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Abstract: Rapid and accurate fault diagnosis of smart meters can greatly improve the operational
and maintenance ability of power systems. Focusing on the historical fault data information of smart
meters, a fault diagnosis model of smart meters based on an improved capsule network (CapsNet)
is proposed. First, we count the sample size of each fault type, and a mixed sampling method
combining undersampling and oversampling is used to solve the problem of distribution imbalance
of sample size. The one-hot encoding method is adopted to solve the problem of the fault samples
containing more discrete and disordered data. Then, the strong adaptive feature extraction capability
and nonlinear mapping capability of the deep belief network (DBN) are utilized to improve the single
convolution layer feature extraction part of a traditional capsule network; DBN can also address the
problem of high data dimensions and sparse data due to one-hot encoding. The important features
and key information of the input sample are extracted and used as the input of the primary capsule
layer, and the dynamic routing algorithm is used to construct the digital capsule. Finally, the results
of experiments show that the improved capsule network model can effectively improve the accuracy
of diagnosis and shorten the training time.

Keywords: capsule network; deep belief network; fault diagnosis; smart meter

1. Introduction

The fault types of smart meters are complex and varied. The main causes of the failure
of smart meters include the differences in the quality of components in different production
batches of different manufacturers, long-time high load operation and the impact of external
complex environment, etc. When a fault occurs, maintenance personnel are required to fix
it quickly. However, in actual operation, maintenance is not timely due to the failure in
accurately determining the specific fault type. Fast and accurate fault diagnosis of smart
meters is the key to improving the maintenance efficiency of smart meters. The traditional
method of troubleshooting mainly uses manual after-the-event troubleshooting. Although
this method can achieve the purpose of fault diagnosis, a power information system with
ten million users needs to invest many human resources, and the diagnosis timeliness also
seriously lags behind. Therefore, it is necessary to adopt online and efficient methods to
replace manpower to realize the fault diagnosis of smart meters. Xiong et al. [1] proposed
carrier module fault detection methods and field meter and concentrator communication
port fault detection methods based on online and offline modes. Jing et al. [2] designed
a state inspection system of the electric energy meter, which was based on the diagnosis
model of tree group anomaly diagnosis, to solve the problem of on-site calibration, check
no goals and other issues, but only the measured fault state was judged, and the fault type
of diagnosis was single. Zhou et al. [3], focusing on the abnormal data within the massive
data of a power grid, proposed a fault traceability model of a metering device based on
a deep belief network (DBN) to judge whether the operation state of the metering device
is normal. The above research only diagnoses specialized faults, such as power loss and
data mutation of smart meters, and cannot be widely used in the fault diagnosis of smart
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meters. Li et al. [4] proposed a multi-classification method of smart meter fault types based
on model adaptive selection and fusion. Xue et al. [5] used a method of combining fuzzy
Petri net theory with expert systems to diagnose power information system faults, which
improves the efficiency of fault diagnosis of power information systems. However, the
effectiveness of this method largely depends on the expertise of experts, and there are some
difficulties in practical implementation. With the development of data mining technology,
an increasing number of deep learning methods have been applied to fault diagnosis [6–11],
which brings new opportunities for the development of smart meter fault diagnosis.

Hinton et al. [12] proposed a capsule network (CapsNet) based on a convolutional
neural network (CNN). The neuron scalar input and output are changed into vector form,
the pooling layer structure is discarded, and the convolution layer and the capsule layer are
used to study the sample features effectively to avoid the loss of some useful information
in the CNN pooling layer and a series of problems, such as overfitting due to too many
parameters in the fully connected layer, to gain a strong sense of judgement. Currently,
CapsNet has been proven to have better performance relative to CNN in image recognition,
target detection, semantic segmentation, and visual tracking [13–16]. It also has good
application in fault diagnosis [17–20], but has rarely been applied to the fault diagnosis of
smart meters. The feature extraction of CapsNet proposed by Hinton only uses single-layer
convolution; on this basis, a diagnostic method of double-convolution layer CapsNet is
presented in reference [21]. Sun et al. [22] used a multiscale convolution kernel inception
structure and spatial attention mechanism to replace the single convolution layer of tra-
ditional CapsNet for feature extraction and obtained prominent feature data of key areas
at different scales. Wang et al. [23] proposed a new CapsNet based on wide convolution
and multiscale convolution for fault diagnosis. Compared with the single convolution
layer, these methods have obvious improvements, but the multi convolution layer CapsNet
only adds a convolution layer, the convolution layers are connected in series, and features
are not further extracted from the original image data. Increasing the width and depth
of convolution will increase the parameters of each layer of the model, and the choice of
parameters is a complex operation. However, DBN has strong feature extraction ability and
good compatibility with other algorithms. It can fully map the fault information hidden
in the original signal [24,25], so DBN combined with CapsNet is proposed for the fault
diagnosis of smart meters.

In this paper, according to the historical fault data collected by a power information
system, a method of smart meter fault diagnosis based on a DBN improved capsule network
(DBN-CapsNet) is proposed. The mixed sampling method combining undersampling and
oversampling is used to solve the problem of data imbalance of various fault samples. The
one-hot encoding method is adopted to solve the problem that the fault samples contain
more discrete and disordered data. The strong adaptive feature extraction ability and
nonlinear mapping ability of DBN are used to improve the single convolution layer feature
extraction part of CapsNet. DBN also addresses the problem of high data dimensions and
sparse data due to one-hot encoding, and the key features and information of the input
samples are extracted and used as the input of the CapsNet for fault diagnosis.

The remainder of this paper is organized as follows. Section 2 introduces the basic
theory of capsule network and deep belief network. In Section 3, we propose a fault
diagnosis method of a smart meter based on an improved capsule network. Section 4 uses
experiments to verify the effectiveness and superiority of the method, and analyzes the
results. Section 5 concludes the paper and discusses future research directions.

2. Basic Theory
2.1. Capsule Network

The CapsNet model proposed by Hinton et al. is also called the vector capsule network.
Since the vector is selected as the capsule and the output of the network is also a vector, the
direction of the vector can be used to represent the existence of the target, and the length of
the vector can represent the characteristics of the target. CapsNet is a high-performance
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neural network classifier that consists of a convolution layer, a primary capsule layer, and a
digital capsule layer. The structure of the entire CapsNet is shown in Figure 1.
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Figure 1. Capsule network structure diagram.

The network structure consists of three parts. The first part is the conventional
convolution operation between the input layer and convolution layer, the second part
is the primary capsule generation operation between the convolution layer and primary
capsule layer, and the third part is the advanced capsule generated between the primary
capsule layer and the digit capsule layer. When constructing the primary capsule, the scalar
fault features extracted from the convolution layer are arranged into vector fault features,
and the primary capsule ui is generated, where i represents the i-th fault characteristic
capsule. Information communication between the digital capsule layer and the primary
capsule layer occurs through dynamic routing. The calculation method of dynamic routing
determines the dynamic connection between the high-level and low-level hidden layers, so
the model can automatically screen more effective capsules to improve performance; the
pseudo code of dynamic routing algorithm [12] is shown in Figure 2.
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Step 1: Multiply the primary capsule and the weight matrix to obtain the example
prediction capsule. The mathematical formula is as follows:

ûj|i = wijui (1)

In Formula (1), i represents the primary capsule label, j is the digital capsule label, ui
is the input vector of the primary capsule layer, which represents the low-level feature of
the fault data in the input layer, such as the single fault attribute of the fault data. ûj|i is an
example prediction capsule, which represents a high-level feature j derived from low-level
feature i, and wij is the weight matrix, which contains the connection relationship between
the low-level feature and the high-level feature, for example, the relationship between
different fault attributes of fault data.

Step 2: Calculate the coupling coefficient between the example prediction capsule and
the digital capsule through Formula (2) and calculate the weighted sum of all the example
prediction capsules to obtain the digital capsule.

cij = exp
(
bij

)
/ ∑

j
exp (bij) (2)
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sj = ∑
j

cij û j|i (3)

In Formulas (2) and (3), cij and bij respectively represent the coupling coefficient and
a priori connection weight between the example prediction capsule ûj|i and the digital
capsule sj. The initial values of bij are all 0, ∑ cij = 1 and cij is updated via dynamic routing,
which determines which high-level capsules a low-level capsule is sent to.

Step 3: Compress the length of the digital capsule sj to [0, 1] based on the squash
function of Formula (4), and the digital capsule layer is obtained. Output the digital capsule
vj and update the prior connection weight bij.

vj = squash
(
sj
)
=

‖sj
2‖

1 + ‖sj
2‖ ·

sj

‖sj
2‖ (4)

bij ← bij + ûj|i·vj (5)

The vector transfer between low-layer and high-layer capsules is realized by dynamic
routing, and the correlation is measured by a scalar product. The length of the vector repre-
sents the existence of an entity, and key features such as spatial position are constructed.

2.2. Deep Belief Network

A DBN is a neural network model consisting of a multiple restricted Boltzmann
machine (RBM) [24], the core RBM unit is an energy-based model, and the structure
diagram is shown in Figure 3.
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The energy of the RBM system determined by state (v, h) can be expressed as:

E(v, h|θ) = −
n

∑
i=1

aivi −
m

∑
j=1

bjhj −
n

∑
i=1

m

∑
j=1

viwijhj (6)

In Formula (6), θ = (wij, ai, bi) is the RBM parameter, n and m are the number of neurons
in the visible and hidden layers, v is the input unit vector of the visible layer, and vi is the
state of neuron i in the visible layer. Its bias value is set as ai. h is the output unit vector of
the hidden layer, hj is the state of the hidden layer neuron j, and the bias value is bj. The
connection weights of neurons i and j are defined as wij.

The joint probability distribution of (v, h) can be obtained from Formula (7):

p(v, h|θ) = exp(−E(v, h|θ))/ ∑v,h exp(−E(v, h|θ)) (7)

The marginal probability distribution of v, h can be obtained by Formulas (8) and (9):

p(v|θ ) = ∑h exp(−E(v, h|θ))/ ∑v,h exp(−E(v, h|θ)) (8)

p(h|θ ) = ∑v exp(−E(v, h|θ))/ ∑v,h exp(−E(v, h|θ)) (9)

When hj = 1 or vi = 1, the conditional probability function is:

p
(
hj = 1

∣∣v, θ
)
= sigm(bj +

n

∑
i=1

viwij) (10)
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p(vi = 1|h, θ) = sigm(ai +
m

∑
j=1

wijhj) (11)

In Formulas (10) and (11), sigm is the activation function.
DBN feature extraction is a layer-by-layer learning process of multiple RBMs, including

forward learning and reverse reconstruction. DBNs can map complex signals to output
and has good feature extraction ability [25]. The layer-by-layer learning process is shown
in Figure 4.
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DBN solves the optimization problem of deep-level neural network by using layer-by-
layer training method, and gives the whole network a better initial weight by layer-by-layer
training, meaning that the network can reach the optimal solution as long as it is fine-tuned.

3. DBN-CapsNet Fault Diagnosis Method
3.1. Structure of DBN-CapsNet

To improve the feature extraction ability of CapsNet for fault data, DBN is used to
improve the single convolution structure of CapsNet and build a more comprehensive
and rich feature extraction unit. Combined with the primary capsule structure and digital
capsule structure, a DBN improved capsule network (DBN-CapsNet) model is proposed,
and its structure is shown in Figure 5.
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The input data of DBN-CapsNet are the historical fault data information of smart
meters after one-hot encoding. The front end of the network adopts a double hidden
layer DBN structure and convolution layer for feature extraction. DBN can also solve
the problem of high data dimensions and sparse data due to one-hot encoding. The
reshape layer transforms the output of the DBN into the input suitable for the convolution
layer, which ensures the sufficiency of information extraction, and the function of feature
acquisition is obvious. The back end adopts a capsule structure to construct vector neurons.
The primary capsule stores low-level features, and the digital capsule stores high-level
features. Transmission from the primary capsule to the digital capsule relies on the dynamic
routing algorithm, and fault diagnosis is realized by dynamic routing. The number of
vectors of the digital capsule is the number of fault types of the smart meter, and the norm
of each vector of the digital capsule forms the output vector, which corresponds to the
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probability of the occurrence of different fault types. The fault type corresponding to the
vector with the largest norm value is the final diagnosis result.

3.2. Fault Diagnosis Process

The smart meter fault diagnosis process based on the DBN-CapsNet model is shown
in Figure 6.
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Step 1: Collect smart meter fault data.
Step 2: Pre-process the fault sample data. Fault samples with missing values are

deleted; whether each attribute could be used as the input of the fault diagnosis model is
judged; the fault types of the samples are analyzed statistically to screen the fault types;
and one-hot encoding is used to encode the discrete and disordered attributes [26].

Step 3: Conduct an unbalanced data sampling and dataset dividing. The mixed
sampling method of oversampling and undersampling is adopted [27]. Random sampling
for fault types that need undersampling and SMOTE (Synthetic Minority Over-Sampling
Technique, SMOTE) sampling for fault types that need oversampling are conducted [28].
The formula for determining the theoretical sample size of each fault type after sampling is
as follows:

N_newi =

{
Ni − a ∗ (Ni − Nmean) (undersampling)
Ni + a ∗ (Nmean − Ni) (oversampling)

, i = 1, 2, . . . M (12)

Suppose there are M fault types in the fault dataset of smart meters, N_newi is the
sample size of type i after sampling, Ni is the sample size of type i before sampling, and a
is the sample balance coefficient. Here, a = 0.5, and Nmean represents the mean value of the
sample size of all fault types before sampling. If Ni is greater than Nmean, the undersampling
method should be adopted; otherwise, the oversampling method should be adopted.

The dataset is divided into a training set, verification set and test set. The first two
are used to train the parameters of the DBN-CapsNet model, and the test set is used to
evaluate the performance of the DBN-CapsNet fault diagnosis model.

Step 4: Build the DBN structure and convolution layer and set network parameters to
realize fault feature extraction.

Step 5: Construct the primary capsule and the digital capsule based on the dynamic
routing algorithm.
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Step 6: Train the DBN-CapsNet model. The back propagation algorithm is used
to complete the training of DBN-CapsNet, including two processes: forward excitation
propagation and back weight update. In the process of forward excitation propagation,
the input features are transmitted to the output layer after being processed by the DBN
layer, convolution layer and capsule layer, and the loss function value (error) is calculated
through the diagnostic results and actual results. In the process of back weight updating,
first, the chain rule is used to transfer the error from the output layer to the middle layer.
Then, the weight of each layer is updated by the gradient descent method. When the
predetermined epoch is reached, the training is stopped.

Because CapsNet allows multiple types to exist at the same time, the traditional cross-
entropy loss cannot be used directly. An alternative is to use the margin loss function,
which is expressed as:

Lk = Tk ·max
(
0, m+ − ‖vk‖

)2
+ λ(1− Tk)max

(
0, ‖vk‖ −m−

)2 (13)

k is the number of types; vk represents the output vector of type k; Lk represents the loss of
type k; Tk is the indicator function of classification (1 for existence and 0 for nonexistence);
m+ is the upper bound, punishing false-positive, that is, the existence of type k is predicted
but it does not exist; m− is the lower bound, punishing false negative, that is, type k is
predicted to not exist but it does exist; and λ is the proportion coefficient, which adjusts the
proportion of the two. Here, m+ = 0.9, m− = 0.1, and λ = 0.5.

The meaning of reconstruction is to build the actual data of this type with the predicted
type. The reconstruction loss is calculated by constructing a three-layer connecting layer
after the digit capsule layer. As shown in Figure 7, we obtained the reconstructed output
data and calculated the sum of the square of the distance between the actual data and the
output data as the loss value.
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Overall loss = Margin loss + α* Reconstruction loss, where α = 0.01 and margin loss
is dominant.

Step 7: The diagnostic performance of the DBN-CapsNet model is evaluated by the
test set, and the diagnostic results are output. The confusion matrix is an important tool
to evaluate the performance of the classification model. It can be used to calculate the
accuracy rate (A), precision rate (P), recall rate (R) and F value. As shown in Figure 8,
suppose there are k fault types, and nij represents the number of samples that diagnose
type i as type j.

A = ∑k
i=1 nii/ ∑k

i=1 ∑k
j=1 nij (14)

Pi = nii/ ∑k
j=1 nji (15)

Ri = nii/ ∑k
j=1 nij (16)

Fi = 2PiRi/(Pi + Ri) (17)

Macro F1 =
1
k ∑k

i=1 Fi (18)
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As seen from Formula (14), the accuracy rate is a measure of the average accuracy
of the overall diagnosis. For the multiclassification problem, the precision rate P, recall
rate R and F value should also be considered. The precision rate is the accuracy of the
classification model for a certain type, and the recall rate is the coverage of the classification
model for a certain type. The F value is a measure of the accuracy and coverage of the
classification model for a certain type, and it is a harmonic average of the precision and
recall. Macro F1 combines the two indicators of precision rate and recall rate, so accuracy
rate and Macro F1 are used as the evaluation indicators of model diagnosis performance.

4. Example Verification
4.1. Fault Dataset Preparation of Smart Meter
4.1.1. Introduction of Dataset

At present, the data center of the power grid system collects the operation data of the
smart meter every day. The fault data information includes the manufacturer, equipment
type, asset number, operation date, equipment status, fault discovery date, fault source,
working time, power supply unit, equipment specification, communication mode and
other related attributes of the failed smart meter. Due to the large number of smart meter
suppliers, the internal design and components of different smart meters are also different.
Therefore, smart meters often show family defects, and smart meters of the same batch
from the same manufacturer are more likely to have the same type of fault. An increase in
the working time will reduce the reliability of smart meters. Smart meters have a certain
life expectancy, and with increasing working time, the ageing of their components and
battery wear-out will cause smart meters to be more prone to failure, for example, error over
tolerance, capacitor damage, battery damage and other hardware damage. Attributes of the
dataset that are obviously independent of the fault type are deleted, the current attributes
are integrated, and finally the attributes that affect the fault type are retained, including
10 attributes: equipment type, equipment status, equipment specification, communication
mode, manufacturer, power supply unit, fault source, put into operation month, fault
month, and normal operation duration (years).

4.1.2. Data Pretreatment

First, the samples with missing data are eliminated, and then the fault types of samples
are analyzed statistically. Some fault types have too few samples (sample size is less than
100), so we do not perform an in-depth study and delete the relevant sample data. The
remaining fault types are numbered 0–5 in ascending order of the sample size. In the
remaining sample data, there are attributes represented by the text such as equipment type,
equipment status, equipment specification, communication mode, manufacturer, power
supply unit and fault source; these attributes are discrete and unordered. In this paper,
the one-hot encoding method is used to digitize these attributes to better carry out the
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following deep learning (the three attributes of put into operation month, fault month, and
normal operation duration do not need one-hot encoding). The distribution histogram of
the size of the failure samples is drawn, as shown in Figure 9.
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From Figure 9, the size of samples of each fault type is not balanced, as fault type 4 and
5 account for a large proportion, totaling nearly 92%, while fault type 0 to type 3 account
for only approximately 8%. An imbalance in the sample size will affect the result of fault
diagnosis and the classification model will ignore small sample types. Therefore, this paper
adopts the mixed sampling method of oversampling and undersampling, i.e., random
sampling for fault types that require undersampling and SMOTE sampling for fault types
that require oversampling. The sample size after mixed sampling of unbalanced data is
shown in Table 1.

Table 1. Sample size before and after sampling.

Fault Type Number Fault Type Sample Size
before Sampling

Sample Size
after Sampling

Proportion
after Sampling

0 Overload burn-out meter 267 1865 8.97%
1 Battery failure 307 1885 9.07%
2 Pulse sampling failure 330 1897 9.13%
3 Clock out of order 863 2163 10.41%
4 Communication failure 3879 3671 17.66%
5 Electromechanical failure 15,142 9303 44.76%

Mean 3464 /

As shown in Table 1, comparing the sample proportion before and after sampling,
the sample proportion after using the mixed sampling method proposed in this paper is
significantly more balanced than that before sampling, and the gap between sample sizes is
significantly reduced.

4.2. Performance Verification of DBN-CapsNet Fault Diagnosis
4.2.1. DBN-CapsNet Network Structure and Parameter Settings

To improve the fault diagnosis accuracy of smart meters, it is necessary to probe
and search for the best network structure and parameters before training and improving
the capsule network. After data processing and one-hot encoding, the input layer is a
1 × 136 vector and a double hidden layer DBN network structure composed of RBM1 and
RBM2 is established; the last three column vectors do not need to be input into DBN, and
these are added to the final output of DBN. A capsule network consisting of a convolution
layer and capsule layer is established. Since there are six fault types in smart meters, the
output layer is a 1 × 6 vector, which represents the fault types of input samples. The
number of epochs for the network training was 350, the batch size was 200, the Adam
algorithm was selected for the optimizer, the learning rate was 0.01, and the number of
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iterations of dynamic routing was set to three. The specific DBN-CapsNet network structure
and parameter settings are shown in Table 2.

Table 2. Network structure and parameter settings of DBN-CapsNet.

Layers Structure and Parameters Output Size

1 Input layer 1× 136

2

DBN structure:
Number of RBM1 hidden neurons: 100
Number of RBM2 hidden neurons: 80

Number of neurons in DBN output layer: 61

1× 64

3 Reshape layers 1× 8× 8

4 Convolution layer: 56 convolution kernels, the size of
convolution kernels is 3× 3, and the activation function is ReLU. 6× 6× 56

5 Primary capsule: the output channel is 56, the capsule dimension
is 8, and the convolution kernel size is 3× 3. 4× 4× 8× 56

6 Digit capsule: the number of output capsules is 6, the dimension
of output capsules is 16, and the activation function is Squash. 6× 10

7 Output layer 1 × 6

4.2.2. Model Training and Diagnosis Result Analysis

During the experiment, 80% of the smart meter fault dataset is used as the training
dataset and 20% is taken as the test dataset. To avoid the randomness of the experimental
results caused by the randomness of dataset division, the dataset is randomly divided
and trained five times, and the median value of its diagnostic results is taken as the final
experimental result. The training dataset is used to train the model with hierarchical 10-fold
cross validation [4]. The main purpose of randomly selecting 10% of the training set as the
verification set is to prevent the model from overfitting the training samples and losing
the ability to fit to and predict other data to ensure the reliability of the results of the
classification model. Then, the test dataset is used to validate the trained model.

The method of the proposed method runs under PyCharm software, and the depth
learning framework uses TensorFlow 2.6.0 and Keras 2.6.0. The computer hardware con-
figuration is AMD Ryzen7 4800U with Radeon Graphics (16 CPUs), 1.8 GHz. The model
training results are as follows:

As shown in Figure 10, the loss function value of the training set decreases with
increasing epochs. When the epoch reaches 300, the value of the loss function of DBN-
CapsNet tends to be stable, which shows that DBN-CapsNet has converged. When the
epoch reaches 350, the loss value is 0.08, the trained DBN-CapsNet is used for subsequent
fault diagnosis tasks. The fault diagnosis results of the model are shown in Figure 11.

We calculate the precision rate, recall rate and F value according to Figure 11, and the
results are shown in the Table 3.

Electronics 2022, 11, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 10. The change in loss value during training. 

 

Figure 11. Confusion matrix of DBN-CapsNet diagnostic results. 

We calculate the precision rate, recall rate and F value according to Figure 11, and the 

results are shown in the Table 3. 

Table 3. Precision rate, recall rate and F value of DBN-CapsNet diagnostic results. 

Fault Type Number Precision Rate Recall Rate F Value 

0 0.80 0.85 0.83 

1 0.88 0.85 0.86 

2 0.83 0.82 0.82 

3 0.79 0.80 0.79 

4 0.67 0.66 0.66 

5 0.83 0.83 0.83 

As seen from Table 3, DBN-CapsNet has a good diagnostic effect for fault types 0, 1, 

2, and 5 with precision rates, recall rates and F value above 0.8, and the fault type num-

bered 4 is poor. As seen from the Figure 11, communication failure is easily misdiagnosed 

as electromechanical failure. Mainly because the external manifestations of these faults 

are similar, it is difficult to judge directly and accurately through the characteristic attrib-

utes of the fault dataset, and the maintenance personnel need to diagnose the faulty smart 

meter further professionally. Some factors affecting the fault diagnosis performance of the 

model are analyzed below: 

(1) The effect of the size of the batch on the diagnostic performance of DBN-CapsNet 

was analyzed. The batch size is the number of samples required for each round of training. 

The batch size was set as 50, 100, 200, 300, 400 and 500 for simulation, and the evaluation 

indicators were counted. As shown in Table 4, with increasing batch size, the accuracy 

rate of DBN-CapsNet and Macro F1 first increased and then decreased. When the batch 

size is 200, DBN-CapsNet has the highest accuracy rate and Macro F1, indicating the best 

performance for fault diagnosis. In terms of time, increasing the batch size can speed up 

Figure 10. The change in loss value during training.



Electronics 2022, 11, 1603 11 of 15

Electronics 2022, 11, x FOR PEER REVIEW 11 of 16 
 

 

 

Figure 10. The change in loss value during training. 

 

Figure 11. Confusion matrix of DBN-CapsNet diagnostic results. 

We calculate the precision rate, recall rate and F value according to Figure 11, and the 

results are shown in the Table 3. 

Table 3. Precision rate, recall rate and F value of DBN-CapsNet diagnostic results. 

Fault Type Number Precision Rate Recall Rate F Value 

0 0.80 0.85 0.83 

1 0.88 0.85 0.86 

2 0.83 0.82 0.82 

3 0.79 0.80 0.79 

4 0.67 0.66 0.66 

5 0.83 0.83 0.83 

As seen from Table 3, DBN-CapsNet has a good diagnostic effect for fault types 0, 1, 

2, and 5 with precision rates, recall rates and F value above 0.8, and the fault type num-

bered 4 is poor. As seen from the Figure 11, communication failure is easily misdiagnosed 

as electromechanical failure. Mainly because the external manifestations of these faults 

are similar, it is difficult to judge directly and accurately through the characteristic attrib-

utes of the fault dataset, and the maintenance personnel need to diagnose the faulty smart 

meter further professionally. Some factors affecting the fault diagnosis performance of the 

model are analyzed below: 

(1) The effect of the size of the batch on the diagnostic performance of DBN-CapsNet 

was analyzed. The batch size is the number of samples required for each round of training. 

The batch size was set as 50, 100, 200, 300, 400 and 500 for simulation, and the evaluation 

indicators were counted. As shown in Table 4, with increasing batch size, the accuracy 

rate of DBN-CapsNet and Macro F1 first increased and then decreased. When the batch 

size is 200, DBN-CapsNet has the highest accuracy rate and Macro F1, indicating the best 

performance for fault diagnosis. In terms of time, increasing the batch size can speed up 

Figure 11. Confusion matrix of DBN-CapsNet diagnostic results.

Table 3. Precision rate, recall rate and F value of DBN-CapsNet diagnostic results.

Fault Type Number Precision Rate Recall Rate F Value

0 0.80 0.85 0.83
1 0.88 0.85 0.86
2 0.83 0.82 0.82
3 0.79 0.80 0.79
4 0.67 0.66 0.66
5 0.83 0.83 0.83

As seen from Table 3, DBN-CapsNet has a good diagnostic effect for fault types 0, 1, 2,
and 5 with precision rates, recall rates and F value above 0.8, and the fault type numbered
4 is poor. As seen from the Figure 11, communication failure is easily misdiagnosed as
electromechanical failure. Mainly because the external manifestations of these faults are
similar, it is difficult to judge directly and accurately through the characteristic attributes of
the fault dataset, and the maintenance personnel need to diagnose the faulty smart meter
further professionally. Some factors affecting the fault diagnosis performance of the model
are analyzed below:

(1) The effect of the size of the batch on the diagnostic performance of DBN-CapsNet
was analyzed. The batch size is the number of samples required for each round of training.
The batch size was set as 50, 100, 200, 300, 400 and 500 for simulation, and the evaluation
indicators were counted. As shown in Table 4, with increasing batch size, the accuracy
rate of DBN-CapsNet and Macro F1 first increased and then decreased. When the batch
size is 200, DBN-CapsNet has the highest accuracy rate and Macro F1, indicating the best
performance for fault diagnosis. In terms of time, increasing the batch size can speed up
the training speed, but it will affect the generalization ability of the network and lead to
the degradation of fault diagnosis performance. In summary, the batch size should be
determined according to the size of the dataset and the performance of the computer. In
this paper, the batch size is set to 200 to achieve high performance for DBN-CapsNet.

Table 4. Results under different batch size.

Batch Size Accuracy Rate Macro F1 Training Time (s)

50 0.7958 0.7950 4775
100 0.7967 0.7950 3886
200 0.7989 0.7983 3779
300 0.7811 0.7783 3603
400 0.7746 0.7700 3522
500 0.7768 0.7700 3449
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(2) The influence of optimizer selection on DBN-CapsNet diagnostic performance
is analyzed. Different optimizers are set up and simulated. The evaluation indicators
are shown in Table 5. When Adam, RMSprop and Adamax are used as optimizers, the
improved capsule network has better performance. The accuracy rate and Macro F1
indicators of the Adam algorithm are higher than those of the other five optimizers, and the
performance of fault diagnosis is the best. Further observation shows that the corresponding
indicators of the Adagrad, SGD, and Adadelta algorithms are lower than 0.65, indicating
that these optimizers of DBN-CapsNet are not suitable for the fault diagnosis task of
smart meters.

Table 5. Results under different optimizers.

Optimizer Accuracy Rate Macro F1

SGD 0.4472 0.1033
RMSprop 0.7912 0.7917
Adagrad 0.6250 0.5233
Adadelta 0.4472 0.1033
Adamax 0.7667 0.7533

Adam 0.7989 0.7983

4.2.3. Comparative Analysis of Algorithms

To prove the effectiveness of the DBN-CapsNet method proposed in this paper in the
fault diagnosis of smart meters, this paper uses a machine learning algorithm support vector
machine (SVM), one-dimensional CNN and traditional CapsNet to learn the historical fault
data of smart meters.

SVM: Use the svm.SVC function in the Sklearn library to realizes the fault diagnosis of
smart meters based on SVM method. The penalty parameter C is set to 0.1, the kernel is set
to rbf, the gamma is set to 0.1, and the maximum iteration is 1000.

CNN: The best parameters and structure of the convolutional neural network are
determined by the trial method, and the features are extracted by six layers Conv1D, the
number of convolution kernels is 12, 12, 48, 48, 64, 64, and the size of convolution kernels is
12, 12, 12, 3, 3, 3. A layer of Max Pooling 1D is added after every two layers of Conv1D to
retain the main features, and the tanh function is used as the activation function for each
layer of convolution. The output layer has six nodes and the activation function is SoftMax.
The cross-entropy loss function is used as the loss function for model training, with epochs
of 500 and a batch size of 200; the optimizer is the Adam algorithm.

CapsNet: Compared with DBN-CapsNet, the traditional capsule network has no
DBN structure, and the other network structures and setting parameters are the same as
DBN-CapsNet.

These models are trained several times, and the results are shown in Figure 12.
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We calculate the precision rate (P), recall rate (R) and F value according to Figure 12,
and the results are shown in the Table 6.

Table 6. The precision rate, recall rate and F value of CapsNet, CNN and SVM.

Fault Type Number
CapsNet CNN SVM

P R F Value P R F Value P R F Value

0 0.73 0.88 0.80 0.58 0.80 0.67 0.72 0.53 0.61
1 0.83 0.75 0.79 0.78 0.63 0.70 0.82 0.69 0.75
2 0.71 0.79 0.75 0.42 0.75 0.53 0.66 0.47 0.55
3 0.75 0.69 0.72 0.63 0.69 0.66 0.74 0.50 0.60
4 0.63 0.62 0.63 0.45 0.52 0.48 0.61 0.47 0.53
5 0.82 0.82 0.83 0.83 0.71 0.76 0.51 0.86 0.64

According to Table 6, the predictive effect of SVM and CNN is not as good as that
CapsNet, and the accuracy rate and Macro F1 of the corresponding algorithm are compared,
as shown in Table 7.

Table 7. Comparison of the results of different algorithms.

Algorithm Accuracy Rate Macro F1 Training Time (s)

SVM 0.61 0.61 210
CNN 0.68 0.63 939

CapsNet 0.77 0.75 12,134
DBN-CapsNet 0.80 0.80 3779

As seen in Table 7, SVM has the shortest training time, but its diagnosis effect is the
worst, which shows that the deep learning method is more suitable for the fault diagnosis
of smart meters than the machine learning algorithm SVM. The DBN-CapsNet training
time is much longer than the CNN training time; however, its diagnostic effect is better
than that of CNN, and the accuracy rate and Macro F1 value are improved by 12% and 17%
respectively. CNN and CapsNet both used convolutional layers to extract the features of
input data in the early stage, and in the later stage, they used pooling layers and capsule
layers to map the complex nonlinear relationship between features and fault types of smart
meters. The performance of CapsNet is better than that of CNN, which shows that CNN
will lose some characteristic information in the pool operation, which limits the precision
of fault diagnosis. However, the capsule layer and dynamic routing algorithm of CapsNet
can deeply mine the relationship between features and fault types and more accurately
diagnose the fault types of smart meters. DBN-CapsNet is a further optimization of the
feature extraction part of CapsNet. It can be seen from the results in Table 7 that compared
with CapsNet, the diagnostic accuracy rate of DBN-CapsNet and the Macro F1 value were
improved by 3% and 5%, respectively, and the training time was significantly shortened.
This also shows that the improved capsule network based on DBN can capture more
comprehensive and effective feature information, improve the network training efficiency,
and improve the performance of fault diagnosis.

As shown in Figure 13, in the training set, the loss value of CapsNet decreases faster
than that of DBN-CapsNet before 100 epochs, and the loss value is stable around 0.13 after
150 epochs. However, when DBN-CapsNet iterates to 300 epochs, the loss value is stable
to around 0.08. The accuracy rate of CapsNet is about 80%, while that of DBN-CapsNet
is about 90%, which shows that CapsNet has a fast convergence speed and tends to be
stable quickly, but the feature extraction ability is limited and the accuracy rate of fault
diagnosis is not high. The convergence speed of DBN-CapsNet is relatively slow, but with
the increase in the number of iterations, the accuracy rate of fault diagnosis gradually
increases, which is 10% higher than that of CapsNet. In the verification set, the loss value
of CapsNet decreases faster than that of DBN-CapsNet and is a little smaller than that
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of DBN-CapsNet, but the fault diagnosis accuracy rate of CapsNet is lower than that of
DBN-CapsNet. The accuracy rate of DBN-CapsNet is finally around 0.8, and the accuracy
rate of DBN-CapsNet fault diagnosis model in the test set is also 0.8, indicating that the
diagnosis performance of DBN-CapsNet is stable and has a good diagnosis effect.
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5. Conclusions

This paper presents a model of smart meters fault diagnosis based on a DBN improved
capsule network (DBN-CapsNet). We improve the data quality by means of statistical
sample size distribution, screening fault types, selecting fault characteristic attributes and
one-hot encoding method to meet the needs of building fault diagnosis model. We adopt
the mixed sampling method of undersampling and oversampling to solve the problem
of unbalanced sample size distribution, and a DBN-CapsNet smart meter fault diagnosis
model is built. The effects of batch size, optimizer, and iteration times of capsule network
on the diagnostic performance of smart meters are discussed. Finally, the comparative
experiments show that the proposed method has better diagnostic performance than SVM
and CNN. Compared with CapsNet, the improved capsule network can improve the feature
extraction and fault diagnosis ability by combining DBN with a convolution layer structure,
DBN also solves the problem of high data dimensions and sparse data due to one-hot
encoding, the accuracy rate and Macro F1 were improved by 3% and 5% respectively, and
the training time for the model was significantly reduced.
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