algorithms. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, Chicago, IL, USA, 11–14 August 2013; pp. 847–855.

22. Klein, A.; Falkner, S.; Bartels, S.; Hennig, P.; Hutter, F. Fast bayesian hyperparameter optimization on large datasets. Electron. J.
Stat. 2017, 11, 4945–4968. [CrossRef]

23. Maron, O.; Moore, A.W. The racing algorithm: Model selection for lazy learners. Artif. Intell. Rev. 1997, 11, 193–225. [CrossRef]
24. Bellman, R. Dynamic Programming Princeton University Press Princeton; Princeton University: Princeton, NJ, USA, 1957.
25. Hutter, F.; Hoos, H.; Leyton-Brown, K. An efficient approach for assessing hyperparameter importance. In Proceedings of

the International Conference On Machine Learning, PMLR, Beijing, China, 22–24 June 2014; pp. 754–762.
26. Hutter, F.; Hoos, H.; Leyton-Brown, K. An evaluation of sequential model-based optimization for expensive blackbox functions. In

Proceedings of the 15th Annual Conference Companion on Genetic and Evolutionary Computation, Amsterdam, The Netherlands,
6–10 July 2013; pp. 1209–1216.

27. Bergstra, J.; Yamins, D.; Cox, D. Making a science of model search: Hyperparameter optimization in hundreds of dimensions for
vision architectures. In Proceedings of the International Conference on Machine Learning, PMLR, Atlanta, GA, USA, 17–19 June
2013; pp. 115–123.

http://doi.org/10.1088/1749-4699/8/1/014008
http://dx.doi.org/10.1007/s10732-014-9275-9
http://dx.doi.org/10.1007/s10994-017-5683-z
http://dx.doi.org/10.1109/JPROC.2015.2494218
http://dx.doi.org/10.1016/j.neucom.2020.07.061
http://dx.doi.org/10.1162/EVCO_a_00069
http://www.ncbi.nlm.nih.gov/pubmed/22339368
http://dx.doi.org/10.1214/17-EJS1335SI
http://dx.doi.org/10.1023/A:1006556606079

Electronics 2022, 11, 1640 16 of 16

28. Falkner, S.; Klein, A.; Hutter, F. BOHB: Robust and efficient hyperparameter optimization at scale. In Proceedings of the Interna-
tional Conference on Machine Learning, PMLR, Stockholm, Sweden, 10–15 July 2018; pp. 1437–1446.

29. Brochu, E.; Cora, V.M.; De Freitas, N. A tutorial on Bayesian optimization of expensive cost functions, with application to active
user modeling and hierarchical reinforcement learning. arXiv 2010, arXiv:1012.2599.

30. Dewancker, I.; McCourt, M.; Clark, S. Bayesian Optimization Primer; SIGOTOP: Kisumu, Kenya, 2015.
31. Feurer, M.; Klein, A.; Eggensperger, K.; Springenberg, J.T.; Blum, M.; Hutter, F. Auto-sklearn: Efficient and robust automated

machine learning. In Automated Machine Learning; Springer: Cham, Switzerland, 2019; pp. 113–134.
32. Donald, R.J. Efficient global optimization of expensive black-box function. J. Glob. Optim. 1998, 13, 455–492.
33. Eggensperger, K.; Feurer, M.; Hutter, F.; Bergstra, J.; Snoek, J.; Hoos, H.; Leyton-Brown, K. Towards an empirical foundation for

assessing bayesian optimization of hyperparameters. In Proceedings of the NIPS Workshop on Bayesian Optimization in Theory
and Practice, Lake Tahoe, NV, USA, 10 December 2013; Volume 10, p. 3.

34. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;
et al. Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.

35. Anderson, H.S.; Roth, P. Ember. Available online: https://github.com/elastic/ember/blob/master/README.md (accessed on 19
November 2021).

36. Mauricio. Benign Malicious. 2021. Available online: https://www.kaggle.com/amauricio/pe-files-malwares
(accessed on 11 October 2021).

37. Carrera, E. Pefile. 2022. Available online: https://github.com/erocarrera/pefile (accessed on 15 January 2022).
38. ALGorain, F.; Clark, J. Bayesian Hyper Parameter Optimization for Malware Detection. Available online: https://github.com/

fahadgorain/Bayesian-Hyper-Parameter-Optimization-for-Malware-Detection-Extended (accessed on 11 October 2021).
39. Buitinck, L.; Louppe, G.; Blondel, M.; Pedregosa, F.; Mueller, A.; Grisel, O.; Niculae, V.; Prettenhofer, P.; Gramfort, A.; Grobler, J.;

et al. API design for machine learning software: Experiences from the scikit-learn project. arXiv 2013, arXiv:1309.0238.
40. LightGBM Documentation. 2021. Available online: https://lightgbm.readthedocs.io/en/latest (accessed on 20 August 2021).
41. Roc Auc. Available online: https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html (accessed on

28 April 2022).

https://github.com/elastic/ember/blob/master/README.md
https://www.kaggle.com/amauricio/pe-files-malwares
https://github.com/erocarrera/pefile
https://github.com/fahadgorain/Bayesian-Hyper-Parameter-Optimization-for-Malware-Detection-Extended
https://github.com/fahadgorain/Bayesian-Hyper-Parameter-Optimization-for-Malware-Detection-Extended
https://lightgbm.readthedocs.io/en/latest
https://scikit-learn.org/stable/modules/generated/sklearn.metrics.roc_auc_score.html

	Introduction
	Related Literature
	Hyper-Parameter Optimisation
	Formal Definition of HPO and Motivation for Its Use in Malware Classification
	Model-Free Blackbox Optimisation Methods
	Bayesian Optimisation (BO)
	Sequential Model-Based Optimisation (SMBO)
	Tree-Structured Parzen Estimators (TPE)

	Experiments
	Execution Environment and Dataset
	Experiments with Default Settings
	Model Hyper-Parameter Optimisation

	Results
	Discussion
	Conclusions
	References

