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Abstract: Global warming forces the automotive industry to reduce real driving emissions and thus,
its CO2 footprint. Besides maximizing the individual efficiency of powertrain components, there is
also energy-saving potential in the choice of driving strategy. Many research works have noted the
potential of model predictive control (MPC) methods to reduce energy consumption. However, this
results in a complex control system with many parameters that affect the energy efficiency. Thus,
an important question remains: how do these partially uncertain (system or controller) parameters
influence the energy efficiency? In this article, a global variance-based sensitivity analysis method is
used to answer this question. Therefore, a detailed powertrain model controlled by a longitudinal
nonlinear MPC (NMPC) is developed and parameterized. Afterwards, a qualitative Morris screening
is performed on this model, in order to reduce the parameter set. Subsequently, the remaining
parameters are quantified using Generalized Sobol Indices, in order to take the time dependence
of physical processes into account. This analysis reveals that the variations in vehicle mass, battery
temperature, rolling resistance and auxiliary consumers have the greatest influence on the energy
consumption. In contrast, the parameters of the NMPC only account for a maximum of 5% of the
output variance.

Keywords: economic MPC; BEV; generalized Sobol indices; Morris screening; variance-based sensitiv-
ity indices; electric drive system; electric vehicle

1. Introduction

Considering global warming and the targeted reduction of greenhouse gas emissions
by governments, the transformation to electromobility plays an important role in reaching
climate goals. Great potential to reduce these emissions lies in replacing conventional vehi-
cle propulsion systems with electric propulsion systems, as outlined in [1]. It is shown that
the change to electric vehicles avoid local emmissions, which improves the air quality, espe-
cially in larger cities. Furthermore, the dependence on oil imports is reduced. Nevertheless,
there are many other aspects that can reduce the energy consumption of vehicles, including
environmental conditions, such as the weather or road surface conditions, the driving style
of the driver and the vehicle itself [2]. Especially for battery electric vehicles (BEVs) with
long recharge times and lower ranges than internal combustion engines saving energy
during operation plays a crucial role. Thus, the development of energy-efficient driving
strategies to reduce fuel consumption have gained significant industrial interest [3]. As a ve-
hicle can only be optimized during the development process and usually not influenced
during operations, the development of eco-driving strategies to optimize the operation of
vehicles has received great attention. Eco-driving generally describes the reduction of fuel
consumption by operating the vehicle along its energy-optimal velocity trajectory. It can be
processed by a human driver using learned patterns to achieve low energy consumption;
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for example, through smooth acceleration or deceleration and maintaining a constant speed.
Furthermore, eco-driving is capable of reducing traffic fatalities and can reduce the risk of
traffic accidents [3]. However, without exact knowledge of the energy-optimal operating
points of the vehicle and the upcoming driving situation, a human driver can only reach a
sub-optimal driving strategy.

The increasing availability of environmental data and the processing power of modern
vehicle platforms has enabled the development of advanced eco-driving algorithms, which
consider environmental information and the actual vehicle state to optimize the driving
strategy. To address this multi-objective target, most approaches focus on model predictive
controllers (MPC) as a promising optimization approach for real-time optimal control.
MPCs are often designed as a linear quadratic problem to achieve real-time capability [4–7].
This simpler—but computationally effective—design usually leads to simplifications of the
system model of the MPC. In [4,5], the energy consumption of the underling powertrain
components was approximated using a convex lookup table. Combined spatial–temporal
modeling to ensure a linear optimization problem has been proposed in [7]. Furthermore,
explicit solutions for the driving strategy (see, e.g., [6]) involve solving the optimization
problem offline and storing the results in a lookup table.

To overcome these approximations, nonlinear MPC (NMPC) approaches [8–14] have
been outlined in the literature. These approaches ensure more accurate modeling of the control
problem. To ensure real-time capability, the nonlinear approaches are often solved using dynamic
programming [10,11] or calculated online using an efficient NMPC solver [8,9,12,14], such as
C/GMRES. Furthermore, stochastic approaches, mainly for modeling the non-deterministic
surrounding traffic, have also been presented in the literature [15–19].

The application of MPC based longitudinal motion control has been applied to inter-
nal combustion engine vehicles [6,8,9], hybrid electric vehicles [13,14], and pure electric
vehicles [4,5,7,10,12,15–17].

All of the approaches mentioned above are complex closed-loop control systems with a
large number of system and controller parameters, which all influence the system behavior.
Therefore, the important question remains: how can the influence of parameters on the
energy consumption and the driving behavior be quantified, which normally cannot be
done analytically in such complex systems? To answer this question, qualitative- and
quantitative-based sensitivity analysis methods to analyze and quantify parameter depen-
dencies have been proposed in the literature. The most popular and promising methods
are qualitative Morris parameter screening [20] and the variance-based sensitivity analysis,
first introduced by Sobol [21]. In particular, in the context of analyzing the energy effi-
ciency of BEVs several studies exist which highlight the potential of statistical investigation.
In the work of [22], parameter dependencies on the energy efficiency were investigated
during a field test with six buses on three different routes using regression coefficients.
Furthermore, [23] have outlined a surrogate model to predict the energy consumption of
electrical buses and performed a sensitivity analysis to determine parameter dependen-
cies in their prediction using Sobol indices. A sensitivity analysis of a BEV using Sobol
indices has been outlined in [24], which was performed on previously recorded velocity
profiles for typical urban and rural use-cases in the Vienna area. Nevertheless, this work
is based on a simple longitudinal motion model only considering efficiency rates in the
electric drivetrain. More detailed sensitivity analyses on specific drivetrain components
and not at the vehicle level have been conducted in [25–28]. In [25], a qualitative Morris
screening was performed to analyze a basic equivalent circuit model of a battery system.
A Morris screening-based investigation considering the reaction kinematic models of a
battery has been detailed in [26]. Parameter dependencies on the torque accuracy of an
electric drive system using Sobol indices have been outlined in [27]. Furthermore, a good
review regarding sensitivity analysis for electrical drives can be found in [28]. Beside the
aforementioned applications [29] have underlined the increasing demand for systematic
analyses of complex mathematical models across different disciplines.
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However, the aforementioned publications at vehicle level have not included detailed
powertrain models, whereas the component-level evaluations did not take dependencies
at the system level into account. Furthermore, the outlined investigations were carried
out using pre-recorded velocity profiles at vehicle level or specific working points or load
profiles at component level. Therefore, this article outlines a novel approach for analyzing
a closed-loop economic NMPC-based eco-driving system of a BEV using Morris screening
and variance-based sensitivity analysis. Furthermore, in contrast to the known literature,
the drivetrain components considered in this investigation are modeled in great detail, and
are optimized with respect to accuracy and calculation time, in order to obtain reliable
sensitivity results. Furthermore, the time dependence of physical processes is considered
in the sensitivity analysis, through the use of Generalized Sobol indices [30].

The remainder of this article is organized as follows: Section 2 outlines the theory of the
used sensitivity analysis methods of Morris Screening, Sobol indices and Generalized Sobol
Indices. In Section 3, the developed and used simulation models are presented. Section 4
presents the economic NMPC used in this investigation. In Section 5, the sensitivity analysis
setup is defined and in Section 6, the results of the sensitivity analysis are discussed.
Section 7 concludes the presented findings of this article.

2. Sensitivity Analysis

The process of a variance-based sensitivity analysis is shown in Figure 1. Based
on the uncertainties of different model parameters X = [X1, X2, . . . , Xk], described by
their probability density functions, a classical uncertainty analysis is performed. This is
usually done by carrying out a Monte-Carlo simulation, where the result is a distribution
of the model output Y. However, in an uncertainty analysis, no conclusions can be drawn
about the cause of the variance. The sensitivity analysis closes this gap and enables a
quantification of the influencing factors. This makes it possible to specifically influence the
relevant parameters, thus reducing the output variance. As the quantitative variance-based
sensitivity analysis (outlined in Section 2.2) is a computationally expensive task, qualitative
Morris screening [20] is used in advance, in order to identify parameters that have nearly
no effect on the output of interest. Therefore, the computational burden of the quantitative
analysis is reduced by neglecting non-influential parameters from the simulation study.

Output distribution

                   Modelled uncertainties, e.g.:

Measurement errors
Manufacturing tolerances
Environmental factors
Sytem settings

Monte Carlo simulation 

Uncertainty analysis

Sensitivity analysis

?

?
?

Influencing the  
most important factors

Conclusion on the cause  
of variance is not possible

Quantification of  
the cause of variance

Figure 1. Process of a variance-based sensitivity analysis. The difference between an uncertainty
analysis and a sensitivity analysis is also outlined.
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2.1. Morris Screening

Morris Screening, according to [20], offers an efficient method for the qualitative
estimation of the influences of parameters on a model output. The main idea is based on
the elementary effect

EEi =
f (x1, x2, . . . , xi−1, xi + ∆, xi+1, . . . , xk)− f (x)

∆
(1)

for a given model y = f (x), with y as the model output and x = [x1, x2, . . . , xk] as the
parameter input vector. Due to the addition of the small variation ∆ to the ith parameter
and in the denominator, the elementary effect can be understood as a partial difference
quotient. This OAT-design needs to be calculated k+ 1 times to obtain one elementary effect
for each parameter. In [20], a novel scheme for defining the trajectory through this input
parameter space was proposed. However, using only one elementary effect calculation
for each parameter does not provide a satisfactory covering of the input parameter space.
Therefore, the calculation of elementary effects is done for r different input trajectories with
varying starting points. This results in Nm = r(k+ 1) needed simulation runs, where [31,32]
have shown that r = 10 is a typical value for producing valuable results.

As sensitivity measures, the mean µi, the mean of the absolute values µ∗i and the
standard deviation σi of the elementary effects are considered. The measures

µi =
1
r

r

∑
j=1

EEj
i (2)

and

σi =

√√√√ 1
r− 1

r

∑
j=1

(EEj
i − µi)2 (3)

were first presented in [20]. Here, µi assesses the overall influence of the ith parameter on
the output, whereas σi is an effective measure to estimate nonlinear or interaction effects
in the model. However, using the proposed measure µi has the disadvantage that type II
errors can occur, which may result in failing to identify factors with considerable influence
on the output. The measure

µ∗i =
1
r

r

∑
j=1
|EEj

i |, (4)

first introduced by [33], avoids type II errors by using the absolute values of the elementary ef-
fects.

The measures presented above are used to rank the importance of the parameters.
Small values of µ∗i in relation to other parameters indicate a small influence on the output
and so, such parameters can be neglected in the quantitative sensitivity setup. In contrast,
large values in comparison to the other parameters express a strong influence and the
related parameters must be considered in the quantitative sensitivity setup.

2.2. Variance-Based Sensitivity Analysis

As outlined in [21], the idea of a variance-based sensitivity analysis is the decompo-
sition of a model y = f (x) with x = [x1, x2, . . . , xk] in a sum of 2k terms using a High-
Dimensional Model Representation (HDMR) in the form

y = f (x) = f0 +
k

∑
i=1

fi(xi) +
k

∑
i=1

k

∑
i<j

fij(xi, xj) + . . . + f12...k(x1, x2, . . . , xk), (5)

where f0 describes a constant term without any dependencies on the input vector, whereas
the k terms fi(xi) describe first-order functions with dependencies on only one input
parameter xi. This scheme can be continued up to (n

k) =
n!

k!(n−k)! terms, representing nth
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order functions with dependencies on n input parameters. Assuming independence of the
parameters and orthogonality of the terms in (5), the variance is given by

V(Y) =
∞∫
−∞
· · ·

∞∫
−∞

( f (x)− f0)
2 ∏k

m=1 pm(Xm)dx

= ∑k
i=1 Vi + ∑k

i=1 ∑k
i<j Vij + . . . + V12...k,

(6)

with pm being the probability density function of the corresponding input parameter Xm.
The variances of the corresponding terms are defined by

Vi = V( fi(xi)) =

∞∫
−∞

f 2
i (xi)pi(Xi)dxi (7)

Vij = V( fij(xi, xj)) =

∞∫
−∞

∞∫
−∞

f 2
ij(xi, xj)pi(Xi)pj(Xj)dxidxj (8)

...

V12...k = V( f12...k(x1, x2, . . . , xk)) =

∞∫
−∞

· · ·
∞∫
−∞

f 2
12...k(x1, x2, . . . , xk)

k

∏
m=1

pm(Xm)dx. (9)

Normalizing (6) by V(Y) leads to

1 =
k

∑
i=1

Si +
k

∑
i=1

k

∑
i<j

Sij + . . . + S12...k, (10)

which serves as a decomposition of the source of variance. The terms containing Si are
referred to as first-order effects. They quantify the influence of the parameter xi without
interactions to other parameters to the output y. Sij denotes the second-order effects, which
indicate the interaction between two parameters xi, xj. This decomposition scheme can be
continued up to the kth-order effects.

Another useful measure, especially for describing all nonlinear interaction effects, is
the total effect

STi = Si +
k

∑
j=1
j 6=i

Sij + . . . + S12...k, (11)

which sums up all effects of one parameter, including all higher-order effects.
As outlined in [34], the first-order indices can be calculated using the relation of the

conditional expectation value VXi (EX∼i (Y | Xi)) and the overall variance V(Y), described by

Si =
VXi (EX∼i (Y | Xi))

V(Y)
, (12)

where X∼i denotes the vector of all parameters except Xi. The expectation operator EX∼i (·)
calculates the average over X∼i, whereas Xi is fixed and the outer variance VXi (·) is taken
over all realizations of Xi.

The total effect is calculated using [34,35]

STi =
EX∼i (VXi (Y | X∼i))

V(Y)
= 1−

VX∼i (EXi (Y | X∼i))

V(Y)
. (13)

An obvious explanation is to consider that VX∼i (EXi (Y | X∼i)) is the first-order effect
of X∼i. Consequently, V(Y)− VX∼i (EXi (Y | X∼i)) must include all terms in the variance
decomposition of (6) which include Xi.
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The decomposition presented in (5) leads to 2k − 1 possible sensitivity measures. Due
to the large number of indices, it is impractical to analyze all of them. Nevertheless, the first-
order and the total effects approximate the system behavior satisfactorily, such that higher-
order effects can usually be neglected. In addition, estimation of the conditional expectation
values using Monte-Carlo simulations is computationally expensive and therefore, only
the first-order and total effects are considered.

The indices can be interpreted as the expected reduction of variance. The numerator
of the first order effects VXi (EX∼i (Y | Xi)) describes the reduction of variance in the output
Y if Xi were fixed at some defined value. Furthermore, the numerator of the total effect
EX∼i (VXi (Y | X∼i)) is the amount of variance that would remain if all factors but Xi
were fixed. The ordering of the sensitivity measures quantify their contribution to the
overall variance. In other words, small sensitivity measures have only a small influence
on the variance of the output, whereas large measures have a big influence on the output.
Moreover, the sensitivity measures have some general properties which are useful to
analyze the structure of the model:

• Due to (10), the condition ∑k
i=1 Si ≤ 1 holds.

• Due to (11), the condition ∑k
i=1 STi ≥ 1 holds.

• If ∑k
i=1 Si = 1, the model is additive.

• If 1−∑k
i=1 Si � 0, the model has nonlinear behavior or interacting parameters.

• If STi ≈ Si, no interactions exists. This also implies the additivity of the model.
• If STi ≈ 0, the parameter has no influence on the output.

2.3. Time and State Dependency of Technical Processes

The main drawback of the HDMR described in (5) is that it neglects state and time
dependencies, regarding the physical systems. Thus, the underlying model needs to be
expanded to

y(t) = f (x, x0, t, u(t)), (14)

where x0 denotes the initial system state. Furthermore, the system consists of a control
vector u = [u1, u2, . . . , uc], with c being the number of control inputs. The proposed
extension by x0, t and u(t) leads also to state- and time-dependent sensitivity indices. As
already outlined in [27], the dependency of x0 and u(t) can be ensured by covering all the
relevant operating points of the physical system. In this article, this is ensured by defining
representative drive cycles, as outlined in Section 3.4. Thus, (14) can be simplified to

y(t) = f (x, t) (15)

and can also be written as a second-order ANOVA-like decomposition

f (x, t) = fU(xU , t) + fU∼(xU∼ , t) + fU,U∼(x, t), (16)

with the complete index set X = {1, . . . , k}, the subset U = {i1, i2, . . . , is} ⊂ X and the
complementary subset U∼ = {j1, j2, . . . , js} = X\U. The corresponding parameter vectors
are xU = [xi1 , xi2 , . . . , xis ] and xU∼ = [xj1 , xj2 , . . . , xjs ]. The variance of this decomposition is
defined as

V( f , t) = VU( f , t) + VU∼( f , t) + VU,U∼( f , t), (17)

where VU = Vi holds if the subset U contains only the ith parameter. In this case (17) is
equal to (6). In the following, the subset containing only the ith parameter is denoted by Ui.

The Sobol indices are usually calculated as point-in-time indices. For the scalar case
with VUi = Vi, the sensitivity indices can be expressed as follows

Si( f , t) =
VUi ( f , t)
V( f , t)

(18)
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STi ( f , t) =
VUi ( f , t) + VUi ,U∼( f , t)

V( f , t)
(19)

for each t ∈ [0, T]. There are several problems when using only these point-in-time
estimates [30]:

• Point-in-time indices ignore all time correlations of the process.
• The variance of the process varies in time, which skews the relative importance

across time.

To solve the above-mentioned issues, [30] introduced the Generalized Sobol Indices,
which are based on a covariance operator to take the evolution of the process over time
into account. Furthermore, the second issue regarding skewing is solved by this approach.
The Generalized Indices are defined as

SG
i ( f , T) =

∫ T
0 VUi ( f , t)dt∫ T
0 V( f , t)dt

(20)

SG
Ti
( f , T) =

∫ T
0 (VUi ( f , t) + VUi ,U∼( f , t))dt∫ T

0 V( f , t)dt
, (21)

which can be simply computed using the approximation

SG
i ( f , T) ≈ ∑N

m=1 wmVUi ( f , tm)

∑N
m=1 wmV( f , tm)

(22)

SG
Ti
( f , T) ≈ ∑N

m=1 wm(VUi ( f , tm) + VUi ,U∼( f , tm))

∑N
m=1 wmV( f , tm)

(23)

in a numerical setup with weights {wm}N
m=1 for each node {tm}N

m=1. The special case
of equal weights and uniform time steps has been suggested in [36] for time-dependent
processes, which is used throughout this article. The indices are calculated using the
estimators described in [34] and convergence of this estimators is ensured as proposed
in [27].

3. Simulation Setup

The vehicle serving as the basis for this simulation study is an early-stage prototype
for urban and inter-urban use-cases, which is under development at the University of
Applied Sciences Trier. A sketch of the proTRon Evolution is provided in Figure 2. The
project focuses on sustainable mobility, taking into consideration the complete product
life cycle. Due to this fact, the vehicle body is largely made of natural fiber-reinforced
plastics, in order to reduce emissions in the manufacturing process. In order to keep energy
consumption in driving operations as low as possible, a target weight of 550 kg is planned
while, at the same time, complying with the crash safety requirements relevant for approval.
Furthermore, all mechanical driving resistances are forced to be as small as possible. This
is achieved by using tires with low rolling resistance properties with dimensions 115/80
R 15, in order to reduce the rolling resistance coefficient. Additionally, the aerodynamic
drag coefficient and the frontal area of the vehicle were minimized during the development
process using CFD simulations, resulting in low aerodynamic resistance. Furthermore, the
car uses a novel transmission concept, consisting of a belt drive and a planetary gear with
optimized losses within a small installation space. The powertrain of the vehicle consists of
a single-wheel drive on the rear axle with EMRAX 188 permanent magnet synchronous
drives, which are powered by a series connection of 76 40 Ah Winston WB-LYP40AHA
lithium iron phosphate accumulators.
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Figure 2. Sketch of the proTRon Evolution.

The used simulation setup, including the configuration of the BEV, is outlined in
Figure 3. As the underlying component models can highly affect the sensitivity analysis
results, they are a crucial part of the simulation setup. Therefore, the models commonly
used in the literature are modified with the aim of increasing accuracy and minimizing
computation time. In particular, the inverter and electric drive models are optimized,
regarding calculation time, to fit into the Monte-Carlo setup of the sensitivity analysis
by averaging the losses over one fundamental wave period and neglecting the current
dynamics in the electrical drive model. Furthermore, the inverter model is extended to
precisely model nonlinear switching losses, especially for low currents. To improve the
accuracy of the electrical drive model nonlinear iron losses are taken into account. For the
aforementioned reasons and in order to emphasize the nonlinear parameter dependencies
of the battery, the battery, inverter and electrical drive component models’, as well as their
corresponding parameters are discussed in detail in the following. As the vehicle model is
a standard longitudinal motion model, the details are only outlined in Appendix A. The
environmental model consists of a route model, including curvature, slope and legal speed
limit information. Furthermore, the ambient temperature and air pressure are provided to
the simulation environment.

BEV model

Battery

Drive Gearbox

Vehicle

Inverter Drive Gearbox

Economic NMPC

Input parameters for
sensitivity analysis

Inverter

Environmental model

Analyzed model outputs
Left rear drive

Right rear drive

Figure 3. Simulation setup of the proposed BEV.

3.1. Battery Model

Modeling the behavior of a modern lithium ion accumulator can be divided according
to different complexities and different levels of model knowledge. White-box models
based on reaction kinetics [37,38] or physically motivated equivalent circuit modeling [39]
provide a detailed basis for understanding the electrochemical processes. However, the
complexity of such models also significantly increases the computational cost and param-
eterization is often only possible with high effort. In contrast, black-box models, such
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as neural networks [40] and Markov chains [41], may also be used. They are easy to
train or parameterize from existing measurement data. However, the major drawback of
these modeling is a lack of representation of physical relationships. In order to reduce
the complexity without losing a general physical interpretability of the models, simple
equivalent circuit models have been established. These range from a simple representation
with constant voltage source and internal resistance [42] to electrical RC networks with
operating point-dependent parameters [43]. Due to the possible physical interpretability
of the parameters, good parameterizability and low computation times, a corresponding
equivalent circuit model is used and introduced in the following.

3.1.1. Electrical Model

Figure 4 depicts the equivalent circuit diagram of a single battery cell. It consists of a
voltage source uOCV , a series resistor Rs representing the ohmic losses in the battery cell,
and two RC elements describing the cell dynamics. The terminal voltage is calculated using
Kirchhoff’s mesh rule, with

uk = ncell(uOCV − uRs − uRC1 − uRC2), (24)

where ncell denotes the number of cells connected in series. Using Kirchhoff’s junction rule,
the differential equations for the required voltage drops uRC1 and uRC2

u̇RC1 =
ib − uRC1

R1(SoC,Ib ,ϑb)

C1(SoC, Ib, ϑb)
(25)

u̇RC2 =
ib − uRC2

R2(SoC,Ib ,ϑb)

C2(SoC, Ib, ϑb)
(26)

can be obtained. Furthermore, the voltage drop on the series resistance is defined by

uRs = Rs(SoC, ib, ϑb)ib. (27)

uOCV(SoC)

Rs(SoC, Ib, ϑb)

uRs

C1(SoC, Ib, ϑb) C2(SoC, Ib, ϑb)

R1(SoC, Ib, ϑb)

uRC1

R2(SoC, Ib, ϑb)

uRC2
uk

Figure 4. Electrical equivalent circuit model of the battery.

As it can be seen from (25)–(27), as well as from the outlined parameter maps in
Figure 5, the parameters Rs, R1, R2, C1 and C2 depend on the actual operating point of the
battery cell, which is defined by the State of Charge (SoC)

SoC =
QSoC

Qb(ϑb)
, (28)

the battery current ib and the battery temperature ϑb. QSoC defines the actual stored electri-
cal charge, whereas Qb is the maximum available electrical charge of one cell. Furthermore,
the open circuit voltage uOCV depends on the actual SoC and Qb is influenced by ϑb, as
outlined in Figure 6. The aforementioned electrical parameters of the used battery cells
were acquired from [44] and are outlined in Figures 5 and 6.
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(a) (b)

(c) (d)

(e)

Figure 5. Electrical battery parameters, according to [44]. (a) Rs; (b) R1; (c) R2; (d) C1; (e) C2.

(a)

Figure 6. Cont.
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(b)

Figure 6. Battery capacity and open circuit voltage, according to [44]. (a) Battery capacity; (b) Open
circuit voltage.

3.1.2. Thermal Model

Figure 7 outlines the model used for the thermal behavior of a battery cell. In Figure 7a,
the cross-section of one cell is outlined. The red part in this scheme consists of the battery
housing and the reactive part of the cell, including the anode, cathode, separator and
electrolyte, whereas the yellow part describes the metallic connection of the cell core to the
terminals. The corresponding heat capacities are assigned to the two areas of the cell. Cc
describes the heat capacity of the cell core, while the heat capacities of the two terminals
are combined into one heat capacity Ct. The dominant heat transfers to the surrounding
air take place between the battery core and ambient air through Rthca and between the
terminals and ambient air through Rthta . Likewise, Rthct represents the remaining heat
transfer between the cell core and the terminals. Given the battery loss Pv,b caused by the
ohmic losses on Rs, R1 and R2 the thermal behavior can be described by

ϑ̇b =
Pv,b − ϑb−ϑair

Rthca
− ϑb−ϑt

Rthct

Cc
(29)

and

ϑ̇t =

ϑb−ϑt
Rthct

− ϑt−ϑair
Rthta

Ct
, (30)

using Kirchhoff’s junction rule. The thermal capacities Cc and Ct are determined using the
percentage composition of the core and terminal materials, with respect to their associated
specific heat capacities. The heat transfer resistances Rthca , Rthct and Rthta are composed of
the heat transfer characteristics of each internal layer of the battery, the housing and the
terminals. In addition to the internal transitions, the heat transfer to the outside air is also
taken into account for Rthca and Rthta . The used thermal resistances can be found in [45].
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Core

Terminals

(a)

ϑb

Pv,b

Cc

Rthct

Ctϑt

Rthta

ϑair

Rthca

(b)

Figure 7. Thermal equivalent circuit model of the battery (a) 2D thermal model, (b) Equivalent
circuit model.

3.2. Inverter Model

In the proposed system, a Voltage Source Inverter (VSI) is used. The equivalent circuit
diagram of the power electronics is outlined in Figure 8. The AC side of the inverter is
composed of an Insulated Gate Bibolar Transistor (IGBT) full bridge with an anti-parallel
free-wheeling diode on each IGBT device. The output terminal voltages uU , uV and uW ,
with their corresponding currents iU , iV and iW , represent the interface to the electric drive.
In order to generate a frequency and amplitude variable AC voltage from the DC-link
voltage, the IGBTs must be switched, according to a defined pattern, using Pulse Width
Modulation (PWM). Due to this switching pattern, the losses in the inverter consist of
conduction and switching losses that depend on the used modulation scheme [46], which
is a sine modulation with zero offset to improve the voltage utilization [47]. Due to the
symmetric structure of the inverter, the loss behavior of the semiconductors differs only
with a shift in time. Thus, the power dissipation models can be reduced to one IGBT and
one diode, which are applied for all semiconductors afterwards.

iDC

uDC

uDC
2

uDC
2

T1

T2

T3

T4

T5

T6

D1

D2

D3

D4

D5

D6

iU uU
iV uV

iW uW

Figure 8. VSI equivalent circuit.

3.2.1. Conduction Losses

Calculation of the conduction losses is carried out for the IGBT and diode pair T1,
D2 from Figure 8. The forward characteristics of the used power electronics are shown in
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Figure 9. The power loss caused by the nonlinear resistive behavior of the semiconductors
can be described using a second-order phase current-dependent polynomial [48,49]

p̃c,T1 = ac,T(ϑj,T) · iT1 + bc,T(ϑj,T) · i2T1
(31)

p̃c,D2 = ac,D(ϑj,D) · iD2 + bc,D(ϑj,D) · i2D2
, (32)

with ac,T(ϑj,T), bc,T(ϑj,T) and ac,D(ϑj,D), bc,D(ϑj,D) as IGBT and diode junction temperature-
dependent fitting coefficients.

Figure 9. Forward characteristics of the used IGBT module [50].

The conduction power losses also depend on the modulation method or, respectively,
on the relative conduction periods of each IGBT and diode during one commutation
interval [46]. The used sine modulation with zero offset can be approximated by adding
third-order harmonics to the standard sine modulation, which leads to the relative turn
on times

βT1 =
1
2
+

M1

2
cos(ϕel) +

M3

2
cos(3ϕel) (33)

βD2 =
1
2
− M1

2
cos(ϕel)−

M3

2
cos(3ϕel), (34)

where M1 and M3 are the corresponding modulation indices and ϕel describes the phase
angle between the current and voltage in one inverter leg. Assuming the currents to be
sinusoidal without higher-order harmonics, the conduction losses for the used modulation
scheme can be described by

Pc,T1 =
ac,T(ϑj,T) ÎN

2

(
1
π

+
M1

4
cos(ϕel)

)
+ bc,T(ϑj,T) Î2

N

(
1
8
+

M1

3π
cos(ϕel) +

M3

15π
cos(3ϕel)

)
(35)

for the IGBT and in a similar manner for the diode with

Pc,D2 =
ac,D(ϑj,D) ÎN

2

(
1
π
− M1

4
cos(ϕel)

)
+ bc,D(ϑj,D) Î2

N

(
1
8
− M1

3π
cos(ϕel)−

M3

15π
cos(3ϕel)

)
. (36)

3.2.2. Switching Losses

Caluclation of the switching losses is carried out in the same manner as the conduction
losses for the IGBT and diode pair T1, D2. The switching losses of the IGBT occur during
the transition from blocking to conducting state and vice versa. For the diode, the switching
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losses are mainly related to the reverse recovery effect during the transition from conduction
to blocking state. The energies for one switching event are given in the corresponding
semiconductor data sheet, as outlined in Figure 10, for the used module. In [46,49,51], a
linear dependence between the switching energy wsw,lin and the actual phase current iU , in
the form

wsw,lin = ksw,T,D · iU(ϕel) (37)

is assumed. However, as depicted in Figure 10, neither the diode nor the IGBT behave
linearly regarding their switching losses. Thus, a second-order polynomial equation of
the form

w̃Eon,T1 = aEon · iU + bEon · i2U + cEon (38)

w̃Eo f f ,T1 = aEo f f · iU + bEo f f · i2U + cEo f f (39)

w̃Err,D2 = aErr · iU + bErr · i2U + cErr (40)

is used to model the nonlinear behavior of the turn-on and turn-off energies w̃Eon,T1 , w̃Eo f f ,T1
of the IGBT and for the diode reverse recovery losses w̃Err,D2 . The used sine modulation
scheme causes each semiconductor to switch once in each PWM duty cycle. Therefore, a
linear relationship between the switching frequency fs and the switching power losses

p̃Eon,T1 = w̃Eon,T1(ϕel) · fs (41)

p̃Eo f f ,T1 = w̃Eo f f ,T1(ϕel) · fs (42)

p̃Err,D2 = w̃Err,D2(ϕel) · fs (43)

exists.

Figure 10. Switching energies with respect to the load current of the used IGBT module [50].

In addition to the polynomial fit, the temperature dependencies of the switching losses
are also taken into account. Furthermore, the switching losses behave nonlinearly regarding
the applied blocking voltage, which is in case of the VSI the DC-voltage uDC. Averaging
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the switching losses over one fundamental wave period and including the aforementioned
temperature and blocking voltage dependencies leads to

PEon,T1 = fs

(
uDC

ure f ,T

)κT(
1 + αT(ϑj,T − ϑre f ,T)

)(
cEon

2
+

aEon ÎN
π

+
bEon Î2

N
4

)
(44)

PEo f f ,T1 = fs

(
uDC

ure f ,T

)κT(
1 + αT(ϑj,T − ϑre f ,T)

)( cEo f f

2
+

aEo f f ÎN

π
+

bEo f f Î2
N

4

)
(45)

PErr,D2 = fs

(
uDC

ure f ,D

)κD(
1 + αD(ϑj,D − ϑre f ,D)

)(
cErr

2
+

aErr ÎN
π

+
bErr Î2

N
4

)
(46)

describing the averaged switching losses with respect to the amplitude of the applied
phase current ÎN , the actual junction temperatures of the IBGT ϑj,T and the diode ϑj,D and
the applied DC-voltage uDC. The voltages ure f ,T and ure f ,D describe the specific working
point voltage in the semiconductor data sheet for which the switching losses are measured.
The exponents κT and κD express the nonlinear behavior of the blocking voltage to the
switching losses.

For the proposed VSI with six IGBT and diode pairs, the overall power losses of the
inverter can be calculated as

Pinv = 6
(

Pc,T1 + Pc,D2 + PEon,T1 + PEo f f ,T1 + PErr,D2

)
. (47)

3.2.3. Thermal Model

The thermal model of the water-cooled IGBT module is mainly defined by the thermal
paths conducting heat from each IGBT and each diode to the cooling circuit. In the
proposed thermal model, as outlined in Figure 11, cross-coupling effects between each
semiconductor on the module are neglected. As the IGBTs and the diodes are loaded
equally, the power losses Pv,T and Pv,D can be combined for all six semiconductors, leading
to two heat dissipation sources. The heat is transferred to the cooling circuit by the thermal
resistance Rthjw ,T from the IGBT and by the thermal resistance Rthjw ,D from the diode. The
main advantage of equivalent circuit diagram models is the ease of parameterization of
the models using the thermal impedances directly given in the data sheet [50]. Using
the proposed model, the junction temperature of the semiconductors ϑj,T and ϑj,D can be
calculated with

ϑj,T = Pv,T
Rthjw ,T

6
+ ϑwg (48)

for the IGBTs and with

ϑj,D = Pv,D
Rthjw ,D

6
+ ϑwg (49)

for the diodes, where ϑwg denotes the temperature of the coolant. If channel flow character-
istics [52] are assumed for the flow of the liquid coolant, the relation between the power
dissipation of the semiconductors Pv,T , Pv,D, the coolant inlet and outlet temperatures ϑin,
ϑout and a given flow rate V̇wg can be expressed by

Pv,T + Pv,D = ρwg(ϑwg)V̇wgcp,wg(ϑwg)(ϑout − ϑin). (50)

Due to the expected minor temperature increase between the inlet and outlet tempera-
tures, the coolant temperature is assumed to be

ϑwg =
ϑwg,in + ϑwg,out

2
. (51)
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Pv,T

Rthjw ,T

6

Pv,D

Rthjw ,D

6

ϑwg,in+ϑwg,out
2

Figure 11. IGBT thermal equivalent circuit model.

3.3. EM Model

Modeling the permanent magnet synchronous machine (PMSM) is carried out using
a fundamental wave model in d, q coordinates with saturation effects, as outlined in [53].
Furthermore, the model is expanded by nonlinear iron losses ξd and ξq introduced in [54].
As the time constant of the electrical drive is significantly smaller, in comparison to that of
the mechanical system, the current dynamics in the model are neglected. This lead to the
equivalent circuit models outlined in Figure 12 and the stationary machine equations [54]

ud = (Rs + ξqLd)id −ωel Lqiq + ξqΨpm (52)

uq = (Rs + ξdLq)iq + ωel Ldid + ωelΨpm (53)

describing the electrical behavior of the drive in d, q coordinates. For the sake of simplicity
and a better readability, the parameter dependencies are only outlined in the equivalent
circuit model and not in the equations. As can be seen the parameters Ld, Lq and Ψpm
depend on the actual current working point id0, iq0 of the machine and caused by the
saturation of the electrical drive. They were identified experimentally on a drive test-bench
and are outlined in Figure 13. The dependencies of the iron losses ξd and ξq on the torque
Mem and the velocity ωel are shown in Figure 14. Furthermore, the copper resistance Rs
depends on the stator temperature ϑst, which can be described by

Rs = Rs,ϑ0 [1 + αcu,ϑ0(ϑst − ϑcu,0)], (54)

where αcu,ϑ0 is the temperature coefficient of copper and Rs,ϑ0 is the reference resistance at
the reference temperature ϑcu,0. The magnetic flux depends on the rotor temperature ϑro
and can be described by

Ψpm = Ψpm,ϑ0 [1 + αpm,ϑ0(ϑro − ϑpm,0)], (55)

where αpm,ϑ0 is the temperature coefficient of the permanent magnet material and Ψpm,ϑ0
describes the reference magnetic flux at the reference temperature ϑpm,0. The link between
the electrical model and the corresponding air gap torque Mair, taking the iron losses into
account, can be described by [55]

Mair =
3
2

p[Ψpm(iq − uq
ξq

ω2
el Lq

) + (Ld − Lq)(id − ud
ξd

ω2
el Ld

)(iq − uq
ξq

ω2
el Lq

)], (56)

with p denoting the number of pole pairs.
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id
Rs(ϑst)

ωel iq0Lq(id0, iq0)

id0

ud ξd(Mem, ωel)

iq Rs(ϑst)

ωel [id0Ld(id0, iq0) + Ψpm(iq0, ϑro)]

iq0

uq ξq(Mem, ωel)

Figure 12. Saturation- and iron loss-dependent PMSM equivalent circuits.

(a) (b)

(c)

Figure 13. Working point-dependent drive parameters (a) Direct inductance Ld, (b) Quadrature
inductance Lq, (c) Magnetic flux Ψpm.

(a) (b)

Figure 14. Working point-dependent iron losses (a) Direct axis iron loss parameter ξd, (b) Quadrature
axis iron loss parameter ξq.

3.4. Environment Model

In order to use realistic driving scenarios for the vehicle defined in the previous
sections, four different drive cycles were defined, which represent typical daily commuter
routes to work in the urban and inter-urban areas around the German city Trier and
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are outlined in Figures 15 and 16. The environment model describes the required route
parameters of the driven route, including

• Legal speed limit;
• Curve radii;
• Road slope and elevation.

The presented data were extracted from the HERE map database [56] for the given
GPX tracks.

(a)

(b)

Figure 15. Drive cycle overview (a) Drive cycle 1, (b) Drive cycle 2.
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(a)

(b)

Figure 16. Drive cycle overview (a) Drive cycle 3, (b) Drive cycle 4.

To account for the influence of commuting distances, all selected routes are of different
length. Furthermore, it can be seen that the elevation profile is more distinct for drive cycles
1 and 2 than for drive cycles 3 and 4, thus covering the influence of different elevation
profiles. Furthermore, the speed profiles of the drive cycles are also different. As can be
seen, the legal speed limit vmax for the drive cycles 1–3 is slower than that for drive cycle
4. It is important to mention that the start and end points of the route are at the same
altitude. This avoids the insertion or extraction of potential energy of the system and thus,
falsification of the results of the proposed sensitivity analysis.

4. Longitudinal Economic MPC

In the following, the longitudinal economic model predictive controller (EMPC) used
to control the BEV is presented. Modern energy-efficient longitudinal motion controllers use
information about the environment, such as route data [4]. Normally, the route information
is provided by the map data provider as a function of the vehicle position. To process the
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data directly in the prediction, the proposed controller is discretized over position, rather
than time. The domain change is performed using the relation [4,57]

d
dt

=
d
ds

ds
dt

=
d
ds

v. (57)

Given the longitudinal motion model described in (A1)–(A9) and the transformation
in (57), the velocity of the vehicle can be expressed as

d
ds

vego =
Mem

ig
rw
− crmvg cos(α)−mvg sin(α)− 1

2 ρaircw Av2
ego

meqvego
, (58)

as the first state of the controller design. The battery energy Eb is used as the second state,
which is given by

d
ds

Eb =
Uocvibncell

vego
. (59)

Here, the open circuit voltage Uocv is assumed to be constant during the prediction.
The battery current ib can be determined using

PDC(Mem, vego) + Ppto = ibncell(Uocv − uRC1 − ibRs), (60)

where PDC(Mem, vego) denotes the DC power requested by the inverters and Ppto outlines
the power needed by auxiliary consumers. This leads to

ib = ncell(Uocv−uRC1)
2Rsncell

−
√
−ncell(ncell(uRC1Uocv−u2

RC1−u2
ocv)+4Rs(Ppto+PDC(Mem ,vego)))

2Rsncell

(61)

for the battery current. To ensure real-time capability and thus, practical applicability of the
controller, the complex and nonlinear behavior of the drive and inverter is not transferred
directly into the controller, as this would result in an overly complex controller design.
Therefore, the DC power, as outlined in Figure 17a, is approximated using a second-order
polynomial of the form

PDC(Mem, vego) ≈ 227.2− 1.12Mem + 60.04vego + 0.3696M2
em + 20.67vego Mem + 1.206v2

ego. (62)

the voltage drop uRC1 is calculated by

d
ds

uRC1 =

ib
C1
− uR1

C1R1

vego
(63)

and serves as the third system state for the controller design. As outlined in Section 3.1.1 the
parameters R1 and C1 are dependent on the working point. Nevertheless, the parameters
are assumed to be constant over the prediction horizon as the working point, especially as
the battery temperature and SoC, change only slowly. To keep the controller simple, only
the dominant RC element of the battery is considered.
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(a) (b)

Figure 17. DC power map (a) without battery current limitation, (b) with battery current limitation.

According to (58)–(63), the nonlinear state space model can then be fully described by

d
ds

 vego
Eb

uRC1

 =


Mem

ig
rw −crmvg cos(α)−mvg sin(α)− 1

2 ρaircw Av2
ego

meqvego
Uocvibncell

vego
ib
C1
−

uR1
C1R1

vego

, (64)

with

u = Mem (65)

as the model input.
The energy efficiency control objective of the economic cost function

J(x, u) =
Sp∫
0
[ac · (vego(s)− vre f )

2 + bc · (Mem(s)−Mre f )
2]ds

+cc · Eb(Sp) + dc · (vego(Sp)− vre f )
2

(66)

is defined by the penalization cc of the utilized battery energy Eb at the end of the prediction
horizon Sp within the Mayer term. However, considering only the battery energy would
result in an unacceptable increase in driving time, due to the forced energy savings. To
prevent this, the deviation from the reference velocity vre f is penalized in the Mayer and
Lagrange term. Furthermore, the deviation of the manipulated variable Mem to the required
reference torque Mre f is penalized, in order to smoothen the controller response.

The maximum possible input torque Mem ∈ [Mmin, Mmax] is treated as a linear con-
straint. Furthermore, the power limitation caused by the maximum battery current, which
results in a torque envelope for positive torques, as outlined in Figure 17b, is considered as
a linear constraint of the form

Mem ≤ 97.01− 2.173vego. (67)

Furthermore, the optimization problem should be bounded to ensure solvability and
stability [58], which can be ensured by adding the constraints 5

−300000
−50

 ≤ x(s) ≤

 30
300000

50

 with s ∈ [0, Sp] (68)

to the optimization problem.
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Equations (64)–(68) lead to the optimization problem

min
u

J(x, u) (69)

s.t.
d
ds

x = f (x, u) (70)

x(0) = x0 (71)

Mmin ≤ Mem(s) ≤ Mmax s ∈ [0, Sp] (72)

Mem(s) ≤ 97.01− 2.173vego(s) s ∈ [0, Sp] (73) 5
−300000
−50

 ≤ x(s) ≤

 30
300000

50

 s ∈ [0, Sp], (74)

which is discretized using a fourth-order Runge–Kutta algorithm and computed with the
open-source framework acados [59].

The reference velocity vre f is subject to two conditions. First, the maximum allowed
legal speed vmax, as already outlined in Figure 15, needs to be taken into account. Second,
the maximum lateral acceleration al,max allowed when driving a curve with the curve
radius cr results also in a speed limit, which is defined by

vl,max =
√

rc · al,max. (75)

The minimum of these two conditions would lead to the reference velocity vre f . How-
ever, taking only the minimum may cause discontinuities to appear in the reference trajec-
tory. To smoothen the reference trajectory, the discrete optimization problem [60]

min
vsmooth

Np

∑
i=1

(vre f (k + i|k)− vsmooth(k + i|k))2 (76)

s.t. vsmooth(k + i + 1|k)− vsmooth(k + i|k) ≤ rmax ∀i ∈ {1, 2, . . . , Np} (77)

vsmooth(k + i|k) ≤ vre f (k + i|k) ∀i ∈ {1, 2, . . . , Np}, (78)

with rmax as the maximum allowed change of the optimization variable, is used over the
prediction horizon Np.

5. Sensitivity Setup

To perform a suitable sensitivity analysis, the sensitivity setup needs to be defined,
including the following information:

• Which parameters are investigated;
• The injection point of each parameter;
• The distribution underlying each parameter;
• The model outputs of interest.

For the proposed sensitivity analysis in this article, all investigated parameters are
outlined in Table 1. They are arranged into groups, according to the components to which
they belong. For the vehicle itself and its powertrain components, each parameter belongs
to the parameters of the proposed models of Section 3. How the distributions are injected
into the model and the types of error are also outlined in Table 1. Relative errors represent
a percentage deviation of the nominal model values, whereas absolute errors directly
describe the deviation of the parameter itself. The standard deviation σ for normally
distributed parameters is mostly defined using the 3σ values, representing the maximum
error of the addressed parameter. As the objective of this investigation is to quantify the
influences of the proposed parameters on the energy efficiency the outputs of interest are
the combined power losses of all powertrain devices Pl and the consumed battery energy
Eb. The combined power losses Pl consider the battery, inverter, electric drive and gearbox



Electronics 2022, 11, 1574 23 of 33

losses. As the energy consumption of the vehicle is also influenced by the average driving
speed, the required driving time td, as an indicator of the average driving speed, is also
taken into account.

Table 1. Distributions of parameters for sensitivity analysis.

Name Description Type of Error Distribution Parameter Values Units

B
at

te
ry

eRs ,b Deviation of series resistance Rs relative Normal µ, σ 0, 0.05/3 −
eC1 Deviation of capacitance C1 relative Normal µ, σ 0, 0.05/3 −
eR1 Deviation of resistance R1 relative Normal µ, σ 0, 0.05/3 −
eC2 Deviation of capacitance C2 relative Normal µ, σ 0, 0.05/3 −
eR2 Deviation of resistance R2 relative Normal µ, σ 0, 0.05/3 −

eUocv Deviation of open circuit voltage relative Normal µ, σ 0, 0.025/3 −
ϑb Variation of start temperature absolute Uniform a, b 20, 40 °C

Rthca Variation of thermal resistance Rthca absolute Normal µ, σ 2.6042, 0.1302/3 Ω
Rthct Variation of thermal resistance Rthct absolute Normal µ, σ 0.3682, 0.0184/3 Ω
Rthta Variation of thermal resistance Rthta absolute Normal µ, σ 1.0526, 0.0526/3 Ω
Cc Variation of thermal capacitance Cc absolute Normal µ, σ 2544.2, 127.21/3 F
Ct Variation of thermal capacitance Ct absolute Normal µ, σ 8.072, 3.4036/3 F

In
ve

rt
er

eat Deviation of forward characteristics IGBT relative Normal µ, σ 0, 0.02/3 −
ebt relative Normal µ, σ 0, 0.02/3 −

ead Deviation of forward characteristics diode relative Normal µ, σ 0, 0.02/3 −
ebd relative Normal µ, σ 0, 0.02/3 −

eaErr Deviation of reverse recovery
characteristics diode

relative Normal µ, σ 0, 0.02/3 −
ebErr relative Normal µ, σ 0, 0.02/3 −
ecErr relative Normal µ, σ 0, 0.02/3 −

eaEon
Deviation of turn on losses IGBT

relative Normal µ, σ 0, 0.02/3 −
ebEon relative Normal µ, σ 0, 0.02/3 −
ecEon relative Normal µ, σ 0, 0.02/3 −

eaEo f f Deviation of turn off losses IGBT
relative Normal µ, σ 0, 0.02/3 −

ebEo f f relative Normal µ, σ 0, 0.02/3 −
ecEo f f relative Normal µ, σ 0, 0.02/3 −

ϑw,in Variation of water inlet temperature absolute Uniform a, b 0, 50 °C

D
ri

ve

eRs ,EM Deviation of winding resistance Rs relative Normal µ, σ 0, 0.03/3 −
eLd Deviation of direct inductance Ld relative Normal µ, σ 0, 0.0133/3 −
eLq Deviation of quadrature inductance Lq relative Normal µ, σ 0, 0.015/3 −

eΨpm Deviation of magnetic flux Ψpm relative Normal µ, σ 0, 0.025/3 −
eξq Deviation of quadrature iron losses ξq relative Normal µ, σ 0, 0.02/3 −
eξd Deviation of direct iron losses ξd relative Normal µ, σ 0, 0.02/3 −
ϑro Variation of rotor temperature ϑro absolute Uniform a, b 40, 80 °C
ϑst Variation of stator temperature ϑst absolute Uniform a, b 40, 80 °C

V
eh

ic
le

mv Variation of the vehicle mass absolute Birnbaum–Saunders β, γ 652.111, 0.0742427 kg
Ppto Variation of auxiliary consumers absolute Uniform a, b 250, 750 W
ϑa Variation of ambient temperature absolute Normal µ, σ 12.261, 8.52975 °C
pair Variation of ambient pressure absolute Normal µ, σ 98427.7, 843.09 Pa
cr Variation of rolling resistance absolute Uniform a, b 0.01, 0.015 −

C
on

tr
ol

le
r

cc Energy related cost function parameter absolute Uniform a, b 0, 6 -
ϑa,mpc Error of ambient temperature measurement absolute Normal µ, σ 12.261, 8.52975 °C
pair,mpc Error of air pressure estimation absolute Normal µ, σ 98427.7, 843.09 Pa
cr,mpc Error of rolling resistance estimation absolute Uniform a, b 0.01, 0.015 −
mv,mpc Error of vehicle mass estimation absolute Birnbaum–Saunders β, γ 652.111, 0.0742427 kg

eUocv ,mpc Error of open circuit voltage estimation relative Normal µ, σ 0, 0.05/3 −
eRs ,mpc Error of battery series resistance estimation relative Normal µ, σ 0, 0.05/3 −
eR1,mpc Error of battery RC-resistance estimation relative Normal µ, σ 0, 0.05/3 −
eC1,mpc Error of battery RC-capacitance estimation relative Normal µ, σ 0, 0.05/3 −
eα,mpc Error of slope measurement relative Normal µ, σ 0, 0.05/3 −

ePpto ,mpc Error of auxiliary power estimation absolute Uniform a, b 250, 750 W
ecurv,mpc Error of curvature measurement relative Normal µ, σ 0, 0.05/3 −
eSoC,mpc Error of SoC estimation relative Normal µ, σ 0, 0.10/3 −
eϑb ,mpc Error of battery temperature estimation relative Normal µ, σ 0, 0.05/3 −
eIb ,mpc Error of battery current measurement relative Normal µ, σ 0, 0.05/3 −

The first step is to conduct a Morris screening of the proposed model, controller and
parameter setup. Afterwards, the results provided by the Morris screening are used to
exclude unimportant parameters from the quantitative sensitivity analysis, in order to
reduce the computational time of the Monte-Carlo setup. The results of the proposed
sensitivity analysis are outlined in the following chapter.

6. Simulation Results

In this chapter, the results of the sensitivity analysis are discussed. In Section 6.1, the
results of the Morris screening are presented while, in Section 6.2, the outcomes of the
quantitative variance-based sensitivity analysis are discussed.
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6.1. Morris Screening

The results of the Morris screening for the four different drive cycles are outlined in
Figures 18–21. In general, it can be seen that the required battery energy Eb behaves more
linearly than the power losses Pl throughout all driving cycles, as σ� µ∗ holds. As σ is not
negligibly small, compared to µ∗, for the parameter dependencies of the power losses Pl ,
nonlinear interactions between parameters can be assumed. Furthermore, it can be seen for
both outputs Eb and Pl , that only a small subset of parameters have high values of µ∗ or σ
compared to the rest of the parameters. Consequently only these parameters are taken into
account in the variance-based sensitivity analysis. The remaining parameter set is outlined
in Table 2.

(a) (b)

Figure 18. Morris screening for drive cycle 1 (a) Bat energy Eb, (b) Power losses Pl .

(a) (b)

Figure 19. Morris screening for drive cycle 2 (a) Bat energy Eb, (b) Power losses Pl .

(a) (b)

Figure 20. Morris screening for drive cycle 3 (a) Bat energy Eb, (b) Power losses Pl .
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(a) (b)

Figure 21. Morris screening for drive cycle 4 (a) Bat energy Eb, (b) Power losses Pl .

Table 2. Reduced parameter set for the variance-based sensitivity analysis.

Name Description Type of
Error Distribution Parameter Values Units

Battery ϑb
Variation of start
temperature absolute Uniform a, b 20, 40 °C

Inverter ϑw,in
Variation of water inlet
temperature absolute Uniform a, b 0, 50 °C

Drive ϑro
Variation of rotor
temperature ϑro

absolute Uniform a, b 40, 80 °C

Vehicle

mv Variation of the vehicle mass absolute Birnbaum–Saunders β, γ 652.111, 0.0742427 kg
Ppto

Variation of auxiliary
consumers absolute Uniform a, b 250, 750 W

ϑa
Variation of ambient
temperature absolute Normal µ, σ 12.261, 8.52975 °C

cr
Variation of rolling
resistance absolute Uniform a, b 0.01, 0.015 −

Controller

cc
Energy related cost function
parameter absolute Uniform a, b 0, 6 -

ϑa,mpc
Error of ambient
temperature measurement absolute Normal µ, σ 12.261, 8.52975 °C

cr,mpc
Error of rolling resistance
estimation absolute Uniform a, b 0.01, 0.015 −

mv,mpc
Error of vehicle mass
estimation absolute Birnbaum–Saunders β, γ 652.111, 0.0742427 kg

ePpto ,mpc
Error of auxiliary power
estimation absolute Uniform a, b 250, 750 W

ecurv,mpc
Error of curvature
measurement relative Normal µ, σ 0, 0.05/3 −

6.2. Sobol Indices

Figure 22a outlines the histograms of the required battery energy Eb, caused by the
parameter distributions outlined in Table 2, for the four different drive cycles. First of
all, it can be seen that the average energy consumption varies for the drive cycles which
is expected as they had different lengths and route profiles. Furthermore, it is evident
that the examined parameters cause a significant variance in the required battery energy.
As shown in Figure 22d ∑ SG

i ≈ ∑ SG
Ti

holds for all four drive cycles which indicates a
linear parameter dependency on the output Eb. This coincides with the qualitative Morris
screening as already discussed in Section 6.1. Furthermore, it indicates that SG

i ≈ SG
Ti

,
which means that the total and first-order effects are nearly equal. The first-order indices, as
outlined in Figure 22b, show that only a few parameters are dominating the output variance.
These are the rolling resistance coefficient cr, the auxiliary losses Ppto, the vehicle mass mv
and the battery temperature ϑb. Another important finding is that the parameter belonging
to the controller—and thus, can be influenced during the operation of the vehicle—only
contributes a maximum of 5% to the overall variance. In other words, it can be confirmed
that operating or pre-conditioning the battery in a suitable temperature range and reducing
the mass of the vehicle has much stronger effect on the energy consumption than tuning
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the parameters in an advanced control concept. However, the controller tuning parameter
cc can be used to affect the energy consumption most from the point of view of the control
strategy. It is also important to mention that the sensitivities of the driving cycles do
not differ greatly and that the vehicle behaves relatively similarly. One exception is the
sensitivity of the battery temperature ϑb in drive cycle 3. This can be explained by the fact
that less total energy or average power is converted in this drive cycle. Therefore, the ohmic
battery losses and their dependence on the energy consumption do not have such a strong
effect than for the other drive cycles.

(a) (b)

(c) (d)

Figure 22. Generalized Sobol Indices and histograms for consumed battery energy Eb (a) Histograms,
(b) First-order effects with 95% confidence interval, (c) Total effects with 95% confidence interval, (d)
Sum of effects.

The next analyzed output of interest is Pl , which combines all losses occurring in the
powertrain during operation. As can be seen from Figure 23a, the investigated parameters
have a significant influence on the variance of Pl . The fact that ∑ SG

i 6= ∑ SG
Ti

holds for all
drive cycles, as depicted in Figure 23d, underpins the results of the Morris screening in
Section 6.1 that nonlinear or higher-order effects exists. From Figure 23d it can be inferred
that approximately 80 % of the variance are caused by first-order and the rest by nonlinear
or interaction effects.

The first-order effects of the power losses are shown in Figure 23b. Here, the vehicle
mass mv and the the battery temperature ϑb contribute significantly to the variance. How-
ever, beside the parameters related to the vehicle itself, it can be seen that the power losses
are also influenced by the distribution of the estimated vehicle mass mv,mpc. This parameter
is considered as a measured or estimated controller input variable. In this case, a reduction
in the variance of mv,mpc could reduce the variance in the power losses significantly. In
other words, if mv,mpc is better estimated or measured, the variance in the power losses. is
also reduced The choice of cc also influence the power losses but the effect of this controller
tuning parameter is rather small, compared to the parameters mentioned before.



Electronics 2022, 11, 1574 27 of 33

(a) (b)

(c) (d)

Figure 23. Generalized Sobol Indices and histograms for the total drive power losses Pl (a) Histograms,
(b) First order effects with 95% confidence interval, (c) Total order effects with 95% confidence interval,
(d) Sum of effects.

Another interesting output to look at is the total driving time td. This has a direct
impact on the acceptance of a driver assistance system, as drivers are normally not willing
to accept large increases in travel time. It can be seen that the investigated input parameters
also caused a distribution of the driving time for the longitudinal control system as outlined
in Figure 24a. The driving time behaves nearly linearly, as ∑ SG

i ≈ SG
Ti

holds, as outlined in
Figure 24d. The nonlinear effects are negligibly small.

As the first-order effects of Figure 24b demonstrate, cc has the biggest influence on the
driving time in drive cycles 2 and 4 which are the most energy-consuming drive cycles.
However, as outlined above, the controller parameter cc has only a small effect on the energy
consumption. Consequently, the travel time is mainly affected by cc without consuming
significantly more or less energy. Meanwhile, aside from cc, the controller parameters
mv,mpc and cr,mpc also have a significant influence on the driving time. Furthermore, the
two vehicle parameters mv and cr clearly contribute to the distribution of td.

To summarize the above outlined results, it can be stated that only a few of the
investigated parameters have a notable impact on the analyzed output. Nevertheless, this
influence is significant and clearly visible in the variances of the output and could not
be neglected. Overall, that the most important parameters belonging to the vehicle or its
components are the vehicle mass mv, the rolling resistance coefficient cr and the battery
temperature ϑb. From this, it is obvious that reducing the rolling resistance coefficient
and also the mass of the vehicle will have a significant impact on the energy required by
the vehicle. It is also shown that the battery temperature ϑb also plays an important role,
regarding the energy efficiency of the powertrain. Influencing the battery temperature
during operation is not directly possible, as the thermal mass of the battery is so big that
the battery losses would cause a major temperature rise to heat up the battery. However it
can be seen, from our investigation, that a possible solution could be to pre-condition the
battery before driving the vehicle, in order to reduce energy losses in the battery system.
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(a) (b)

(c) (d)

Figure 24. Generalized Sobol Indices and histograms for the total driving time td (a) Histograms,
(b) First-order effects with 95% confidence interval, (c) Total effects with 95% confidence interval,
(d) Sum of effects.

Furthermore, it is outlined that the controller parameters have less impact on the
energy consumption than the vehicle parameters, but they also have energy-saving poten-
tial. It can be seen, especially from the driving time td, that the parameter cc has a large
influence. Additionally, on the other outputs, an influence could be considered, which
leads to the assumption that cc mainly affects the driving time, but it may possibly improve
the energy consumption. It is also found that the measured or estimated mass of the vehicle
mv,mpc and the rolling resistance cr,mpc cause a substantial amount of the variance in the
driving time td, as well as that in the power losses Pl . As a consequence, these parameters
should be estimated as accurately as possible, in order to improve the energy efficiency of
the controller.

It is important to mention that the sensitivity analysis was performed for the controller
proposed in Section 4. Thus, it is possible that, if the controller concept is modified, e.g., by
changing the cost function or the constraints, the sensitivity analysis results will be affected.
Similarly, the vehicle design can affect the results. For instance, with a heavier vehicle, the
change in mass due to the number of people carried does not strongly affect the total mass
much, in percentage terms. However, optimization of the vehicle is beyond the scope of
this work.

It can be summarized that the investigated outputs behave differently regarding
their parameter sensitivities. It should also be mentioned that the ranking, according to
their importance, depends highly on the investigation or development target. The main
interesting variables in this study for energy-efficient longitudinal motion control are the
battery energy Eb and the driving time td. In contrast, if component loss optimization is
the main development goal, the overall power losses Pl or some component-specific losses
(e.g., battery losses), should be the main variables of interest. Due to this difference in
prioritization, depending on the development goal, the model outputs of interest should be
considered separately and not evaluated together.
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7. Conclusions

In this article, a novel approach for analyzing complex closed-loop economic model
predictive longitudinal control systems is presented. It is outlined that a qualitative screen-
ing method is able to generate a reduced set of parameters for variance-based sensitivity
analysis, thus reducing the computational burden of the Monte-Carlo simulation. The use
of Generalized Sobol Indices outlined the ability to deal with time-dependent processes.
It is shown that only a small subset of the parameters are sensitive regarding the energy
consumption, the power losses and the driving time. It can be concluded that the vehicle
mass, the battery temperature and the rolling resistance of the vehicle have the biggest
influence on the energy consumption of the modeled vehicle, whereas the influence of
EMPC tuning factors is only small with the unpleasant side-effect of worsening the driving
time. Furthermore, it is shown that good estimates in the EMPC of the vehicle mass and
the rolling resistance could improve the controller performance by reducing the variance
of the energy consumption and driving time. In general the used methods can be seen as
powerful tools for quantifying the effects on an output of the system with respect to their
cause. This will help researchers or developers to identify relevant parameters and focus
on them to more effectively improve the overall system behavior.
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Appendix A

Appendix A.1. Longitudinal Motion Model

The longitudinal motion model considers the mechanical forces acting on a vehicle’s
center of gravity and a gearbox model transforming the mechanical energy of the electric
drives to the wheels. The force equilibrium in the center of gravity of the vehicle is described by

FL + FR = Fa + Fr + Fs + Fair, (A1)
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where FL and FR are the forces acting on the left and right rear wheel which drive the
vehicle. The driving resistance forces comprise the acceleration resistance force Fa, the
rolling resistance force Fr, the slope resistance force Fs and the air resistance force Fair. The
acceleration resistance force is caused by Newton’s second law. It is expressed by

Fa = meq · aego, (A2)

where meq denotes the equivalent mass, including the inertia of the rotating parts of
the powertrain which belong to their kinetic energy. Furthermore, aego describes the
acceleration of the vehicle. The rolling resistance can be described by

Fr = cr ·mv · g · cos(α) with vego > 0, (A3)

where cr denotes the rolling resistance coefficient and α is the road slope angle. In a similar
manner, the resistance force caused by the road slope

Fs = mv · g · sin(α) (A4)

describes the additional force when driving up or downhill, with g being the gravitational
constant. Additionally, the movement of the vehicle through the surrounding air causes
the aerodynamic resistance force

Fair =
1
2

cw · Av · ρair · v2
ego (A5)

to act on the vehicle. This includes the aerodynamic drag coefficient cw, the frontal area of
the vehicle Av and the air density ρair.

The conversion from the longitudinal motion model and the associated forces to the
rotational model of the powertrain is achieved by the law of levers. The transformation
from the longitudinal driving forces FL and FR to the corresponding drive shaft torques ML
and MR of the wheels is given by

ML = FL · rw (A6)

and
MR = FR · rw (A7)

with the wheel radius rw. Assuming, that the same torque is applied on the left and the
right wheel the needed driving force in (A1) can be described by

FR + FL =
ML + MR

rw
= 2MD with MW = ML = MR. (A8)

The gearbox is modeled with a constant gear ratio ig, using a working point dependent
efficiency map ηg(ωm, Mem). This leads to

MD = Mem · ig · ηg(ωm, Mem), (A9)

describing the transition from the mechanical torque of the electrical drives Mem to the
torques MD applied to the wheels. The parameters for the longitudinal motion model are
provided in Table A1.

Table A1. Longitudinal motion model parameters.

Parameter Description Value

cw Air drag coefficient 0.262
Av Frontal area 2.036 m2

mv Vehicle mass 550 kg
meq Equivalent vehicle mass (including rotational inertia) 569 kg
rw Wheel radius 0.283 m
ig Gear ratio 5.85
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