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Abstract: Moving target defense (MTD) and decoy strategies, measures of active defense, were
introduced to secure both the proactive security and reactive adaptability of internet-of-things (IoT)
networks that have been explosively applied to various industries without any strong security
measures and to mitigate the side effects of threats. However, the existing MTD and decoy strategies
are limited to avoiding the attacker’s reconnaissance and initial intrusion attempts through simple
structural mutations or inducing the attackers to a static trap based on the deceptive path and lack
approaches to adaptively optimize IoT in consideration of the unique characteristic information by
the domain of IoT. Game theory-based and decoy strategies are other options; however, they do
not consider the dynamicity and uncertainty of the decision-making stages by the organizational
agent related to the IoT domains. Therefore, in this paper, we present a type of organizational
deception modeling, namely IoT-based organizational deception modeling (IoDM), which considers
both the dynamic topologies and organizational business fingerprints customized in the IoT domain
and operational purpose. For this model, we considered the practical scalability of the existing
IoT-enabled MTD and decoy concepts and formulated the partially incomplete deceptive decision-
making modeling for the cyber-attack and defense competition for IoT in real-time based on the
general-sum game. According to our experimental results, the efficiency of the deceptive defense
of the IoT defender could be improved by 70% on average while deriving the optimal defense
cost compared to the increased defense performance. The findings of this study will improve the
deception performances of MTD and decoy strategies by IoT scenarios related to various operational
domains such as smart home networks, industrial networks, and medical networks. To the best of
our knowledge, this study has employed social-engineering IoT knowledge and general-sum game
theory for the first time.

Keywords: defensive deception; internet-of-things; moving target defense; decoy; game theory

1. Introduction

As the utilization of generalized heterogeneous IoT systems increases throughout
various industries, sensitive sensor data and high authorities are frequently abused in
static communication environments without applying any separate security measures,
and the vulnerable attack surfaces of interconnected passive IoT systems and attacker
dominant asymmetries continue to increase [1,2]. Most cybersecurity problems that occur
within the IoT systems and networks are due to unique characteristics such as the passivity
and heterogeneity of IoT devices, dependence on decision processing, low computational
processing and resource allocation functions, and environmental hostility related to the
application of existing security solutions [3–5].

As a lightweight counter-measure to mitigate the spatiotemporal defender inferiority
issue of IoT systems, and to protect and defend IoT systems against potential advanced
persistent threat (APT) attacks, defensive cyber deception techniques [6–8] were introduced.
Defensive cyber deception techniques are non-cooperative decision-making pollution tech-
niques that mislead potential attackers’ cognitive perspectives, deceiving the attackers
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into continuously composing and maintaining erroneous ex-post-action strategies through
defender-dominant information asymmetry. These techniques have dedicated kill chain
processes according to the operating environment and scenario along with unique charac-
teristics different from other security techniques such as inducing, isolation, back-tracking,
and mutation [9,10]. By applying these techniques to IoT systems and related networks,
the spatiotemporal IoT attacker dominant asymmetry remaining in conventional security
systems such as access control and intrusion prevention can be greatly alleviated [11], and
flexible application and distribution of the techniques within multiple operating layers
are facilitated by a small number of resources without large-scale changes to the system
architecture and monitoring solution that have already been designed.

1.1. Background of Cyber Deception

Defensive cyber deception techniques are classified according to operational goals
and their purpose of defense. They include MTD [12], Honey-X [13], and decoy [14,15].
In particular, MTD extremely restricts the validity of the defender surface information
collected in advance by attackers based on cyber mobility properties such as shuffling,
shifting, diversity, and redundancy. It is carried out toward periodic or non-periodic
mutations of observable attack and exploration surfaces [16] according to the intention of
the defender. In this way, MTD prevents the chain configurations by stage of attack chains
toward an increase in the attacker’s uncertainty and cognitive disturbance while resolving
the defender’s inferior information asymmetry issue, thereby realizing a proactive defense.
Decoys and Honey-X are passive trap or active sandboxing entities that perform inducing
and isolation to disturb attackers’ cognition so that they attack false targets rather than the
targets protected by the defender. Alternatively, they interact with the attackers so that the
attackers are induced and isolated according to the intention of the defender.

Previous studies macroscopically combined MTD with decision strategies and learn-
ing theories, such as game theories [17–20], Markov decision process (MDP) [11,21–24],
reinforcement learning, and adversarial attack-based machine learning schemes [25–34],
intend to optimize benefits between attacks and defenses, thereby being strategized in
order to always use optimized mutation strategies and diversify deception thresholds while
attenuating the intrusion influences by the stage of the cyber kill chain (CKC) [35] and
vulnerable surfaces. On a micro level, MTD was combined with other elements such as
Honey-X and decoys, thereby being conceptualized considering diversified mutation items.
In addition, MTD is a potential “game-changing” security solution in special domains such
as cyber–physical systems, autonomous vehicles, smart factories, and smart grids that have
unprotected communication characteristics [3,36–40].

1.2. Problem Statement and Related Limitation

However, the existing MTD and decoy concepts proposed to secure lightweight
security in the IoT system have the following limitations.

• Unconceptualized deception strategies by various IoT domains: Existing defensive
deception studies have conceptually formalized some of the operational characteristics
and domain scopes of the target topology according to common vul-nerabilities and
exploits (CVE) labeling in the national vulnerability database (NVD) for each IoT or
non-IoT-based host. Accordingly, the related defense efficiency for each IoT-enabled
deception strategy was derived. However, these studies were conducted only within
a limited range, focusing on general-purpose fields such as WiFi-based smart home
IoT and wireless sensor networks. In other words, it is reported that no systematic
defensive deception strategy has been established for special domains such as medical
IoT or industrial control systems.

• Unquantified organizational unique characteristics and IoT operation strategies: Pre-
vious studies have statically or less dynamically defined attack and defense goals,
equilibrium states, decision weights, and state-transition probabilities based on com-
mon vulnerability scoring systems (CVSS) for IoT or non-IoT systems when construct-
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ing scenarios and deception sequences. Accordingly, the related effectiveness and
utility of the defender’s deception based on the vulnerable contact points and attack
vectors were calculated. However, the domain definition for the target IoT was lim-
ited only based on the related CVE vulnerability of the IoT device belonging to the
topology. In addition, interactions between IoT devices, feedback, sequences, trans-
mission/reception processes, and the organization’s unique IoT operation strategy
concept were not taken into account.

• Low flexibility and scalability issues of existing deception techniques: The naive MTD
of previous studies was constructed to secure proactive defense by concentrating
only on avoidance through mobility properties. In addition, it did not conceptually
consider the reactive response for each threat that evaded the naive MTD scheme with
sophisticated attackers. Other related studies with decoys have also not improved
the scalability of the concept of deceptive perturbation by combining decoys with
organization-specific characteristics.

• Unconsidered standardization of general sum game-based IoT deception strategies:
Most of the defensive deception techniques applied in IoT, especially the strategic
studies conducted to improve the defense efficiency by optimizing the MTD, have
reached equilibrium states based on a zero-sum game. However, all cyber-attack
defenses in the real world cannot be simulated solely on the basis of a zero-sum
game. Accordingly, by introducing the concept of general sum game competition,
preemptive normalization and optimization of non-zero-sum-based IoT-enabled MTD
are also required.

• High dynamicity and real-time concepts that have not been applied: All deceptive
disturbances and contingencies within an IoT network with defensive deception
affect the organization’s security posture and radically change the attack–defense
environment. However, previous studies did not consider these factors and modeled
the relationship between defender and attacker sequentially, mainly based on a simple
leader and follower. For this reason, the proposed game models do not accurately
characterize the real-time performance change of the actual IoT network attack–defense
process and do not take into account the noise that can potentially affect the reward
in each episode. In addition, even when performing steps to achieve goals for each
actor within the game model, it is also impossible to dynamically calculate suboptimal
deception strategies against incompletely perceived opponents according to sequential
consumption of episodes for equilibrium [41,42].

1.3. Research Goal and Key Contributions

Therefore, in this paper, to supplement the existing MTD and decoys related to IoT
security, we propose IoDM, an IoT-based organizational deception game model based on
a perfect Bayesian Nash equilibrium (PBNE) and Bayesian stochastic Stackelberg game
(BSSG)-based general sum game foreground and a partially observable Markov decision
process (POMDP) state-transition background. Furthermore, to induce the attacker’s
initial cognitive bias according to the IoT defender’s intentions and goals and secure
the inferiority of non-deterministic reasoning, disinformation-based partial signaling and
push behaviors are simulated, thereby making adaptive Bayesian decision-making for
deceptive perturbation formulation undergo many steps. Thereafter, the IoT organization
scenario based on the unique architecture and domain is formulated and simulations are
compared based on the cyber kill chain (CKC) sequence, the defensive deception metric,
and the decision parameters starting from the vulnerable point of contact to finally derive
optimized results.

In this case, the following major contributions can be derived through this study.

• General sum-based IoT deception strategies can be additionally formulated: From
the perspective of macroscopic strategization of defensive deception for IoT security,
a general sum game-based competition concepts endowed with PBNE, BSSG, and
partial signaling can be formed. That is, to expand the security of real IoT devices,
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systems, and networks, the concepts of IoT-enabled MTD and decoys optimized
for non-zero-sum games that were not reflected in existing zero-sum games can be
compared and verified.

• Deception efficiency can be calculated by IoT domain and scenario: Through the
topology templates configured for general purposes based on smart home IoT, cyber–
physical system IoT, and medical IoT and related general sum game foreground
components, real-time attack–defense competitive acts within an IoT organization
with limited resources can be simulated and a multi-step spatiotemporal deceptive
decision-making process configured. Furthermore, through the POMDP background
components, the views not agreed upon between the attackers and the defenders
by episode, the attack-exploration surfaces, and the concept of initiative can be also
simulated. Moreover, IoT defenders can push disinformation behaviors for certain
IoT devices and systems with the possibility of initial intrusion and final occupation
according to a pre-calculated indicator of vulnerability (IoV) based on signaling.
Furthermore, IoT defenders can dominantly conceptualize the cognition disturbance
and social-engineering additionally defined in IoT-enabled MTD and decoys.

• A lightweight independent IoT deception defense concept can be established: When
responding to specialized attackers, a concept of defensive deception can operate
independently of the interconnected IoT systems without separately considering the
deployment and management of dedicated protocols or additional solutions while
minimizing resource usage and performance degradation and improving security can
be defined based on IoT domains, scenarios, sequences, metrics, and major simula-
tion parameters.

• Following the calculation of deceptive intensity, optimized deception strategies in
the IoT domain can be produced: By subdividing functional parameters related to
MTD and decoy performance (e.g., mutation target and period, shuffling, sampling
scheme, decoy element, decoy properties, decoy path, maximum CKC permissible
stage, target points by actor, and quantified main purpose), the most appropriate
deception processes can be configured. In addition, an optimization strategy that can
respond to the overhead problem and resource allocation issue of the existing IoT
deception study cases where the concept of defensive deception was naively applied
only for the purpose of simply improving security can be presented.

1.4. Structure of Paper

The rest of this paper is structured as follows. Section 2 compares and analyzes
previous studies of MTD and decoys, which are the basis of this study, conducted based on
game theory. Section 3 describes the IoDM based on PBNE, BSSG, and partial signaling-
based general sum game foreground and POMDP state-transition background to derive
MTD and decoy deception strategies optimized for IoT, and expatiates related games
and MTD, decoy-related metrics and formulas, parameters, and IoT domain-based social-
engineering knowledge. Section 4 provides formulated scenarios based on all of the
IoT domains and topologies specified in IoDM, vulnerable points of contact, and related
deceptive sequences. Furthermore, related attack–defense competition simulations are
carried out to compare and analyze the results by metric. In Section 5, the threat-to-validity
of this study and related improvement measures are discussed, and finally, in Section 6,
conclusions are drawn.

2. Related Work

According to the recent trend of defensive deception studies, MTD partially falls
within the scope of defensive cyber deception. However, unlike Honey-X, decoys, and
fake objects, MTD neither disinforms nor artificially projects false information to actively
mislead attackers. Instead, MTD conceptually involves inducing attackers’ cognitive biases
as intended by the defender. In addition, MTD does not neutralize attackers‘ observation
and identification behaviors per se, such as obfuscation. Instead, MTD is an active-defense
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paradigm that efficiently diversifies or proactively avoids the configuration of the variables
of internal networks and heterogeneous system hosts by the domain to be protected, while
maintaining the availability of major service functions provided to legitimate users and
increasing the confusion or uncertainty of attackers, thereby preventing the formation
of a successive attack chain. On the other hand, Honey-X and decoys perform reactive
induction and isolation by manipulating, abusing, or misleading the attacker’s cognitive
aspects. Obfuscation is another separate study area, and its crucial difference is that it is
closely related to the achievement of security goals at the data level [6].

Based on the room for controversies and study goals, the scopes of previous studies
included ‘Game-Enabled Defensive Deception Techniques with MTD’ and ‘MTD-based
Defensive Deception Techniques for IoT’, and the relevant techniques will be referred to in
order to upgrade them into applied concepts for the improvement of deceptive performance
and optimization in the IoT domain through the proposed IoT deception model and the
general sum game strategy.

2.1. Game-Enabled Defensive Deception Techniques with MTD

The core of game theory studies using MTD is to model attackers’ CKC tactics and
the defenders’ proactive evasion tactics based on shuffling and shifting in order to inde-
pendently achieve the various goals possessed by individual actors, as well as to micro-
scopically optimize the MTD variables such as mutation periods, mutation targets, and
sampling functions by time point. In addition, macroscopically upgrading MTD strategies
to maximize defenders’ gains by minimizing performance degradation and maximizing
security, and to minimize attackers’ gains such as lateral movement and successful capture
of the target host is also a main goal. Characteristically, the previous studies can be divided
into ‘general game-theoretic studies’, ‘Bayesian Stackelberg game-theoretic studies’, and
‘stochastic game-theoretic studies’ [6,12,13].

Among the general game-theoretic studies, Zhu et al. [43] applied the sequential
attack–defense competition formula based on two-person games and related metrics to
the concept of MTD mutation, thereby quantifying the trade-off relationship based on
the defender’s security enhanced by MTD, the degraded operational performance, and
the resource allocation function. Ge et al. [44] proposed an incentive-compatible MTD
game based on communication mapping between normal users during server migration
in order to guarantee high service visibility and throughput for legitimate users, and also
characterize cyber agility [45] to secure additional availability. Neti et al. [46] configured an
anti-coordination game as a guide framework for quantifying diversity-based deceptive
measures in MTD and observing the interactions between scalabilities. Wright et al. [47]
performed a two-player empirical game theory analysis to optimize the pre-conditions,
required parameters, and target stability criteria for the formation of active MTD strategies
against adaptive DDoS attackers. Carter et al. [48] proposed a dedicated MTD game
architecture to secure migration optimization strategies in order to maximize seamless
connections to legitimate users’ services while minimizing the suspicion of induced and
isolated attackers in the sandbox. On the contrary, Colbaugh and Glass et al. [49] argued
that uniform randomization is an optimal strategy for diversity-based MTD.

Among the Bayesian Stackelberg game-theoretic studies aimed at optimizing the re-
sults of followers’ behaviors according to the leader’s behavior, Hasan et al. [50] proposed
the co-resident attack mitigation and prevention (CAMP), a Nash balance game model
that minimizes the ripple effect of internal and external threats in the intruded joint virtual
environment while detecting the attacks of co-residents in the virtual environment sharing
the same spatiotemporal resources. Feng et al. [51] proposed an artificial information
disclosure model based on the Bayesian Stackelberg model that improves the agility of
the defender by disturbing and partializing attackers’ initial decision-making with the
defender’s intentional disclosure of false information. As a follow-up study, Zhu et al. [52]
proposed a Stackelberg game framework that improves the efficiency of the attacker induc-
tion and isolation mechanism based on routing. The framework also created and disclosed
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false packets specialized in the reconnaissance stage of internal and external attackers so
that the directivity of application of the concept of deception according to the composition
of a scenario model close to the practical environment can be secured. Sengupta et al. [53]
proposed a Bayesian Stackelberg game-related model for the placement of IDS solutions
on the Web and cloud to organize an MTD strategy that maximizes the proactive security
using the system configuration set candidate group while minimizing the mutation cost
and performance degradation rate of the defender with limited resources. Another study
conducted an MTD strategy study for zero-sum game competition based on general-sum
games to secure defensiveness against APT attacks in cloud networks [54]. As a follow-up
study, Li et al. [55] proposed a Markov Stackelberg game together with optimization for-
mulas based on the average-cost semi-Markov decision process (SMDP) and the discrete
time Markov decision process (DTMDP) to produce the defender’s spatiotemporal MTD
mutation decision-making process against advanced attackers. Seo et al. [56,57] proposed
an active cognitive disturbance function not influenced by the existing MTD concept and
combined it with a social engineering decoy sandbox layered in the form of organiza-
tional open-source intelligence (OSINT) to form defensive deception concepts optimized
for actual organizational operational goals. Based on these previous studies, a real-time
attack–defense competition in an organizational environment with limited resources could
be simulated and multi-staged deceptive decision-making processes could also be modeled
depending on the scenario. In addition, the limited fields of view by the actor and the
manipulated present situation of host occupancy based on the reward values by episode
could also be simulated with partial signaling based on disinformation.

Among stochastic game theory studies that can reflect the relationships between
multiple players through stochastic transfer, Manadhata et al. [58] proposed a game model
that diversifies the dynamics between attacks and defense based on the concept of stochastic
transfer according to the flow of decision-making and reflects the diversified dynamics
on strategies by MTD mutation state. Based on the previous studies, the MTD balance
concept and related trade-offs could be formulated to model the optimal proactive defense
strategies based on the dynamic surface compositions by scenario environment. To deal
with the incomplete information by an actor in the MTD game model, Zhang et al. [59]
proposed a Nash-Q learning algorithm based on a reward matrix constructed by capturing
the frequency and distribution of an attacker’s strategy selection. The fact that the Nash
theory can better reflect actual organizational operation scenarios compared to other game
theories could be derived and the trade-off quantified based on the availability of legitimate
users according to the calculation of MTD-based deceptive items could be calculated.

2.2. MTD-Based Defensive Deception Techniques for IoT

IoT-enabled MTD has not been performed universally due to the inherent static
characteristics and performance limitations of the existing IoT systems. However, recently
it has been performed with an aim to characterize shuffling tactics of IoT features, improve
cyber resilience at the protocol level, and optimize the deceptive strength through zero-
sum game-based strategies. These studies are typically divided into ‘definition of MTD
strategies for IoT’ and ‘construction of IoT framework with MTD’.

Among the studies of the definition of MTD strategies for IoT to optimize the MTD
strategies according to the unique characteristics of the IoT system, Navas et al. [60]
proposed a strategy to randomize the spreading sequences in the direct-sequence spread-
spectrum (DSSS) system based on cryptographically secure pseudo-random (CSPR) in
order to minimize the ripple effect of potential internal–external jamming attacks on DSSS
communication in heterogenous IoT systems. This strategy could be evaluated and verified
to be more energy-efficient compared to the existing anti-jamming techniques and to
improve the defense of the communication service in ad hoc IoT networks. Ge et al. [61]
proposed a concept of IoT decoy induction pathways, a network topology shuffling-based
MTD (NTS-MTD) strategy that performs shuffling on real IoT networks to minimize the
spatiotemporal dominance of asymmetric IoT attackers as well as concretizing the deception
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strategies optimized for static IoT systems in organizations that have only limited available
resources by the MTD mutation metric. Based on the previous strategy, the levels of
overall deception efficiency by scenario could be compared and verified in relation to
all of the MTD mutation periods, items to be mutated, mutation sampling techniques,
and specified IoT single or multiple operation goals, and then analyzed based on IoT
performance, and down-time, and network security could be derived. Nizzi et al. [62]
proposed an address shuffling algorithm (AShA), an algorithm that utilizes hash-based
message authentication code (HMAC)-based cryptographic hash to realize rapid MTD
shuffling at the MAC-IPv4-IPv6 level in the IoT network while minimizing the overhead.
Through the AShA, the functional stability related to MTD updates in a network composed
of numerous IoT nodes could be derived based on collision, and the performance could be
evaluated based on a Raspberry Pi and Carambola. As another study focused on mutating
the IP address of IoT systems, Zeitz et al. [63] proposed a micro-moving target IPv6 defense
(µMT6D) as an MTD mechanism based on a lightweight hashing algorithm dedicated to
low-power IoT. According to the study, µMT6D could be proved to be robust against DDoS
or eavesdropping passive attacks in IoT environments.

Among the studies on the construction of an IoT framework with MTD for the compo-
sition of guidelines defined for the design of IoT-based MTD strategies, Navas et al. [64]
proposed IANVS as a universal framework that supports the intensive design, implemen-
tation, and evaluation of MTD strategies for IoT systems. This proposed framework is
related to the interaction between the gateway and nodes and concretized MTD strategies
such as UDP port and CoAP protocol-based shifting targeting real IoT hardware devices.
According to the study, an architecture where the common components of the MTD strategy
were abstracted, generalized, and interconnected could be designed, and the efficiency of
proactive defense against DDoS attacks could be evaluated as probabilities by the CKC
step. Kyi et al. [65] proposed the directivity of proactive framework designs related to IP
address shuffling in the IoT communication layer and code diversification in the data layer.
Mercado et al. [66] randomized the communication protocol between nodes and gateways
in the IoT network to propose an MTD strategy and an architecture that minimizes the
asymmetric spatiotemporal dominance of attackers and the defender’s system performance
overhead based on multiple-criteria decision analysis. Based on the previous studies, using
the MTD strategy parameter, we could prove the levels of the efficiency of proactive defense
against DDoS attacks targeting IoT networks and the conceptual approaches for future
optimization based on game theories and genetic algorithms.

2.3. Taxonomy Analysis by Previous Studies for Proposed Model

Out of the above-mentioned related works, refs. [18,20,53,54,56,57] among previous
game theory studies and [64,66] among previous IoT-enabled MTD studies provided the
main inspirations for this study. Accordingly, to alleviate the above-mentioned limitations,
we proposed IoDM, a systematic IoT deception model based on PBNE and BSSG and
a partial signaling-based general sum game foreground and a POMDP state-transition
background. Its related internal components, processes and schemes, and taxonomic
analysis are presented in Table 1.
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Table 1. Taxonomy of existing defensive deception research studies and proposed deceptive model
for IoT.

Approach Specific Technique Advantages Disadvantages

Game-Enabled
Defensive Deception

Techniques with
MTD [43–59]

General game, Bayesian Stackelberg
game, Stochastic game

Formalizing the interactions
between attackers and defenders
and providing methodologies for
estimating deception effectiveness

and security.
Determining the optimal MTD
strategy based on learning and
realizing the decision model.

Not working the best strategy devised
by defender for the irrational attacker.

Requires very high number of deriving
computational resources for the optimal

solution space.
Causing uncertainty because of

interpreting the same game differently
depending on their subjective
perception of different players.

Difficulty in modeling cybersecurity and
defensive cyber deception issues in

real-world and practical environments.

MTD-based
Defensive Deception
Techniques for IoT

[60–66]

Definition of IoT-enabled MTD
strategy, Construction of IoT

framework with MTD scheme

Securing an avoidance-based,
independent-adaptive mobility-type
countermeasure for attenuation of

the explosively increased
attack-detection surfaces in

heterogeneous IoT networks.
Breaking down the spatiotemporal
dominance of attackers in static and

passive IoT systems.
Reducing organizational operating

costs for deploying security
solutions dedicated to IoT.

Adopted as the most core security
game-changer for special IoT

domains with insecure
communication channels

MTD performance constraints occur due
to limited and non-uniform resource

allocation within IoT-based
organizational environments.
Due to the characteristics of

interconnected heterogeneous IoT
communications, the consistency of the

efficiency of MTD-based proactive
defense cannot be maintained.

Not suitable for extremely lightweight
IoT communication domains.

Not mapped to free IoT node joining
and leaving processes

IoDM

- Defensive deception technique
for IoT

- IoT-enabled organizational
MTD, IoT-enabled
organizational decoy

- Game-theoretic technique
for IoT

- Perfect Bayesian Nash
equilibrium (PBNE) with
general-sum, Bayesian
stochastic Stackelberg game
(BSSG), Partially signaling
scheme for
disinformation (PSG)

- Decision theoretic technique
for IoT

- Partially observable Markov
decision process (PDMDP)

Description and Improvement

The IoT-enabled organizational MTD is the concept of using an MTD strategy to
select appropriate mutation periods and intensities, and targets by IoT domain.

Furthermore, this MTD determines the sampling techniques and shuffling
schemes with the advantage of the defender. Through the definition of these
adaptive IoT-enabled MTD, optimized MTD strategies can be secured by IoT

domain and related mutation metric, and reactive tactics within the MTD for the
defender to carry out in-depth deception can be realized.

The IoT-enabled organizational decoy is a concept of induction of CKC attacker
cognitive disturbance consisting of layered false organizational information

based on certified IoT CVE and IoV information, which standardizes the decoy
elements, properties, and targets based on unique characteristics by IoT domain,

and optimizes the decoy induction pathways allowable values. Through the
definition of active IoT-enabled decoys, the usability and scalability of the decoy

sandbox in the IoT environment can also be improved.
The organizational IoDM model is a two IoT player competitive game mainly

composed of PBNE, BSSG, partial signaling-based general sun game foreground
components, and POMDP state-transition background components and a

real-time attack–defense process within an IoT organization operating
environment with limited resources was representatively configured as

multi-staged spatiotemporal deception decision-making.

3. Proposed Organizational Deceptive Modeling for IoT and Related Strategies

In this section, IoT-enabled MTD and decoys considering organizational IoT knowl-
edge are formulated. The major components and detailed modules in the proposed IoDM
are configured, and all the overall deception-game metrics related to PBNE, BSSG, signaling,
and POMDP and formulas are also defined.

3.1. Design Principle

Figure 1 represents the major architecture of the proposed IoDM. First, in a social
engineering deception knowledge for IoT components ( 1©), organized IoT elements and
operations are applied as deceptive knowledge to be used for IoT-enabled MTD and
the decoy. Thereafter, through the deceptive knowledge, the properties, functions, and
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parameters in the MTD and decoy are defined, formulated as a deception process, and
used for the dynamic game-based foreground components and the state-transition-based
background components. In the dynamic game-based foreground components ( 2©), PBNE,
BSSG, and partial signaling decision techniques are all mixed in the game module as
variables for generating, updating, and signaling the deception tactics of the IoT defense
actors. They are also the major schemes for configuration of the counter-measure tactics
of the IoT defense actors in the attack–defense module. The attack/defense sequences
by actor are then established, and PBNE, BSSG, and partial signaling-based competitive
games are played. Next, in the state-transition-based background component ( 3©), to
continuously maintain the asymmetric dominance of the IoT defender, all the deceptive
variables for the deceptive signaling sequence based on disinformation, artificial disclosure,
deceptive perturbation for cognitive disturbance, occupancy manipulation, etc. and CVE-
and IoV-based vulnerability determinants within transition metrics are applied. Thereafter,
based on the configured scenario template and matrix, the POMDP is formulated and the
decision actions by the actor are schematized. Finally, IoT-enabled MTD and decoy-based
deception strategies, competition between general sum-based attack–defense actors and
related reward concepts, payoff tactics, and state entry conditions for game equilibrium are
all considered to derive results.
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Figure 1. The main overview of the proposed deceptive approach for IoT-enabled organizational envi-
ronment.

3.2. IoT-Enabled MTD and Decoy-Based Deception Process

The IoT-enabled organizational MTD applied within IoDM is a concept of using
the MTD strategy to select appropriate mutation periods, intensities, and targets by IoT
domain, and determine sampling techniques, shuffling schemes, etc. with advantages to the
defender. That is, depending on the acts of the external IoT attacker who intends to invade
and occupy internal IoT devices, systems, and subnetworks, mutation strategies are selected,
and the intensity of evasion is adjusted under the intervention of the defender to disturb the
cognitive judgment of the attacker so that wrong defender intelligence is constructed based
on passive deception perturbation [13] or active disinformation. According to previous
studies, reactive tactics can be additionally applied within the MTD for the defender to
carry out critical system-based in-depth deception while proactively configuring mutation
tactics optimized in the IoT domain and related mutation metric.
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The IoT-enabled organizational MTD is therefore defined to be centered on the Bellman
value iteration-based IoT-based mutation sampling (VS) for adaptive MTD configuration
according to changes in attack actions together with the perturbation (P) to asymmetrically
assign noises to the attacker’s cognitive directivity and is configured as shown in Equations
(1) and (2), respectively [56,57]:

P = Pr[L = l|OS = µ(os)]. (1)

In this case, L is a set of virtual elements similar to the unique fingerprint of the actual
IoT device and system to be protected in order to distort the bias composition gradient
of the attack surface-based intelligence identified by the IoT attacker at the present time
in favor of the IoT defender. However, it is hierarchically configured based on the IoT
network and host layer so that only legitimate users can identify it, and it is dynamically
signaled under the leadership of the defender based on the internal rule table. The OS is a
set of actual IoT specification information groups that are referred to in order to minimize
attackers’ suspicion about the defender’s maneuver based on artificial disclosure and
disinformation, and acts to configure deceptive perturbation through L while improving
the deception efficiency of the generated L and
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VSn(i) = min
τi ,mi∈M

[
ci,j + ∑ m̃i,jVSn−1(j)

]
, (2)

ci,j is the cost of mutation to shift the surface index j of the defender in the next episode
with incomplete private information through the adaptive deceptive signaling action of
the IoT defender in the current episode in the IoT defender’s surface index i in order to
optimize the deceptive trade-off and minimize the overhead in an IoT-based organizational
network having limited operational resources. m̃i,j represents the possibility for external
IoT attackers following changes in i and j , and is configured to minimize the suspicion of
the attackers who continuously search for the target IoT device, system, and network status.
τi is the spatiotemporal cost consumed by the defender to maintain dominance until the
completion of mutation of the IoT surface elements for i and the mutation time slot length
and mi is the IoT surface element sampled and optimized based on i within the deceptive
surface set M generated through mutation.

IoT-enabled organizational decoy is the concept of a multitenancy type dynamic
sandbox that extremely limits the attacker’s CKC-based ripple effect by actively inducing
cognitive disturbance of the IoT attacker. Alternatively, it isolates the attacker in a hole
from which escaping is difficult based on all of the CVE vulnerabilities, CVSS scores, IoV
information, and actual IoT specification information disclosed by major IoT domains in
order to further improve the low deceptive IoT defense efficiency of the existing decoy. That
is, it protects the actual IoT device, which is the ultimate target of intrusion of the attacker,
from exposure to the attacker, while standardizing all decoy elements and properties, and
targets based on IoT as if they are valuable objects of protection and optimizing decoy
induction pathways and allowable values in order to immediately seduce the attacker.
Concretely, based on detailed decoy attributes such as the ‘distinguishability’ of the decoy
that resembles the object of protection from the outside but is distinguished as an actual
false dummy by internal legitimate users with separate prior knowledge, ‘dazzling’ to
induce intrusion by an unidentified external attacker, ‘enticing’ to actively entice identified
attackers, ‘redundancy’ and ‘diversity’ to minimize attackers’ suspicion, ‘detectability’ to
identify attackers deceived by the decoy based on the beacon, and ‘controllability’ to set
multiple levels of the degree to which attackers’ intrusion and escape are allowed according
to weights, the dynamic actions to gradually induce the attacker’s inferiority and force the
attacker to follow defender’s intentions are continued. Active decoy tactics optimized in
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the IoT domain and related decoy metrics can be reactively constructed while expanding
the usability and scalability of the decoy sandbox in the IoT environment. In addition,
when the IoT-enabled organizational decoy is combined with IoT-enabled proactive MTD
performed primarily at the IoT network and host layer, asymmetric inferiority can be
secondarily forced on external IoT attackers who bypassed MTD-based evasion. That is,
cyber agility within major IoT networks is ensured by the IoT-enabled proactive MTD, and
cyber resilience is ensured by the IoT-enabled reactive decoy.

The attributes in the IoT-enabled decoy are centered on the decoy principle [15], and
are configured as shown in Equations (3)–(8), respectively [56,57]:

Pr
[

Expbelieve
A, H, O = 1

]
≤ 1

2
. (3)

Equation (3) is believability (B), which calculates the attack probability of attacker A,
who has no prior knowledge to distinguish decoy set H from the actual object of protection,
using O, which is a set of organizational IoT specification information element groups
reconstructed for IoT-enabled decoy operation. That is, when A constitutes the attack
surface at the present time, B judges H as a decoy of the defender and ensures that the
probability to exclude H as noises is not higher than 0.5.

Pr[o → O|o ∈ PF] = Pr[h→ O|h ∈ H]. (4)

Equation (4) is enticing (E), which utilizes o, IoT specification information elements for
decoy operation in O, and PF, an indicator of the degree to which an IoT attacker’s hasty
judgment is quickly enforced in favor of the defender, to calculate the possibility of dynamic
signaling that will actively induce the act of intrusion of o-based decoy element h. Thereafter,
E also verifies whether the deceptive attractiveness of the PF in h managed by the IoT
defender is similar to the uniqueness of o introduced to minimize the attacker’s suspicion.

n

∏
i=0

Pr[Vi] > δ. (5)

Equation (5) is conspicuousness (C), which utilizes both the i-based intelligence con-
structed at the present time according to the signaling between actors and the view Vi that
can be observed by the other party as surface information to calculate the possibility of
static signaling related to δ, a dazzling indicator of elements that induce extreme bias in the
initial cognition of the attacker such as CVE vulnerability in o. In addition, while adver-
tising CVE vulnerability in o to the attacker, C also ensures Vi-based artificial information
disclosure to prove false B about the vulnerability to the attacker.

Pr[h→ O : CDA,h = 1] ≥ ε. (6)

Equation (6) is detectability (DE), which calculates the detectability related ε, the
detection threshold in h using CDA,h. CDA,h is an indicator of the degree of detection
of intrusion into h by attacker A for adaptive management of h according to changes in
IoT-based organizational networks. In addition, DE ensures that the possibility of false
detection and non-detection based on decoy beacons is minimized.

Pr[CTD, o, h = 1]= Pr[CTD,o,h = 1
∣∣H]. (7)

Equation (7) is non-interference (NI), which calculates the possibility of adaptive non-
interference for the situation where the contiguity of defender D for o-based h was clearly
distinguished as a leader for deceptive signaling and was authorized not to be decoyed.
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That is, NI ensures both role-based access control and controllability so that attacker A can
access only h and defender D can access the actual object of protection.

Pr
[

Expbelieve
D,H,O = 1

]
= 1. (8)

Equation (8) is differentiability (DI) based on Equations (3), (6) and (7), which calculates
the possibility for defender D to distinguish between O based H and the actual object of
protection and the impossibility for attacker A to distinguish the same. That is, DI is a
reactive secondary deception policy for attackers who successfully bypassed IoT-enabled
proactive MTD, which ensures that the attackers cannot distinguish between H and the
actual object of protection.

Finally, all of the IoT-enabled MTD and decoys are upgraded into deceptive processes
in the IoT-based organizational networks by the major IoT domain and utilized as atomic
variables that are required without fail for all competitive actions using all these IoT-enabled
MTD and decoys as deceptive processes in PBNE, BSSG, and partial signal-based dynamic
game foreground components and POMDP state-transition-based background components.

3.3. Construction of Deceptive Game Architecture with IoT-Based Organizational Network

In this section, we define the main tuples, equations, and related metrics for the
dynamic game-based foreground components and state-transition-based background com-
ponents configured in IoDM.

3.3.1. Regularization of General-Sum Game Mechanisms

As shown in Figure 1, the dynamic game-based foreground components typically
consist of a PBNE, BSSG, partial signaling-based general sum game competition module
and an attack–defense strategy module to define the state-transition probabilities by the
actor. As shown in Figure 2, the general sum game competition module adopts all of the
PBNE decision strategies to maximize the payoffs by an episode of private asymmetry
based on incomplete information by attacker and defender, the BSSG decision strategy to
optimize the quantitative sequential relationships of micro or macroscopically calculated
reward values as an active leader and reactive follower-based causality, and the partial
signal game decision strategy to actively force attackers’ prior beliefs and confusion and
maintain and sustain defender-dominant leadership. The attack–defense strategy module
refers to all of the IoT devices formulated by smart home IoT, industrial IoT, and medical
IoT-based organizational scenarios defined in advance in the IoT-enabled scenario template,
systems, sub-farm networks, intercommunication channels, operational strategies, CVE
vulnerabilities, and CVSS scores to formulate the target, tactic, and sequence-based attack–
defense flows produced by the actor as threat modeling.
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In this case, the dynamic game-based foreground components, as shown in Figures 1 and 2,
are composed centered on the following 12-tuples.

• N = (NA, ND) is a set of actors, where NA is an IoT attacker, and ND is an IoT defender.
In this case, payoffs and signaling by the actor and the leader–follower relationship
are defined differently depending on each IoT scenario and the present situation of
the development of detailed episodes.

• TS =
(
TSNA , TSND

)
, TSND = (tsi|i = 1, 2, . . . , n), and TSNA = (ρ) are the sets of

elements uniquely possessed by actors. TSNA is defined as the deceptive private
information element of IoT defender ND. TSNA is defined as the attack graph-tree-
based private information element of IoT attacker NA. The elements are combined or
divided according to the changed payoffs by the actor, and unlike the defender, the
attacker dynamically composes the element with ρ, which is the effectiveness of the
IoT attack surface at the present time point.

• GS =
(
GSNA , GSND

)
, GSND =

(
gsNdi

∣∣i = 1, 2, . . .
)
, and GSNA =

(
gsNa j

∣∣∣j = 1, 2, . . .
)

are the sets of decision strategies for general sum competition between IoT attacker
NA and IoT defender ND, which are also configured according to the payoffs and
signaling by the actor and the leader–follower relationship. GSD is the deceptive
strategy possessed by the defender. GSA is the defender surface information possessed
by the attacker, and is defined as an attack graph-tree and intelligence-based strategy.

• SS =
(
SSNA , SSND

)
, SSND =

(
ssNdi

∣∣i = 1, 2, . . .
)
, and SSNA =

(
SSNa j

∣∣∣j = 1, 2, . . .
)

are
the sets of the signals of IoT attacker NA and IoT defender ND, respectively, and are
selected according to the signaling initiatives given by the actor. NA has SSNA , which
is a set of attack signals to achieve the goal of intrusion, and ND has SSND , which is a
set of proactive–reactive defense signals for achieving the protection of all IoT devices,
systems, and networks.

• ω is a signal attenuation factor that determines the degree of attenuation of the SSND )
of IoT defender ND according to the progress of the episode.

• GB =
(

GBA, G̃BA

)
, GBA =

(
GBA(gsNdi )

∣∣i = 1, 2, . . .
)
, and G̃BA = GBA(gsNdi ·ω) are

the sets of general sum-based game beliefs of IoT attacker NA. GBA is the set of prior
beliefs of NA and G̃BA is the set of posterior beliefs of NA produced through Bayes’
rule after NA received normal signals or deceptive signals spoofed based on the SSND
of IoT defender ND.

• S = (si|i = 0, 1, . . . k) is a set of GS and SS-based finite states in a general sum-based
dynamic game component, which defines the multi-level nature and transferability of
attack–defense competition along with actions.

• A =
(

ANA , AND

)
, AND =

(
ai

Ndi

∣∣∣i = 1, 2, . . . x
)

, and ANA =
(

aj
Nai

∣∣∣j = 1, 2, . . . y
)

are

the sets of finite actions of IoT attacker NA and IoT defender ND for S. AND defines
the defender’s proactive–reactive deceptive and defensive actions to si as transition
relations. ANA defines the attacker’s CKC actions to si such as reconnaissance and
search, vulnerability and fingerprint-based exploits, initial occupation and lateral
movement, final invasion through privilege escalation and takeover and occupation.

• θ
(
Sk, ax, ay,
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when IoT attacker NA
carries out the action termed ax and IoT defender ND carries out the action termed ay
at Sk in the current episode.

• R
(
Sk, ax, ay

)
is a function used to calculate the reward obtainable within the current

episode in when IoT attacker NA and IoT defender ND carry out the actions termed ax
and ay at Sk, respectively. IoT actors compete toward the maximization of reward R
until entering general sum-based game equilibrium.

• U = (UA, UD) is a discount factor function that cuts off the judgment ranges by the
actor within [0,1] to force a quick judgment while also reducing the solution space
required for optimization. In addition, it defines leader–follower-based ex-ante/ex-
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post competitive strategy judgments such as the limitation of surface information by an
actor that can be observed at the present time, intelligence distortion, disinformation,
and artificial disclosure so that they can be indirectly simulated.

• CU = (CUA, CUD) is a utility function for resources and costs incurred when per-
forming competitive actions. CUA is the utility function of IoT attacker NA, and CUD
is the utility function of IoT defender ND.

As specified in the 12-tuples as such, the action processes of the attacker and defender
in each IoT scenario are defined based on the multi-layered information transmission-
based partial signal game and the leader–follower causal relationship-based BSSG. The
payoff optimization scheme is dynamically constructed with respect to game equilibrium
in the PBNE.

3.3.2. Optimization of Attack-Defense Competition with Game Equilibrium

Through PBNE-based game equilibrium, the decision sequences for optimizing the
reward values by an actor in the general sum competition relationship are divided according
to the initiative in BSSG and partial signaling-based signal spoofing.

If an IoT attacker is selected as an active compromise leader from the viewpoint of
attack actions by episode, and signals for CKC actions such as reconnaissance, search,
exploitation, privilege escalation, and IoT system occupation are also transmitted as in-
tended by the attacker, both the efficiency of proactive deception and the efficiency of
reactive defense of the IoT defender, who is a passive follower and attack signal receiver,
will decrease. Additionally, there will be the formation of a spatiotemporal asymmetric
attacker-dominant relationship regardless of the defender’s defense goal. Conversely, if an
IoT defender is defined as an active deceptive leader from the viewpoint of defense actions
by episode, and deceptive signals are transmitted to force defensive deceptive actions such
as disinformation, artificial disclosure, deceptive perturbation, and cognitive disturbance,
the possibility of success of the attacks by the IoT attacker will decrease. On the other hand,
the attack cost and the rate of consumption of utility and resources will increase conversely
to both the maintenance and sustenance of the dominance of the defender regardless of the
attacker’s attack goal. In such a competitive process, as the range of judgment of each actor
is temporally and spatially cut off according to a predefined discount factor, the reduction
of the solution space for calculation of the optimal values when the goals of the actor are
achieved and the process of normalization to approximate values are both carried out
a priori.

Within the leader–follower relationship based on signaling by episode, the general
sum reward optimization scheme related to the dependent reasoning action according to
the leading actor is organized as a Q-value as shown in Equation (9). In this case, U and TS
are defined as actors with signaling initiatives in the current episode:

Q
(
Sk, ax, ay

)
= R

(
Sk, ax, ay

)
+ U ∑
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from the viewpoint of the IoT attacker who actively carries out signaling is

configured into Equation (10) through SS. SS are signaling acts that can be performed in
Sk′ and GB. GB is a related belief and produces the optimized reward value with private
information-based incomplete judgment:

OPT
(
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= max

SS
min

ax
∑ay Q

(
Sk, ax, ay

)
·
(
ssNdi

∣∣i = 1, 2, . . .
)
·GB. (10)

PBNE-based game equilibrium is determined based on OD and OA as shown in
Equations (11)–(14). In this case, PD in Equation (11) similarly configured based on OPT
and GB is the probability of prior probability-based judgment of the IoT defender. P′D in
Equation (12) is the probability of posterior probability-based reasoning by the IoT de-
fender related to SSND reconfigured based on the updated internal deception-defense
strategy after the IoT defender’s feedback-based signaling to SSNA . In addition, when
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calculating the PBNE-based game equilibrium through PD and P′D, the result is affected by
U, a discount factor, and the time to reach the equilibrium in the game is controlled by the
configuration of UA, or UD related to the signaling initiative:

PD =
(

pD·(TSNDi
)
∣∣∣i = 1, 2, . . . n

)
, (11)

P′D = P′D
((

TSNDi

∣∣∣i = 1, 2, . . . n
)∣∣∣SSNA

)
, (12)

OD(SSNAj
) = arg max

SSNDk
∈SSND

∑
TSNDi

∈TSND

P′D·F(TSNDi
, SSNA j , SSNDk ), (13)

OA(TSNAi
) = arg max

SSNAj
∈SSNA

F(TSNAi
, SSNA j , OD(SSNAj

)). (14)

Finally, to reflect the general sum-based attack–defense competitive game in IoDM
based on state-transition, the POMDP-based state-transition background component speci-
fied in Figure 1 is structured into the form of an MDP-based interface as shown in Figure 3.
The transition probability and compensation value in the POMDP shown in Figure 3 are
defined as shown in Table 2 but they are calculated differently as shown in Tables A1
and A2 of Appendix A according to the major IoT scenarios defined in advance.
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Figure 3. Detailed sub-overview of the POMDP with defender side in IoT-enabled Scenario 1.

Table 2. Probability matrix of transition and semi-constant reward value with payoff strategy in
IoT-enabled Scenario 1.

State Probability of Transition 1 in Scenario 1 Reward Value for Defender

S0 [(1, 0, 0, 0)] [ −50 ]

S1

[
(0, 1, 0, 0) (0, 1, 0, 0)

(0, 0.25, 0.75, 0) (0, 0.95, 0.05, 0)

] [
0 −2
−10 10

]

S2


(0, 0, 1, 0) (0, 0, 1, 0) (0, 0, 1, 0) (0, 0, 1, 0) (0, 0, 1, 0)

(0, 0, 0.2, 0.8) (0, 0.7, 0.3, 0) (0, 0.2, 0.8, 0) (0, 0.2, 0.8, 0) (0, 0.15, 0.85, 0)
(0, 0, 0.2, 0.8) (0, 0.5, 0.4, 0.1) (0, 0.7, 0.3, 0) (0, 0.3, 0.7, 0) (0, 0.3, 0.7, 0)
(0, 0, 0.25, 0.75) (0, 0.5, 0.4, 0.1) (0, 0.3, 0.7, 0) (0, 0.7, 0.3, 0) (0, 0.2, 0.8, 0)
(0, 0, 0.22, 0.78) (0, 0.5, 0.4, 0.1) (0, 0.3, 0.7, 0) (0, 0.3, 0.7, 0) (0, 0.7, 0.3, 0)




0 −3 −2 −2 −3
−10 9.5 −2 −2 −3
−10 −3 9.5 −2 −3
−6.5 −3 −2 5.5 −3
−8.6 −3 −2 −2 7.2


S3

[
(0, 0, 0, 1) (0, 0, 0, 1)

(0.85, 0, 0, 0.15) (0.1, 0.3, 0.4, 0.2)

] [
0 −3
−6.5 15

]
1 Rows are attackers, columns are defenders. Each configured scenario has different transition probabilities
and rewards.

4. Experiments

In this section, we formulated attack–defense scenarios in IoDM based on smart
home IoT, industrial IoT, and medical IoT, respectively. Along with the comparison of the
efficiencies of attack and defensive deception according to the vulnerabilities of IoT devices
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and system nodes in the configured scenarios, we conducted sensitivity analyses according
to the main parameters by related actors and compared the analysis results.

4.1. Configuration of Organizational IoT-Enabled Scenarios and Detailed Simulation Parameters

To experiment the efficiency of defensive deception, all complex experimental metrics,
attack–defense flows, and topologies related to IoT organizational network operation
based on unique IoT sensors and systems, IoT switches, unified threat management (UTM)
devices, and firewall solutions are calculated. In this case, each scenario is classified
according to the IoT device or sub-farm network structure dedicated according to the unique
organizational operation purposes such as industrial type and medical type. Furthermore,
each scenario is also composed in detail with the spatiotemporal performances and costs
by IoT actors, intrusion–defense distinction criteria and final objectives, CKC, attack and
deceptive defense sequences, and other assumptions such as CVE and CVSS. In addition,
variables such as surface and contact information by IoT actors with a limited field of view,
occupation rate competition related to intrusion success and defense success by episode,
and feedback from attack and deception signal execution are also subdivided as shown in
Tables A4 and A5 of Appendix A and applied differently by scenario.

Accordingly, the determined smart home IoT, industrial IoT, and medical IoT-based
organizational operation scenarios and the unique general sum attack–defense competition
interfaces related to individual scenarios have the following premises for performance:

• IoT attacker’s action standard: An attacker intrudes an IoT-based organizational
network from the outside and carries out attacks on the internal IoT sensor device,
system, security solution, and sub-farm network. The final intrusion target points
are selected as single or multiple IoT nodes, and the intrusion continues according
to the CKC stages until the state of equilibrium is reached or the permitted attack
time expires. As the episode unfolds, the intrusion target is changed according to the
collected defender’s vulnerable contact points, attack surface information, and the
effectiveness of the discount factor-based intelligence, and an attack chain is formed
toward the production of the highest microscopic reward by time point

• IoT attacker’s APT attack strategy: The attacker considers finally occupying the target
point defined in the current episode as the top priority strategy, and fans out all possible
attacks based on the attack graph and attack tree defined outside before the initial
intrusion to optimize the attack gains. In cases where the rate of success in achieving
the first priority goal is lower than the possessed threshold, the attack strategy changes
to select and occupy the next best attack target. This is done by changing the attack
origins by episode or activating the tactics of lateral movement in a different direction
of movement. However, if the attacker makes an error in judgment due to changes in
the defender’s IoT network or deceiving acts, then the actual initiative of the attacker
in the competitive relation may disappear as the attacker’s initial perception is biased
toward defender dominance.

• IoT defender action standard: The defender monitors all IoT device units, security
solutions, and sub-farm networks. However, due to the limited resources, the security
solutions protecting the affiliated IoT nodes cannot be operated in a timely manner in
all cases. The defensive deception signaling strategies by internal IoT sensor devices
are not optimized based on the resources or the attenuation ratio of deceptive signals
increases. Therefore, in cases where the defense contact point for countermeasures is
selected wrongfully, the defense for the corresponding IoT device, farm network, and
security solution will fail, and consequently, microscopic defense gains will decrease
and the ripple effect of chain attacks in the CKC subsequent stages will increase. The
defender’s goals are differently configured according to the importance levels by
affiliated IoT nodes and the possibility of expression of vulnerabilities. However, they
are aimed at proactively avoiding attacks on all IoT nodes and immediately defending
against detected attackers for as long as possible. In the case of critical system-based
IoT scenarios, the sub-farm networks composed of VLANs by IoT sensor devices
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are interconnected, or all periodic snapshots, restorations, and sandboxing isolation
actions are carried out to improve safety.

• IoT defender’s deception strategy: The defender performs MTD- and decoy-based
defensive deceptive actions for all affiliated IoT nodes in the topology based on
leading signaling to disrupt and mislead the attacker’s judgment. However, since such
deception alone cannot completely block intruding IoT attackers, reactive defense is
also carried out. Since the defender’s reactive response is only possible on the basis of a
single IoT device and a sub-farm network, an appropriate prevention point or response
point deployment strategy should be produced depending on the available resources.

• Definition of scenario compensation: The concept of compensation that determines
actions in the general sum game in IoDM is made into a constant based on CVE and
CVSS related to the IoT sensor device. However, it can be dynamically increased or
decreased according to the attacker’s APT level and present situation of intrusion, the
level of defender deception-response, and the state of occupation rates by the actor,
etc. so that they become variables

• Calculation of scenario compensation: IoT attackers by episode win rewards when they
succeeded in CKC stages, while the defender wins rewards when they succeeded in
proactive–reactive defense against the attacker’s CKC intrusion act. The reward values
are differently defined in relation to the importance levels, correlations, ripple effects,
and vulnerabilities of IoT nodes, and microscopic reward values are determined
accordingly. When the final simulation has ended, each IoT actor calculates the
microscopic reward value.

• Definition of episode discount factor: A concept of discount factors was introduced
to force quick decisions by IoT actors and prevent the fixation of the macroscopic
equilibrium. That is, attackers and defenders cannot postpone microscopic decisions
at the present time unlimitedly for more than a hundred episodes, and the MILP
solution space to obtain maximum rewards is also limited by the cut-off.

• Simulation termination condition: With reference to an attacker, this is when the
attacker reaches the intrusion target point configured at the present time point, carried
out gradual exploitation based on the vulnerable point of contact, and thereafter
occupies it based on the action of the object (AoO). With reference to a defender, it is
when the defender neutralizes the detected attacker’s CKC-based act of intrusion and
expels the attacker by completely depleting the resources. After the simulation ends,
along with the reward values optimized by episode, the probability values related
to the main metrics based on the efforts, costs, and utilities of the attacker and the
defender are finally returned.

• Addition of the concept of security solutions dedicated to IoT: UTM is a primary
security terminal that combines intrusion detection system (IDS) and intrusion preven-
tion system (IPS) functions. IDS and IPS functions are performed to identify, detect,
and block threats from IoT attackers. Then, the firewall is an access control within
an IoT-based organizational network and operates as a secondary security terminal
that distinguishes the validity of legitimate users and authorizes them. Depending
on the scenarios, these security solutions are diversified horizontally and become
double-modular-redundant or triple-modular-redundant vertically. In this case, the
potential vulnerability is only assumed as a hole-based vulnerable contact point for
external IoT attackers to bypass, and unlike the affiliated IoT nodes, the attacker’s act
of occupation through remote code execution, privilege escalation, etc. are limited or
not performed.

Based on the premises for performance above, the IoT organization scenario related to
each IoT domain is established as follows.

The focus points related to the IoT operation strategies such as the configured IoT
sensor device and system, network topology structure, and security solution are also
defined in detail differently by scenario.

• Scenario 1 (Figure 4): ‘Smart home IoT-Based open organizational network topology’.
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(1) IoT node configuration: IEEE 802.11 WiFi device (‘Wireless access point’),
smart TV (‘Smart furniture’), wall pad (‘Wall pad’), smart door lock (‘Smart
door lock’).

(2) IoT security solution configuration: Single IoT-enabled UTM device with some
user access control and authorization functions.

(3) IoT attacker’s intrusion goal: The best goal is to obtain firmware authority for
the smart door lock through contamination of input factors of an unauthen-
ticated external IoT attacker, and then achieve improper unlocking. When it
seems impossible to acquire the authority for the target smart door lock, the
target is changed into a WiFi device that has more vulnerable contact points and
a wide attack surface to achieve suboptimal intrusion, and then differentially
carry out chain attack actions of pivoting with a wall pad, etc. in parallel.

(4) IoT defender’s defense goal: While performing MTD and decoy-based proac-
tive evasion and deception for all IoT nodes and security solutions, depleting
all utilities related to the validity of the defender intelligence possessed by a
professional IoT attacker and an attempt to enter the CKC stage to completely
achieve reactive blocking of remote intrusion within the IoT network.

(5) Attacker’s major intrusion path and fanout tactic: Outside the IoT network
→ attempt to intrude inside→ bypass IoT-enabled UTM’s access control and
detection policy→ carry out an immediate search for and access to a smart door
lock with a vulnerability in privilege elevation due to parameter contamination.
When continuing access or attack seems impossible, progressively carry out
differential intrusion, pivoting, occupation, and search by IoT node according
to other vulnerabilities→ finally achieve the intrusion into and occupation of
the smart door lock.

(6) Defender’s major defense sequences and normalization strategy: Perform MTD
based on the shuffling of the entire organizational networks by IoT and host
layer information. Decoying based on dynamic sandboxing is also performed
in parallel. Configure proactive deception process→ carry out UTM-based
real-time monitoring according to limited resources → detect the intruding
attacker and control the access of the attacker, and carry out reactive blocking
→ force the attackers to make inferior judgments and maximize the required
costs→ achieve complete expulsion to the outside.

• Scenario 2 (Figure 5): ‘Closed organizational network topology based on the industrial
IoT applied with a dual modular redundancy (DMR) security solution dedicated
to IoT’.

(1) IoT node configuration: multiple industrial sensor camera device-based farm
networks (‘Sensor camera device farm’), multiple industrial thermometer-based
farm networks (‘Thermometer device farm’), multiple industrial meter-based
farm networks (‘Meter device farm’).

(2) IoT security solution configuration: Two UTMs and two firewalls horizontally
interconnected and vertically DMRed.

(3) IoT attacker’s intrusion goal: The best goal is to obtain power meter firmware
authority through remote code execution based on stack-based buffer over-
flow of the web application, and then to achieve the securing of a second
intrusion vector for other interconnected industrial IoT devices. When it seems
impossible to obtain the authority for a single target meter or the relevant farm
network, achieve the sub-optimal intrusion by damaging the thermometer that
can cause very large human-property losses or damaging the confidentiality
of protected resources based on visual images and changing the target into an
industrial sensor camera device from which meaningful real-time information
can be taken over. Pivoting is carried out in parallel in the affiliated sub-farm
network from the initially occupied node as a starting point.

(4) IoT defender’s defense goal: Same as that in Scenario 1
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(5) Attacker’s major intrusion path and fanout tactic attacker: Outside of IoT
network → attempt to intrude → bypass the policy of DMRed IoT-enabled
UTM and firewall→ carry out an immediate search for and access to the power
meter that has vulnerabilities in the execution of remote codes and privilege
escalation due to buffer overflow. When continuing the search and the access
or attack seem impossible, carry out pivoting to another meter within the same
sub-farm network or change the intrusion route to another farm network→
achieve the intrusion into the power meter and final occupation.

(6) Defender’s major defense sequences and normalization strategy: Force de-
fender dominant deceiving, disturbing, and isolating actions with MTD based
on shuffling by each of the entire IoT nodes and decoying based on multite-
nancy sandbox→ carry out reinforced monitoring and detection of multiplexed
UTM and firewall→ carry out reactive blocking and expulsion of the IoT at-
tacker that intruded any sub-farm network in parallel → achieve complete
expulsion from the upper network.

• Scenario 3 (Figure 6): ‘Closed organizational network topology based on Medical IoT
applied with a triple modular redundant (TMR) security solution dedicated to IoT’.

(1) IoT node configuration: farm network including CT device and duplexed
virtual clone device (‘CT device farm’), farm network including MRI device
and duplexed virtual clone device (‘MRI device farm’), farm network including
in the fusion pump, electrosurgical unit-based medical sensor device, and,
respectively, duplexed virtual clone devices (‘Sensor device farm’).

(2) IoT security solution configuration: Vertically TMRed integrated IoT-enabled
UTMs and three firewalls.

(3) IoT attacker’s intrusion goal: The best goal is to obtain the sensitive data of a
medical infusion pump applied with inappropriate privilege handling routines,
seize the administrator privilege, and achieve the possibility of a direct threat
to human life through lateral movement to similar IoT devices within the same
farm network. When it seems impossible to gain control over a single-target
infusion pump or electrosurgical unit or the relevant farm network, change the
target into CT and MRI devices that can threaten the lives of many patients with
a greater scope of malfunction while taking over the patients’ sensitive personal
information thereby achieving suboptimal intrusion. Pivoting is carried out in
parallel in the affiliated sub-farm network from the initially occupied node as a
starting point.

(4) IoT defender’s defense goal: Same as that in Scenario 2.
(5) Attacker’s major intrusion route and fanout tactics: Outside the IoT network→

attempt to intrude inside→ bypass the policy of TMRed IoT-enabled UTM and
firewall→ carry out an immediate search for and access to a medical injection
pump sensor device with vulnerability in privilege escalation due to sensitive
data disclosure. When it seems impossible to continue the attack, carry out
pivoting to another medical sensor device in the same sub-farm network or
change the intrusion route into another farm network→ carry out intrusion
into the drug infusion pump and neutralization and destruction of the backed
up image→ achieve the final occupation.

(6) Defender’s major defense sequences and normalization strategy: Perform MTD
and Decoy-based proactive deception process→ carry out triplication-based
additional monitoring while ensuring snapshot-based IoT node image integrity
in parallel → Detect IoT attacker intrusion, reactively block and expel the
attacker, and carry out restoration to normal states with random snapshots→
achieve complete expulsion to the outside
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To classify by IoT scenario, configure the major MITER CVE vulnerabilities and CVSS
scores as shown in Table A3 of Appendix A. The formulated IoT vulnerabilities were
selected from the list of public CVEs that produce high exploitability scores in relation to
smart homes, industrial control systems, SCADA, and large medical organization envi-
ronments. This is because they can be easily applied as standard indexes for addition and
deduction of compensation during general sum-based signaling and feedback based on
intelligence, visibility, and occupation rate information possessed by each actor.

In addition, not only the attack graph and attack tree based on the calculated CVE-
based IoT vulnerable contact points, but also the defender’s defense sequences are mul-
tiplexed as IoT-enabled organizational OSINT-based adaptive mutations as with the de-
ception sequences shown in Figure 7. In this case, direct mutation of unique authorized
network information used for internal IoT service supply as a target of direct mutation
by IoT-enabled MTD is not suitable for all the service availabilities, channel migration
schemes, and prescribed encryption processes unique to the organization. Therefore, virtual
communication channel information is established within the range of the network address
pool determined in advance at random mutation time intervals among internal IoT nodes
or certain authorized remote users. Then, the communication channels are connected to the
real network addresses and pair tables held by the relevant IoT nodes to reconfigure the
IoT routing tables. To entice attackers to a sandbox-type isolation space despite it having a
fingerprint similar to that of the protected real IoT node, the rule table is formulated to have
a pair structure with the actual network address possessed by the IoT-enabled node using
the virtual communication channel information used by the previous IoT node. In addition,
the concept of the judgment of whether to perform dynamic shifting of virtual network
information in relation to the changes in major entropies in the relevant IoT network when
an arbitrary IoT node is occupied following the attacker’s success in partial intrusion is
also applied.
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Figure 7. Examples of defender’s episode-based deceptive sequences with MTD and decoy concepts
in IoDM. (a) Deceptive sequence beyond the network layer. (b) Deceptive sequence below the
host layer.
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Figure 7a is constructed based on the production of the concept. It is the MTD and
decoy-based deceptive signaling sequence when the connection with the internal IoT node
selected as a target based on the defender’s virtual communication channel information
previously collected by an illegal IoT attacker was requested. In other words, when the
network communication specifications configured in the request packet by the attacker
at the present time point are not allowed within the IoT-based organization network, the
relevant attacker is misinformed with false IoT surface size, vulnerability information,
and intelligence based on signaling to induce the attacker’s cognitive bias. In addition,
to artificially deceive an attacker to be easily induced, to enter, or to be isolated in the
decoy, virtual communication channel information similar to the network communication
specifications requested by the attacker or previously owned by the real IoT node is
allocated to an internal decoy or mutated in a direction to minimize the attacker’s suspicion,
then inserted in the response packet and delivered to the attacker. The attacker whose
cognition was disturbed and lured due to their inferior deceptive signaling gradually
continues to act toward the maximization of the defender’s gains in the relevant episode
and completely loses the possibility to reach the final intrusion target point selected in
advance. Figure 7b also shows a similar deceptive signaling sequence. However, instead
of attempting attacks with network layer information based on IP and socket ports, the
attacker carried out attacks in units of IoT-enabled service protocols such as physical and
data link layer protocols such as WiFi and Zigbee, network layer protocols such as IPv4
and 6LoWPAN, and application layer protocols such as CoAP and MQTT.

4.2. Results

In this section, general sum simulation experiment results related to IoT-enabled MTD
and decoy-based defensive deception concepts are produced by IoT-based organizational
scenarios defined in IoDM. We also carry out comparison and analysis between decision
schemes by major metrics such as the efficiency of attack–defense, costs, and utilities related
to the competing actions of attackers and defenders. Each formulated IoT scenario and
attack–defense sequence is characterized based on quantified vulnerability scores as shown
in Table A3 of Appendix A, along with a POMDP-based state-transition probability matrix
as shown in Tables 2, A1 and A2. The overall parameters related to general sum-based
deception experiments were also established based on Tables A4 and A5 of Appendix A.

4.2.1. Comparative Analysis of Each IoT-Based Scenario

Figures 8–10 show the result sets normalized by S0, S1, S2, S3 of the POMDP in Figure 3
in relation to the mixed scheme newly configured as the IoT-enabled MTD and decoy
concepts customized based on the existing deception and distribution policies [53,54,61,64]
were combined with PBNE, BSSG, and partial signaling for the degree of defense success
according to gradual changes in the final rewards and discount factors of the defender by
the IoT scenario.
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Figure 8. Comparison of the attack success probability in each state with Scenario 1. (a) S0, (b) S1,
(c) S2, and (d) S3.
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Figure 9. Comparison of the attack success probability in each state with Scenario 2. (a) S1, (b) S2,
and (c) S3.
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Figure 10. Comparison of the attack success probability in each state with Scenario 3. (a) S1, (b) S2,
and (c) S3.

Figure 8a shows the comparative results calculating the levels of efficiency of success
of defense by the defender in scenario 1 according to the discount rate to cut off the
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maximum ranges of judgment by actor, thereby forcing quick judgment and increasing
the rate of acquisition of microscopic rewards based on S0. When the attacker occupies
the final intrusion target selected, or the attacker or the defender expels the attacker, the
sum of the defender’s total reward decreases exponentially as the discount factor increases.
Moreover, the decreased total reward is the same regardless of the applied game decisions
strategies related to reward optimization and entering the equilibrium state. That is, when
the discount factor is less than 0.7, the compensation has gradients for linear decreases. For
example, when the discount factor is 0.3, 0.5, and 0.7, the reward becomes −71.4, −99.9,
and −161.9, respectively. However, when the discount factor is 0.7 or higher, the reward
decreases exponentially, for example, when the discount factor is 0.8 and 0.9, the reward
is −223.1 and −325.6, respectively, which are all extreme compensations. This gradient
change pattern is equally derived from S0 in Scenario 2 and Scenario 3. Regardless of the
unique characteristics and domain differentiation of the defined IoT scenario, the attacker’s
spatial and temporal analysis determines the optimal fanout penetration path within the
condition that the general sum competition is terminated due to the attacker completely
succeeding or failing to capture the target. The signaling of IoT-enabled MTD is calculated
so that the validity of the effective attack surface expires while actively attenuating the
superiority in the presence of the defender. It is instantaneous and the MTD mutation
time interval is shorter. The satellite also stems from the fact that it is enforceable. The
gradient pattern change is derived identically from S0 in Scenarios 2 and 3. Regardless of
the unique characteristics of the defined IoT scenario and domain distinction, this tendency
is attributable to the fact that under the condition where the general sum competition is
terminated because the attacker completely succeeded or failed in occupying the target
when the judgment of mutation of signaling of IoT-enabled MTD calculated so that the
attacker’s spatiotemporal dominance determines that the optimal intrusion route is actively
attenuated in the presence of the defender and the validity of the valid attack surface
is expired is immediate and the time interval of MTD mutation is short, the attacker’s
gain can be suppressed and asymmetric subordinance can be enforced. In addition to
S0 in the determined terminated state, the pattern of the gradient drop is identical in
Figure 8b–d. In a situation where the success or failure of an attack in the smart home IoT
network is finally determined, to improve the proactive efficiency of IoT-enabled MTD and
decoy deception strategies’ bias toward the attacker’s initial cognitive judgment toward the
dominance of the defender with a single parameter, the discount factor should be controlled
to not exceed 0.7 from the viewpoint of the IoT attacker. This is done by attenuating the
spatiotemporal size of the defender’s intelligence that can be judged or by making false
deceptive information into disinformation.

Figure 8b–d shows the comparative results that calculated the efficiency of success of
defense by the defender in Scenario 1 based on S1, S2, and S3, respectively. In Figure 8b,
S1 is related to the primary defense of a single IoT-enabled UTM that fostered user access
control and authorization functions. Even when the discount factor increases so that
the adaptability of the defensive MTD and decoy is reduced, relatively high asymmetric
dominance is given to the attacker. The reduction of the efficiency of success of defense
of decision strategies, excluding the Uniform Random decision strategy, is not large and
the discount factor converges between −6.5 and 2.5 instead of 0.9. In addition, in the
case of the mixed decision strategy that combined PBNE, BSSG, and partial signaling, the
efficiency of success of defense rather increases as the discount factor increases, unlike
other decision strategies. In this case, the mixed decision strategy derives an average
improvement in defense efficiency ranging from 28% to 139% compared to the PBNE
decision strategy, which is the baseline. This tendency is attributable to the fact that the
efficiency of the MTD and decoy deception process is improved for the mixed decision
strategy. The estimation of the probability distribution is related to the leader–follower-
based mutual feedback, signaling-based cognitive perturbating, disinformation, attacker’s
intrusion preference, observable-determinable present situations of activity by IoT node,
and the degree of changes in attacker entropy, which does not exist in other decision
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strategies. The above tendencies are also attributable to the fact that the mixed decision
strategy can derive additional improvement in the performance because it adds more
subdivided deceptive elements to the IP and socket port-based network layer, protocol,
and service-based host layer while securing practicality as an IoT scenario based on major
organizational domains. Furthermore, this tendency is attributable to the fact that the
Uniform Random decision strategy, which determines a single candidate node, which is the
target of the defender’s proactive deceptive signaling and monitoring, reactive detection
and blocking, and expulsion with a uniform probability distribution, unconditionally
distributes invasion probability uniformly to the upper entity that is unique and transfers
high ripple effect vertically as with UTM in Scenario 1 even when no external attack is
carried out so that extremely low performance is derived because it cannot be judged that
the attacker can carry out intrusion in earnest only after breaking through the relevant
UTM. These aspects are similar in Scenario 2 in Figure 9 and Scenario 3 in Figure 10, i.e., to
minimize the decrease in the efficiency of the deceptive defense against a single UTM in the
smart home IoT, select the mixed decision strategy regardless of the value of the discount
factor to ensure defender dominance.

In Figure 8c, where an attacker who bypassed the upper-level security solution in-
trudes the IoT-based organization network to perform an initial search and attempts
exploitation for the first time, the Uniform Random decision strategy shows the lowest
defense success efficiency and derives reward values lower than those in S1. In this case,
the mixed decision strategy derives defense efficiency ranging from 23% to 139% compared
to the naive PBNE decision strategy. This tendency is attributable to the fact that the wall
pad, which is the attacker’s final intrusion target point, has Wi-Fi as a repeater and exerts a
high ripple effect with a single vulnerability, and the performance efficiency of the mixed
decision strategy with mixed detailed decision strategies is high. This aspect is also the
same in Scenario 2 in Figure 9 and Scenario 3 in Figure 10, i.e., to minimize both the internal
reconnaissance and the possibility of success of initial exploitation of an IoT attacker who
is searching for potentially vulnerable contact points to improve attack effectiveness after
intruding the IoT-based organizational network for the first time, select the mixed decision
strategy regardless of the value of the discount factor to disturb the attacker in the general
sum-based competitive environment.

In Figure 8d, S3 is related to the achievement of the final intrusion goal following
CKC-based lateral movement and the advancement of the successive chain after the success
of the initial exploitation. The mixed decision strategy derives a defense success efficiency
ranging from 7% to 52% to the PBNE decision strategy, thereby showing a sharply re-
duced performance, unlike before. This tendency, which is different from Figure 8a–c,
is attributable to the fact that since the IoT attacker found out that there is only a single
real vulnerability of the wall pad selected as the final intrusion target point by them, they
completely identified the relevant vulnerability as the last hole into which all remaining
resources possessed by them can be intensively assigned. To reduce and actively block the
possibility of success of the final intrusion by the IoT, which performs lateral movements
and many rough privilege escalation attacks after succeeding in the initial occupation of
a certain IoT node within an IoT-based organization network, select the mixed decision
strategy while quickly emitting deceptive signals so that the discount factor is formed
between 0.7 and 0.75. This will make noises so that the attacker’s cognitive perturbation is
configured toward the dominance of the defender.

Figures 9 and 10 show the sets of discount factor-based results for critical system
scenarios where UTM and firewall devices are vertically DMRed or TMRed and the major
affiliated IoT nodes grouped are configured in-depth with sub-farm structures by role.
Here, all of the single ripple effects and additional effects are distributed in the industrial
IoT-based closed network and the medical IoT-based closed network, respectively. The
dominance relations of the defense efficiencies by the presented decision strategy technique
are the same as those in Figure 8.
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Figure 9a shows the defensive success efficiency of the defender in Scenario 2 based on
S1. The defensive success efficiencies of decision strategies other than the mixed decision
strategy rapidly decrease when the discount factor increased to 0.75 to reach −10 and −50,
respectively, and converge when the discount factor became 0.95. On the contrary, the
mixed decision strategy yielded defense success efficiencies improved by 68% through
172% compared to the PBNE decision strategy. This tendency is attributable to the fact
that the UTM solution in the previous Scenario 1 was interconnected with the firewalls
and diversified horizontally and multiplexed vertically so that the transferred ripple ef-
fects concentrated by the sub-industrial IoT node and farm network were dispersed. It
is also attributable to the fact that since the attacker’s final intrusion target point was
changed from a single IoT node to a farm network composed of multiple IoT power meters,
and the intrusion routes were limited due to the strict closed network policy of ICS, the
transferred ripple effects statically produced by affiliated IoT node were probabilistically
dispersed further. To minimize the reduction of the efficiency of defensive deception by the
multiplexed UTM and firewall solutions, select the mixed decision strategy regardless of
the value of the discount factor to continue proactive deceptive actions against external
attackers who wish to bypass while securing real occupation rates by the IoT node. This
will ultimately improve the security of the industrial IoT-based organizational network
based on redundancy and diversity. Figure 9b shows the defensive success efficiency of
defenders in Scenario 2 based on S2. The mixed decision strategy yields improved defense
success efficiency by 51% through 158% compared to the naive PBNE decision strategy. To
actively reduce the possibility of success of attacks by an IoT attacker attempting initial
intrusion and initial exploitation of a farm network in which multiple IoT power meters
are grouped, the mixed decision strategy can be also adopted regardless of the value of the
discount factor. Figure 9c shows the deriving of the defense success efficiency in Scenario 2
based on S3. Selecting the mixed decision strategy, deceptive counter-measures against the
IoT attacker who wishes to occupy the final intrusion target point can be formulated. The
mixed decision strategy is shown to produce defense success efficiencies improved by 33%
through 107% compared to the PBNE decision strategy.

Finally, the results of experiments of Scenario 3 related to the TMRed UTM, firewall
solutions, and the operation strategy that considered restorability and resilience by cloning
the candidate IoT node images based on snapshots are compared and analyzed with the
result sets shown in Figure 10. Figure 10a shows the defense efficiency based on S1 against
external IoT attackers who should bypass the TMRed IoT-enabled security solutions. The
defensive success efficiencies of decision strategies other than the mixed decision strategy
rapidly decreased from when the discount factor increased to 0.75 to reach −22 and −50,
respectively, and converge when the discount factor became 0.95. Conversely, the mixed
decision strategy is shown to yield defense efficiencies improved by 79% through 212%
compared to the PBNE decision strategy. Since sharp positive gradients were formed
when the discount factor increased to 0.7, the defense efficiencies were finally derived
to be between +8 and +10. This tendency is attributable to the fact that in the TMRed
security operation environment in Scenario 3, the defender’s risk due to external IoT
attackers’ CKC-based intrusion acts is lower compared to that in other scenarios with
different security operation environments. On the other hand, the attacker’s consumption
of costs and utilities for reconnaissance, search, and exploit attempts can be forced and
is also attributable to the fact that the concept of cyber resilience based on redundancy
and the concept of cyber agility based on diversity can be included in the upper layer
of the relevant IoT network. Figure 10b shows the results of analysis of the efficiency
of defense efficiency based on S2 against attackers who attempt initial exploitation after
reconnaissance of the lower farm network that possesses cloned IoT node snapshot images.
The mixed decision strategy yielded defense efficiencies improved by 54% through 168%
compared to the PBNE decision strategy so that the defense efficiency increased from
when the discount factor reached 0.75 and finally converged between +7 and +11. This
tendency is attributable to the fact that even if the restorability and resilience levels of
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the IoT node are improved with redundancy-based additional snapshot images, if the
attacker’s initial occupation is carried out immediately after their exploitation within the
time length for the snapshot configuration, the IoT nodes will be reverted to the state
similar to the defender intelligence possessed by the attacker already at the relevant time
point so that the attacker’s spatiotemporal dominance in the attack surface will be still
preserved at a high level. Figure 10c shows the analysis of the efficiency of defense based on
S3 against the IoT attacker who wants to occupy the final intrusion target point, indicating
that the mixed decision strategy yielded defense efficiencies improved by 37% through
133% compared to the naive PBNE decision strategy so that the defense efficiency increased
with positive gradients finally converging between +17 and +21.

For the defender to respond dominantly to all of the unequal reward value-adding acts
of external IoT attackers within the industrial IoT and medical IoT-based organizational
networks in which the redundancy and diversity-based security were finally maximized,
the deceptive signaling should select the mixed decision strategy regardless of the value of
the discount factor.

4.2.2. Sensitivity Analysis with Decision Strategy

To subdivide the concepts of microscopic–macroscopic rewards that can be acquired
through general sum-based attack–defense competition in the IoDM to calculate, compare,
and analyze the performances and costs of major metrics possessed by individual actors,
sensitivity analyses are performed in detail for each of Uniform Random, simple PBNE,
and mixed decision strategies. Figure 11 shows the sets of results normalized based on
industrial IoT-based Scenario 2 to calculate the efficiency of deceptive defense against
availability attacks, integrity attacks, and defender intelligence-based in-depth exploitation
attacks by external IoT attackers. Figure 12 shows the sets of the results of reclassification
of detailed metrics by IoT-enabled MTD and decoy-based major deception parameter and
normalization of the results thereafter based on industrial IoT-based Scenario 2 in order to
derive the defense costs and resources consumed according to the major factor values of
MTD and decoy.
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Figure 11. Cont.
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Figure 11. Comparison of the defense effectiveness each decision scheme in Scenario2. (a) Availability
attack. (b) Integrity attack. (c) Validity of intelligence.
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Figure 12. Comparison of the defense utility with deceptive signal each decision scheme in Scenario2.
(a) artificially exposed vulnerability level, (b) mutation time slot length, and (c) number of IoT-enabled
decoy hole.
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Figure 11a shows the results of comparison of the levels of availability attacks that in-
terrupt packet transmission/reception of internal IoT nodes and rapidly consume resources
allocated to communication sockets attacker dominantly among the intrusion vectors of
the external IoT attackers who have intruded the industrial IoT network based on packet
delivery ratios (PDR) excluding the environmental losses. The mixed decision strategy
yields higher deceptive defense efficiencies against availability attacks by at least 14.8% on
average compared to the simple PBNE decision strategy and by at least 7.2% on average
compared to the Uniform Random strategy. Figure 11b shows the results of a comparison of
the levels of integrity attacks that damage the packets exchanged by internal IoT nodes or
sharply deteriorate the quality of service related to the IoT communication protocol based
on PDR and packet error rate (PER). The mixed decision strategy yields higher deceptive
defense efficiencies against integrity attacks by at least 16.2% on average compared to the
naive PBNE decision strategy and by at least 8.3% on average compared to the Uniform
Random strategy. Figure 11c shows the results of comparison and analysis of the levels of
the validity of defender intelligence utilized by attackers when they perform exploitation
and occupation of a certain IoT node corresponding to the current intrusion target point.
Similarly, the mixed decision strategy yields higher deceptive defense efficiencies against
attack surface-based exploitation by at least 38% on average compared to the naive PBNE
decision strategy and by at least 82% on average compared to the Uniform Random strategy.

Figure 12a shows the results of comparison and analysis of the levels of vulnerability
of the industrial IoT that carries out artificial disinformation among various deceptive
techniques applied when an internal IoT defender performs deceptive signaling based on
IoT-enabled MTD and decoy to disturb and partialize external IoT attackers based on the
defense costs and resources consumed. Based on the same deception performance, the
mixed decision strategy non-uniformly derives defense overhead at a slightly lower rate of
4.2% on average compared to the Uniform Random decision strategy but increased by at
least 8.4% on average compared to the naive PBNE decision strategy. Figure 12b shows the
result of comparison and analysis of the IoT-enabled MTD applied to shuffle the fingerprints
of affiliated IoT nodes as a proactive evasion irrespective of the identification and detection
of IoT attackers based on the defense costs and resources consumed according to the
mutation time slot length of the IoT-enabled MTD. Based on the same MTD performance,
the mixed decision strategy derives the defense utility at a slightly lower rate of 3.4% on
average compared to the Uniform Random decision strategy but increased by at least
7.9 times on average compared to the naive PBNE decision strategy. Finally, Figure 12c
shows the results of comparison and analysis of the IoT-enabled decoy holes distributed to
extremely reduce the efficiency of the successive attack chains by reactively inducing the
intruding IoT attacker and isolating the attacker in the sandbox environment based on the
defense costs and resources consumed according to the number of distributed IoT-enabled
decoy holes. Based on the same decoy performance, the mixed decision strategy derives a
defense utility at a reduced by at least by 5.8 times on average compared to the Uniform
Random decision strategy but increased by at least 3.8 times on average compared to the
simple PBNE decision strategy.

In this case, this tendency expressed in all the corresponding result sets is attributable
to the fact that the mixed decision strategy has a lower or similar deceptive overhead
compared to the Uniform Random decision strategy. The Uniform Random decision
strategy has a uniform random probability distribution but derives larger defense costs
than the naive PBNE decision strategy, which is a single decision strategy. In addition, it
is attributable to the fact that since IoT-enabled deception tactics such as disinformation-
based signaling, artificial disclosure, deceptive perturbation, virtualized IoT specification
information, and cognitive disturbance scheme according to the decoy path are also added
separately, the minimum required defender utilities by each episode are also increasing.
In summary, this proves that the mixed decision strategy derives significantly improved
deceptive defense efficiency compared to other decision strategies. Furthermore, the
defense efforts required by the mixed decision strategy are a little lower or almost similar
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to those required by the Uniform Random decision strategy, although higher than those
required by the simple PBNE decision strategy.

5. Discussion

In this study, we proposed IoDM applied with PBNE and BSSG, a partial signaling-
based general sum game, and POMDP to quantify macroscopic decision-making strategies
for real-time attack–defense competition in the IoT domain. In addition, we formulated a
proactive IoT-enabled MTD that defender dominantly optimizes mutation time slot, shuf-
fling policy, mutation set, mutation sampling, etc., and a reactive IoT-enabled decoy based
on unique organizational IoT components. Macroscopic deception strategies optimized
by IoT scenarios could be produced based on the general sum game equilibrium, and
microscopic IoT deception tactics related to the decoy performance of MTD and decoys
could also be derived as results subdivided by major metrics. Furthermore, an approach
that minimizes the use of limited resources in the IoT network and performance degrada-
tion and maximizes security could also be abstracted at the scenario level. Among major
differentiated experimental results, the mixed decision strategy derived performances
improved by at least 70% on average compared to the Uniform Random and simple PBNE
decision strategy. In sensitivity analysis for the efficiency of deceptive defense to ensure
CIA in industrial IoT-based organizational topology, deceptive performance improved by
at least 20% on average compared to other decision schemes. Regarding overheads by
MTD and decoy-based variables, it was also proved through comparative analysis that
load balancing more optimized for the IoT operating environment can be performed if the
improved deceptive performance is considered.

However, threats to the validity of this study and potential improvement measures are:

• The issue of demand for strategization due to the limited range of decisions: In an ac-
tual IoT system and network environment, attack–defense actors subjectively process
asymmetric information available at the present time and decide on actions after mak-
ing incomplete judgments. This proves that a simple naive game strategy that models
dynamic decision-making under the premise that actors in an uncertain situation have
a consistent view is not generalizable. This study tried to mitigate the problem by
conceptualizing disinformation-based partial signaling game tactics and adaptively
changing the state-transition probability according to changes in the attack–defense
state in the modeling related to conflicts of interest between the IoT attack–defense
actors; however, potential side effects will still remain. Accordingly, the hyper game
theory [41], which is an unbalanced metagame, should be quantitatively utilized to
formulate the inferior decision-making flow when the actors in competitive relation-
ships by episode are ‘induced’ to select the best strategy due to subjective or false
beliefs, differences in information and view, misperception, and perceived uncertain
judgment, etc. In addition, various solution spaces for the relevant modeling of con-
flicts and methods to produce optimal solutions configured based on the uniqueness
of the IoT domain (e.g., frequent additional interventions by unspecified internal and
external actors, impossibility to cut off decision strategies due to explosive increases
in interconnected channels, etc.) should be processed. Furthermore, approaches such
as FlipIt games [67–69] and other various game theories [70] should be considered.

• Substantiality of IoDM and optimization problem: The IoT organizational character-
istics intellectualized in the game in this IoDM were quantified as based conditions
for sequential entries into the game equilibrium state through the calculation of the
state-transition probability in POMDP and reward values after preprocessing the CVEs
or related IoVs disclosed. However, they will be different from the unique policies or
beliefs related to the actual organization that operates the IoT device-system-network
and will show clear practical differences from the network-separated IoT organization
environment according to the range of disclosure of vulnerable information and the
IoT domain classification. In addition, since the defined IoT-based CVEs and IoVs
were simply limited to CVSS scoring-based parameterization rather than considering
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the correlation or ripple effect between IoT device-system-network specifications,
additional augmentation and normalization should be also considered.

• The scalability problem of the IoT deception model: Since this study carried out exper-
iments to reduce the attack-exploration surface through defense actors’ performance
of IoT-enabled MTD and decoy-based deceptive actions and performance optimiza-
tion within the scope of scenarios configured in the IoT domain, we did not consider
scenarios or other domains other than the ones described. In addition, since the IoT
specifications emulated in the game are also formulated as attack–defense probability
values based on random scenario configurations, the probability values should be
abstracted at a more stratified organizational IoT domain classification level and the
appropriate IoT operation process should be conceptualized.

• IoT-enabled MTD and decoy applicability problem: The main experimental results
were derived using MTD metrics based on mutation period and intensity, candidate
target, and sampling and decoy metrics based on decoying elements, properties, and
paths. However, an improved solution set should be produced by securing a wider
solution space. An approach to hierarchically modeling complex correlations between
IoT systems is required. Therefore, it is necessary to improve the approach based on
reinforcement learning, deep neural network, and graph neural network [71], which
have been actively studied recently in the field of deception.

6. Conclusions

In this study, we proposed a PBNE, BSSG, partial signaling-based general sum game
foreground- and POMDP state-transition background-based organizational model and
named it IoT-based organizational deception modeling (IoDM). In addition, the concepts
of proactive MTD and reactive decoys were also formulated to foster defender-dominant
deception strategies and detailed parameters based on the characteristics of the IoT device–
system network. We also performed simulations based on all IoT scenarios, sequences,
and CVE and IoV tables dedicated to the main domains such as smart home, industry, and
medical care. Through this, by sequentially modeling the competitive decision-making
process between CVE-IoV-based attackers and MTD-decoy-based deceptive defense actors,
it was possible to calculate deception efficiency optimized for each major IoT domain and
organizational IoT environment. In addition, it was possible to simulate the temporal
and spatial superiority of each IoT actor when the general sum-based equilibrium state is
reached according to the gradual progress of game episodes. As a quantitative comparison
result, it was possible to significantly increase the deceptive defense efficiency of the IoT de-
fender by more than 70% on average, and also to improve the deceptive performance of the
CIA standard by more than 20%, and the optimized defender cost was also demonstrated
by key metrics and parameters. In the future, to improve the reliability of the deception
efficiency of the proposed IoDM and to conceptualize IoT-based threat intelligence, we
plan to conduct advanced follow-up studies to diversify deceptive countermeasures and
anti-deception tactics composed of unique IoT attack vectors. In addition, we also intend
to expand and improve the decision solution space of this study by additionally adopting
the deceptive hypergame theory.
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Appendix A

Table A1. Probability matrix of transition and semi-constant reward value with payoff strategy in
IoT-enabled Scenario 2.

State Probability of Transition in Scenario 2 Reward Value for Defender

S0 [(1, 0, 0, 0)]
[
−60

]
S1

 (0, 1, 0, 0) (0, 1, 0, 0) (0, 1, 0, 0)
(0, 0.25, 0.75, 0) (0, 0.925, 0.075, 0) (0, 0.65, 0.35, 0)
(0, 0.25, 0.75, 0) (0, 0.68, 0.32, 0) (0, 0.91, 0.09, 0)

  0 −2 −2
−15 15 −2
−12.9 −2 12.9


S2


(0, 0, 1, 0) (0, 0, 1, 0) (0, 0, 1, 0) (0, 0, 1, 0)

(0, 0, 0.2, 0.8) (0, 0.75, 0.25, 0) (0, 0.2, 0.8, 0) (0, 0.2, 0.8, 0)
(0, 0, 0.25, 0.75) (0, 0.3, 0.7, 0) (0, 0.75, 0.25, 0) (0, 0.2, 0.8, 0)
(0, 0, 0.2, 0.8) (0, 0.3, 0.7, 0) (0, 0.2, 0.8, 0) (0, 0.75, 0.25, 0)




0 −1 −2 −2
−10 9.5 −2 −2
−6.5 −1 5.5 −2
−10 −1 −2 9.5


S3

[
(0, 0, 0, 1) (0, 0, 0, 1)

(0.75, 0, 0, 0.25) (0.05, 0.15, 0.6, 0.2)

] [
0 −2
−15 31

]

Table A2. Probability matrix of transition and semi-constant reward value with payoff strategy in
IoT-enabled Scenario 3.

State Probability of Transition in Scenario 3 Reward Value for Defender

S0 [(1, 0, 0, 0)]
[
−55

]
S1

 (0, 1, 0, 0) (0, 1, 0, 0) (0, 1, 0, 0)
(0, 0.4, 0.6, 0) (0, 0.999, 0.001, 0) (0, 0.75, 0.25, 0)
(0, 0.4, 0.6, 0) (0, 0.72, 0.28, 0) (0, 0.975, 0.025, 0)

  0 −3.5 −3.5
−17.25 17.25 −3.5
−28 −3.5 28


S2


(0, 0, 1, 0) (0, 0, 1, 0) (0, 0, 1, 0) (0, 0, 1, 0)

(0, 0, 0.23, 0.77) (0, 0.8, 0.2, 0) (0, 0.2, 0.8, 0) (0, 0.2, 0.8, 0)
(0, 0, 0.2, 0.8) (0, 0.3, 0.7, 0) (0, 0.8, 0.2, 0) (0, 0.2, 0.8, 0)
(0, 0, 0.2, 0.8) (0, 0.3, 0.7, 0) (0, 0.2, 0.8, 0) (0, 0.8, 0.2, 0)




0 −2 −3 −3
−6.95 6.95 −3 −3
−10.0 −2 10.0 −3
−10.0 −2 −3 10.0


S3

[
(0, 0, 0, 1) (0, 0, 0, 1)

(0.65, 0, 0, 0.35) (0.03, 0.2, 0.55, 0.22)

] [
0 −3.5
−14 33

]

Table A3. CVE and CVSS-based vulnerability table based on IoT devices.

Scenario CVE ID Vulnerability and Related Weakness 1 Related Node Exploitability
Score in CVSS 2.0

Home
IoT-based

organizational
network

(Scenario 1)

CVE-2018-3953 OS command injection Wi-Fi 8.0
CVE-2021-34991 Remote code execution with overflow Wi-Fi 6.5
CVE-2021-44632 Remote code execution with overflow Wi-Fi 10.0
CVE-2020-9759 Privilege escalation TV 10.0

CVE-2018-4082 Remote code execution with overflow, Memory corruption,
Denial-of-service TV 8.6

CVE-2021-30780 Privilege escalation TV 8.6
CVE-2019-19163 Remote code execution Wall pad 6.5
CVE-2019-13143 Privilege escalation with parameter pollution Door lock 10.0
CVE-2019-12944 Missing authorization Door lock 8.6
CVE-2020-25223 Remote code execution UTM 10.0
CVE-2020-17352 OS command injection Firewall 8.0

Industrial
IoT-based

organizational
network

(Scenario 2)

CVE-2016-9155 Improper access control Sensor camera 10.0
CVE-2018-10661 Bypass of restriction Sensor camera 10.0
CVE-2017-3209 Incorrect default permissions and missing authentication Sensor camera 6.5
CVE-2019-3944 Incorrect default permissions with deauthentication Sensor camera 10.0
CVE-2013-4860 Incorrect default permissions Thermometer 6.5

CVE-2018-11315 Bypass of restriction and related permissions Thermometer 6.5
CVE-2017-9944 Improper privilege management Meter device 10.0

CVE-2021-44165 Remote code execution with overflow Meter device 10.0
CVE-2018-0101 Remote code execution with double-free UTM 10.0

CVE-2021-34787 Bypass of restriction Firewall 8.6
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Table A3. Cont.

Scenario CVE ID Vulnerability and Related Weakness 1 Related Node Exploitability
Score in CVSS 2.0

Medical
IoT-based

organizational
network

(Scenario 3)

CVE-2018-8857 Hard-coded credentials CT device 3.9
CVE-2020-25175 Weak encryption of protected credentials CT device 10.0
CVE-2021-26262 Improper access control MRI device 10.0
CVE-2020-25179 Obtain credentials MRI device 10.0
CVE-2019-13543 Hard-coded credentials Medical sensor 10.0
CVE-2020-12041 Incorrect permission assignment Medical sensor 10.0
CVE-2020-25165 Improper authentication Medical sensor 10.0
CVE-2021-36807 Remote code execution with SQL injection UTM 8.0
CVE-2022-1040 Remote code execution with bypass Firewall 10.0

1 These vulnerabilities are CVSS-based numerical constant and used when optimizing attack–defense rewards
in IoDM.

Table A4. The major design parameters, their meanings, and the representative values in IoDM-
based testbed.

MTD Parameter Value Decoy Parameter Value

Time slot length for periodic mutation (s) 1–86,400 Activation time (s) 0–518,000
Mutation batch pool size 32–2048 Number of decoying hosts 1–5

Bellman-based mutation sampling size 8–2048 Number of decoying services 1–10
Mutation shuffling tactic [61] Random, GeneticHeuristic Number of decoying vulnerabilities 1–10

Mutation period decision scheme [61] Random, Adaptive, Hybrid Number of decoying beacons 1–20
Number of false surface views in topology 0–24 Number of decoying signals 1–10

Maximum number of branches in attack graph-tree 23 Level of attack severity with vulnerability L-M-H
Maximum number of deceptive signaling 0–25 Maximum number of compromised decoys 0–5

Mutation range of security solutions 0–24 Maximum number of sandboxing holes 0–1
Mutation range of IPv4 addresses 28–236 Feedback rate for adaptation each episode (%) 10−4–10−2

Mutation range of port numbers 210–216 Probability of interaction each attack step (%) 0–100
Mutation range of OS fingerprints 0–24 Probability of cloning (%) 1–90

Mutation range of protocol services 0–24 Probability of mimicking (%) 1–80
Mutation range of vulnerabilities 21–24 Probability of enticingness in decoy (%) 30–100
Probability of disinformation (%) 1–100 Probability of conspicuousness in decoy (%) 50–100

Probability of artificial disclosure (%) 1–100 Probability of variability in decoy (%) 10–100
Probability of reliability of deceptive signal (%) 1–100 Probability of differentiability in decoy (%) 70–100

Table A5. The major decision strategy arguments with MTD and decoy in IoDM-based testbed.

Parameter Value

Simulation time (s) 7200–518,000
Number of simulation run for Monte Calro 100

Attack time (s) 3600–518,000
Defense time (s) 3600–518,000

Number of scenarios 3
(Home IoT, Industrial IoT, Medical IoT)

Number of real IoT devices each node 1
Switch mode Virtual local area network (VLAN)

Number of CKC phases with IoT attacker 4–7
Validity of attak surface (%) 10–90

Efficiency of packet drop attacks (%) 10–90
Efficiency of packet modify attacks (%) 10–90

Discount factor (%) 0–100
Number of vulnerability and weakness each node 1–4

Methodology of constructing attack paths Attack graph, attack tree
Operating system Windows 10

Language Python 3.7.5 (Anaconda)
MILP-based general-sum game solver Gurobi optimizer 9.0

References
1. Wang, S.; Shi, H.; Hu, Q.; Lin, B.; Cheng, X. Moving Target Defense for Internet of Things Based on the Zero-Determinant Theory.

IEEE Internet Things J. 2020, 7, 661–668. [CrossRef]
2. Soussi, W.; Christopoulou, M.; Xilouris, G.; Gur, G. Moving Target Defense as a Proactive Defense Element for beyond 5G. IEEE

Commun. Stand. Mag. 2021, 5, 72–79. [CrossRef]

http://doi.org/10.1109/JIOT.2019.2943151
http://doi.org/10.1109/MCOMSTD.211.2000087


Electronics 2022, 11, 1623 36 of 38

3. Saputro, N.; Tonyali, S.; Aydeger, A.; Akkaya, K.; Rahman, M.A.; Uluagac, S. A Review of Moving Target Defense Mechanisms
for Internet of Things Applications. In Modeling and Design of Secure Internet of Things; John Wiley & Sons: New York, NY, USA,
2020; pp. 563–614.

4. Seo, S.; Han, S.; Kim, D. D-CEWS: DEVS-Based Cyber-Electronic Warfare M&S Framework for Enhanced Communication
Effectiveness Analysis in Battlefield. Sensors 2022, 22, 3147. [CrossRef]

5. Majid, M.; Habib, S.; Javed, A.R.; Rizwan, M.; Srivastava, G.; Gadekallu, T.R.; Lin, J.C.W. Applications of Wireless Sensor
Networks and Internet of Things Frameworks in the Industry Revolution 4.0: A Systematic Literature Review. Sensors 2022,
22, 2087. [CrossRef]

6. Zhu, M.; Anwar, A.H.; Wan, Z.; Cho, J.-H.; Kamhoua, C.; Singh, M.P. Game-Theoretic and Machine Learning-based Approaches
for Defensive Deception: A Survey. arXiv 2021, arXiv:2101.10121.

7. Fraunholz, D.; Anton, S.D.; Lipps, C.; Reti, D.; Krohmer, D.; Pohl, F.; Tammen, M.; Schotten, H.D. Demystifying deception
technique: A survey. arXiv 2018, arXiv:1804.06196.

8. Mohan, P.V.; Dixit, S.; Gyaneshwar, A.; Chadha, U.; Srinivasan, K.; Seo, J.T. Leveraging Computational Intelligence Techniques for
Defensive Deception: A Review, Recent Advances, Open Problems and Future Directions. Sensors 2022, 22, 2194. [CrossRef]

9. Heckman, K.E.; Stech, F.J.; Thomas, R.K.; Schmoker, B.; Tsow, A.W. Cyber Denial, Deception and Counter Deception. In Advances
in Information Security; Springer International Publishing: New York, NY, USA, 2015; ISBN 978-3-319-25131-8.

10. Heckman, K.E.; Stech, F.J.; Schmoker, B.S.; Thomas, R.K. Denial and Deception in Cyber Defense. Computer 2015, 48, 36–44.
[CrossRef]

11. Al Amin, M.A.R.; Shetty, S.; Njilla, L.; Tosh, D.K.; Kamhoua, C. Hidden markov model and cyber deception for the prevention of
adversarial lateral movement. IEEE Access 2021, 9, 49662–49682. [CrossRef]

12. Cho, J.H.; Sharma, D.P.; Alavizadeh, H.; Yoon, S.; Ben-Asher, N.; Moore, T.J.; Kim, D.S.; Lim, H.; Nelson, F.F. Toward Proactive,
Adaptive Defense: A Survey on Moving Target Defense. IEEE Commun. Surv. Tutor. 2020, 22, 709–745. [CrossRef]

13. Pawlick, J.; Colbert, E.; Zhu, Q. A game-theoretic taxonomy and survey of defensive deception for cybersecurity and privacy.
ACM Comput. Surv. 2019, 52, 1–28. [CrossRef]

14. Park, K.; Woo, S.; Moon, D.; Choi, H. Secure cyber deception architecture and decoy injection to mitigate the insider threat.
Symmetry 2018, 10, 14. [CrossRef]

15. Cohen, F. The Use of Deception Techniques: Honeypots and Decoys Deception. Handb. Inf. Secur. 2006, 3, 646–655.
16. Manadhata, P.K.; Wing, J.M. An attack surface metric. IEEE Trans. Softw. Eng. 2011, 37, 371–386. [CrossRef]
17. Li, H.; Zheng, Z. Optimal Timing of Moving Target Defense: A Stackelberg Game Model. In Proceedings of the MILCOM

2019—2019 IEEE Military Communications Conference (MILCOM), Norfolk, VA, USA, 12–14 November 2019; pp. 1–6.
18. Xie, Y.-X.; Ji, L.-X.; Li, L.-S.; Guo, Z.; Baker, T. An adaptive defense mechanism to prevent advanced persistent threats. Conn. Sci.

2021, 33, 359–379. [CrossRef]
19. Ferguson-Walter, K.; Mauger, J.; Fugate, S.; Major, M. Game theory for adaptive defensive cyber deception. In Proceedings of the

6th Annual Symposium on Hot Topics in the Science of Security, Nashville, TN, USA, 1–3 April 2019; pp. 1–8.
20. Hu, H.; Liu, J.; Tan, J.; Liu, J. SOCMTD: Selecting Optimal Countermeasure for Moving Target Defense Using Dynamic Game.

KSII Trans. Internet Inf. Syst. 2020, 14, 4157–4175.
21. Lei, C.; Ma, D.H.; Zhang, H.Q. Optimal strategy selection for moving target defense based on markov game. IEEE Access 2017, 5,

156–169. [CrossRef]
22. Xiong, X.L.; Yang, L.; Zhao, G.S. Effectiveness Evaluation Model of Moving Target Defense Based on System Attack Surface. IEEE

Access 2019, 7, 9998–10014. [CrossRef]
23. Zheng, J.; Siami Namin, A. A Markov Decision Process to Determine Optimal Policies in Moving Target. In Proceedings of

the 2018 ACM SIGSAC Conference on Computer and Communications Security, Toronto, ON, Canada, 15–19 October 2018;
pp. 2321–2323.

24. Maleki, H.; Valizadeh, S.; Koch, W.; Bestavros, A.; Van Dijk, M. Markov modeling of moving target defense games. In Proceedings
of the 2016 ACM Workshop on Moving Target Defense, Vienna, Austria, 24 October 2016; pp. 81–92.

25. Sengupta, S.; Kambhampati, S. Multi-agent Reinforcement Learning in Bayesian Stackelberg Markov Games for Adaptive Moving
Target Defense. arXiv 2020, arXiv:2007.10457.

26. Sengupta, S.; Chakraborti, T.; Kambhampati, S. MTDeep: Boosting the Security of Deep Neural Nets Against Adversarial Attacks
with Moving Target Defense. arXiv 2019, arXiv:1705.07213v3.

27. Qian, Y.; Shao, Q.; Wang, J.; Lin, X.; Guo, Y.; Gu, Z.; Wang, B.; Wu, C. EI-MTD:Moving Target Defense for Edge Intelligence
against Adversarial Attacks. arXiv 2020, arXiv:2009.10537.

28. Amich, A.; Eshete, B. Morphence: Moving Target Defense against Adversarial Examples. In Proceedings of the Annual Computer
Security Applications Conference, Austin, TX, USA, 6–10 December 2021; pp. 61–75.

29. Xu, X.; Hu, H.; Liu, Y.; Tan, J.; Zhang, H. Moving target defense of routing randomization with deep reinforcement learning
against eavesdropping attack. Digit. Commun. Networks. 2022, 8, 1–19. [CrossRef]

30. Song, Q.; Yan, Z.; Tan, R. DeepMTD: Moving Target Defense for Deep Visual Sensing against Adversarial Examples. ACM Trans.
Sens. Networks 2021, 18, 5. [CrossRef]

31. Yoon, S.; Cho, J.H.; Kim, D.S.; Moore, T.J.; Free-Nelson, F.; Lim, H. DESOLATER: Deep Reinforcement Learning-Based Resource
Allocation and Moving Target Defense Deployment Framework. IEEE Access 2021, 9, 70700–70714. [CrossRef]

http://doi.org/10.3390/s22093147
http://doi.org/10.3390/s22062087
http://doi.org/10.3390/s22062194
http://doi.org/10.1109/MC.2015.104
http://doi.org/10.1109/ACCESS.2021.3069105
http://doi.org/10.1109/COMST.2019.2963791
http://doi.org/10.1145/3337772
http://doi.org/10.3390/sym10010014
http://doi.org/10.1109/TSE.2010.60
http://doi.org/10.1080/09540091.2020.1832960
http://doi.org/10.1109/ACCESS.2016.2633983
http://doi.org/10.1109/ACCESS.2019.2891613
http://doi.org/10.1016/j.dcan.2022.01.003
http://doi.org/10.1145/3469032
http://doi.org/10.1109/ACCESS.2021.3076599


Electronics 2022, 11, 1623 37 of 38

32. Huang, Y.; Huang, L.; Zhu, Q. Reinforcement Learning for feedback-enabled cyber resilience. Annu. Rev. Control 2022, 1–52.
[CrossRef]

33. Kim, S.; Yoon, S.; Cho, J.H.; Kim, D.S.; Moore, T.J.; Free-Nelson, F.; Lim, H. DIVERGENCE: Deep Reinforcement Learning-based
Adaptive Traffic Inspection and Moving Target Defense Countermeasure Framework. IEEE Trans. Netw. Serv. Manag. 2021, 1–14.
[CrossRef]

34. Kim, S.; Yoon, S.; Lim, H. Deep Reinforcement Learning-Based Traffic Sampling for Multiple Traffic Analyzers on Software-
Defined Networks. IEEE Access 2021, 9, 47815–47827. [CrossRef]

35. Lockheed Martin. GAINING THE ADVANTAGE, Applying Cyber Kill Chain Methodology to Network Defense. Available
online: https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_
Cyber_Kill_Chain.pdf (accessed on 15 April 2022).

36. Potteiger, B.; Zhang, Z.; Cheng, L.; Koutsoukos, X. A Tutorial on Moving Target Defense Approaches within Automotive
Cyber-Physical Systems. Front. Futur. Transp. 2022, 2, 792573. [CrossRef]

37. Kanellopoulos, A.; Vamvoudakis, K.G. A Moving Target Defense Control Framework for Cyber-Physical Systems. IEEE Trans.
Automat. Contr. 2020, 65, 1029–1043. [CrossRef]

38. Brown, R.; Marti, A.; Jenkins, C.; Shannigrahi, S. Dynamic Address Validation Array (DAVA): A Moving Target Defense Protocol
for CAN bus. In Proceedings of the 7th ACM Workshop on Moving Target Defense, Virtual Event, USA, 9 November 2020;
pp. 11–19.

39. Woo, S.; Moon, D.; Youn, T.Y.; Lee, Y.; Kim, Y. CAN ID Shuffling Technique (CIST): Moving Target Defense Strategy for Protecting
In-Vehicle CAN. IEEE Access 2019, 7, 15521–15536. [CrossRef]

40. Liu, H.; Wang, S.; Li, Y. Event-Triggered Control and Proactive Defense for Cyber-Physical Systems. IEEE Trans. Syst. Man, Cybern.
Syst. 2022, 1–9. [CrossRef]

41. Wan, Z.; Cho, J.-H.; Zhu, M.; Anwar, A.H.; Kamhoua, C.; Singh, M.P. Foureye: Defensive Deception based on Hypergame Theory
Against Advanced Persistent Threats. arXiv 2021, arXiv:2101.02863. [CrossRef]

42. Huang, S.; Zhang, H.; Wang, J.; Huang, J. Markov Differential Game for Network Defense Decision-Making Method. IEEE Access
2018, 6, 39621–39634. [CrossRef]

43. Zhu, Q.; Basar, T. Game-theoretic approach to feedback-driven multi-stage moving target defense. In Proceedings of the
International Conference on Decision and Game Theory for Security, Fort Worth, TX, USA, 11–12 November 2013; pp. 246–263.

44. Ge, L.; Yu, W.; Shen, D.; Chen, G.; Pham, K.; Blasch, E.; Lu, C. Toward effectiveness and agility of network security situational
awareness using moving target defense (MTD). In Sensors and Systems for Space Applications VII, Proceedings of the SPIE DEFENSE
+ SECURITY, Baltimore, MD, USA, 5–9 May 2014; SPIE: Bellingham, WA, USA, 2014; Volume 9085, pp. 1–9.

45. Mireles, J.D.; Ficke, E.; Cho, J.H.; Hurley, P.; Xu, S. Metrics towards measuring cyber agility. IEEE Trans. Inf. Forensics Secur. 2019,
14, 3217–3232. [CrossRef]

46. Neti, S.; Somayaji, A.; Locasto, M.E. Software diversity: Security, entropy and game theory. In Proceedings of the 7th USENIX
conference on Hot Topics in Security, Bellevue, WA, USA, 7 August 2012; pp. 1–6.

47. Wright, M.; Venkatesan, S.; Albanese, M.; Wellman, M.P. Moving Target Defense against DDoS Attacks. In Proceedings of the
2016 ACM Workshop on Moving Target Defense, Vienna, Austria, 24 October 2016; pp. 93–104.

48. Carter, K.M.; Riordan, J.F.; Okhravi, H. A game theoretic approach to strategy determination for dynamic platform defenses. In
Proceedings of the Conference on Computer and Communications Security, Scottsdale, AZ, USA, 3–7 November 2014; pp. 21–30.

49. Colbaugh, R.; Glass, K. Predictability-oriented defense against adaptive adversaries. In Proceedings of the 2012 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), Seoul, Korea, 14–17 October 2012; pp. 2721–2727.

50. Hasan, M.M.; Rahman, M.A. Protection by Detection: A Signaling Game Approach to Mitigate Co-Resident Attacks in Cloud. In
Proceedings of the 2017 IEEE 10th International Conference on Cloud Computing (CLOUD), Honololu, HI, USA, 25–30 June 2017;
pp. 552–559.

51. Feng, X.; Zheng, Z.; Cansever, D.; Swami, A.; Mohapatra, P. A signaling game model for moving target defense. In Proceedings of
the IEEE INFOCOM 2017-IEEE Conference on Computer Communications, Atlanta, GA, USA, 1–4 May 2017; pp. 1–9.

52. Zhu, Q.; Clark, A.; Poovendran, R.; Basar, T. Deceptive routing games. In Proceedings of the 2012 IEEE 51st IEEE Conference on
Decision and Control (CDC), Maui, HI, USA, 10–13 December 2012; pp. 2704–2711.

53. Sengupta, S.; Vadlamudi, S.G.; Kambhampati, S.; Doupé, A.; Zhao, Z.; Taguinod, M.; Ahn, G.J. A game theoretic approach
to strategy generation for moving target defense in web applications. In Proceedings of the 16th International Conference on
Autonomous Agents and Multiagent Systems, AAMAS 2017, Sao Paulo, Brazil, 8–12 May 2017; Volume 1, pp. 178–186.

54. Sengupta, S.; Chowdhary, A.; Huang, D.; Kambhampati, S. General Sum Markov Games for Strategic Detection of Advanced
Persistent Threats Using Moving Target Defense in Cloud Networks. In International Conference on Decision and Game Theory for
Security; Springer: New York, NY, USA, 2019; pp. 492–512.

55. Li, H.; Shen, W.; Zheng, Z. Spatial-Temporal Moving Target Defense: A Markov Stackelberg Game Model. arXiv 2020,
arXiv:2002.10390.

56. Seo, S.; Kim, D. OSINT-based LPC-MTD and HS-decoy for organizational defensive deception. Appl. Sci. 2021, 11, 3402.
[CrossRef]

57. Seo, S.; Kim, D. SOD2G: A Study on a Social-Engineering Organizational Defensive Deception Game Framework through
Optimization of Spatiotemporal MTD and Decoy Conflict. Electronics 2021, 10, 3012. [CrossRef]

http://doi.org/10.1016/j.arcontrol.2022.01.001
http://doi.org/10.1109/TNSM.2021.3122923
http://doi.org/10.1109/ACCESS.2021.3068459
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
https://www.lockheedmartin.com/content/dam/lockheed-martin/rms/documents/cyber/Gaining_the_Advantage_Cyber_Kill_Chain.pdf
http://doi.org/10.3389/ffutr.2021.792573
http://doi.org/10.1109/TAC.2019.2915746
http://doi.org/10.1109/ACCESS.2019.2892961
http://doi.org/10.1109/TSMC.2022.3144337
http://doi.org/10.1109/TNSM.2021.3117698
http://doi.org/10.1109/ACCESS.2018.2848242
http://doi.org/10.1109/TIFS.2019.2912551
http://doi.org/10.3390/app11083402
http://doi.org/10.3390/electronics10233012


Electronics 2022, 11, 1623 38 of 38

58. Manadhata, P.K. Game Theoretic Approaches to Attack Surface Shifting. In Moving Target Defense II; Springer: New York, NY,
USA, 2013; pp. 1–13.

59. Zhang, H.; Zheng, K.; Wang, X.; Luo, S.; Wu, B. Strategy selection for moving target defense in incomplete information game.
Comput. Mater. Contin. 2020, 62, 763–786. [CrossRef]

60. Navas, R.E.; Cuppens, F.; Boulahia Cuppens, N.; Toutain, L.; Papadopoulos, G.Z. Physical resilience to insider attacks in IoT
networks: Independent cryptographically secure sequences for DSSS anti-jamming. Comput. Netw. 2021, 187, 107751. [CrossRef]

61. Ge, M.; Cho, J.H.; Kim, D.S.; Dixit, G.; Chen, I.R. Proactive defense for internet-of-Things: Integrating moving target defense with
cyberdeception. arXiv 2020, arXiv:2005.04220. [CrossRef]

62. Nizzi, F.; Pecorella, T.; Esposito, F.; Pierucci, L.; Fantacci, R. IoT security via address shuffling: The easy way. IEEE Internet Things
J. 2019, 6, 3764–3774. [CrossRef]

63. Zeitz, K.; Cantrell, M.; Marchany, R.; Tront, J. Changing the game: A micro moving target IPv6 defense for the internet of things.
IEEE Wirel. Commun. Lett. 2018, 7, 578–581. [CrossRef]

64. Navas, R.E.; Sandaker, H.; Cuppens, F.; Cuppens, N.; Toutain, L.; Papadopoulos, G. IANVS: A moving target defense framework
for a resilient Internet of Things. In Proceedings of the 2020 IEEE Symposium on Computers and Communications (ISCC),
Rennes, France, 7–10 July 2020; pp. 1–6.

65. Kyi, W.; Oo, K. A Framework of Moving Target Defenses for the Internet of Things. Bull. Netw. Comput. Syst. Softw. 2019, 8,
104–107.

66. Mercado-Velazquez, A.A.; Escamilla-Ambrosio, P.J.; Ortiz-Rodriguez, F. A Moving Target Defense Strategy for Internet of Things
Cybersecurity. IEEE Access 2021, 9, 118406–118418. [CrossRef]

67. Van Dijk, M.; Juels, A.; Oprea, A.; Rivest, R.L. FlipIt: The game of “stealthy takeover”. J. Cryptol. 2013, 26, 655–713. [CrossRef]
68. Tan, J.L.; Tan, J.L.; Zhang, H.W.; Zhang, H.W.; Zhang, H.Q.; Zhang, H.Q.; Lei, C.; Lei, C.; Jin, H.; Jin, H.; et al. Optimal Timing

Selection Approach to Moving Target Defense: A FlipIt Attack-Defense Game Model. Secur. Commun. Netw. 2020, 2020, 3151495.
[CrossRef]

69. Tan, J.; Zhang, H.; Zhang, H.; Hu, H.; Lei, C.; Qin, Z. Optimal temporospatial strategy selection approach to moving target
defense: A FlipIt differential game model. Comput. Secur. 2021, 108, 102342. [CrossRef]

70. Singh, R.; Dwivedi, A.D.; Srivastava, G.; Wiszniewska-Matyszkiel, A.; Cheng, X. A game theoretic analysis of resource mining in
blockchain. Cluster Comput. 2020, 23, 2035–2046. [CrossRef]

71. Zhou, J.; Cui, G.; Hu, S.; Zhang, Z.; Yang, C.; Liu, Z.; Wang, L.; Li, C.; Sun, M. Graph neural networks: A review of methods and
applications. AI Open 2020, 1, 57–81. [CrossRef]

http://doi.org/10.32604/cmc.2020.06553
http://doi.org/10.1016/j.comnet.2020.107751
http://doi.org/10.1145/3467021
http://doi.org/10.1109/JIOT.2019.2892003
http://doi.org/10.1109/LWC.2018.2797916
http://doi.org/10.1109/ACCESS.2021.3107403
http://doi.org/10.1007/s00145-012-9134-5
http://doi.org/10.1155/2020/3151495
http://doi.org/10.1016/j.cose.2021.102342
http://doi.org/10.1007/s10586-020-03046-w
http://doi.org/10.1016/j.aiopen.2021.01.001

	Introduction 
	Background of Cyber Deception 
	Problem Statement and Related Limitation 
	Research Goal and Key Contributions 
	Structure of Paper 

	Related Work 
	Game-Enabled Defensive Deception Techniques with MTD 
	MTD-Based Defensive Deception Techniques for IoT 
	Taxonomy Analysis by Previous Studies for Proposed Model 

	Proposed Organizational Deceptive Modeling for IoT and Related Strategies 
	Design Principle 
	IoT-Enabled MTD and Decoy-Based Deception Process 
	Construction of Deceptive Game Architecture with IoT-Based Organizational Network 
	Regularization of General-Sum Game Mechanisms 
	Optimization of Attack-Defense Competition with Game Equilibrium 


	Experiments 
	Configuration of Organizational IoT-Enabled Scenarios and Detailed Simulation Parameters 
	Results 
	Comparative Analysis of Each IoT-Based Scenario 
	Sensitivity Analysis with Decision Strategy 


	Discussion 
	Conclusions 
	Appendix A
	References

