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Abstract: An optimization procedure for type 1 Takagi–Sugeno Fuzzy Logic Controller (FLC) param-
eter tuning is shown in this paper. Ant colony optimization is used to obtain the optimal controller
parameters, and only a small amount of post-optimization parameter adjustment is needed. The
choice of controller parameters is explained, along with the methodology behind the criterion for
objective function value calculation. The optimized controller is implemented as an outer-loop speed
controller for Predictive Current Control (PCC) of an induction machine. The performance of the
proposed control method is compared with that of several other model predictive control methods.
The results show a 55% decrease in speed tracking error and 74% decrease in torque overshoot.

Keywords: induction machine; ant colony optimization; predictive current control; fuzzy logic
control; Takagi–Sugeno

1. Introduction

Induction machines play a crucial role in modern industry, ranging from simple
applications such as driving fans or pumps to more precise usages such as conveyor
belts or plastic injection molding [1]. Conventional induction machine control methods
such as Field-Oriented Control (FOC) [2] and Direct Torque Control (DTC) [3] can suffer
from sensitivity to parameter and torque changes [4], or torque and flux pulsations and
control problems at low speeds [5]. For high-performance drives, which require a fast
dynamic response and disturbance rejection, these shortcomings must be improved, or
new methods must be investigated. One direction of research is incorporating fuzzy logic
into conventional control structures to improve the dynamics.

Research in [6] shows an increasing trend of computational intelligence implementa-
tion in control applications. An overview of the recent literature proves the research interest
in fuzzy logic in drive systems. The authors of [7] investigate the implementation of FLC
with a reduced computation burden. In [8], the authors incorporate FLC into a classic DTC
structure to improve the torque ripple of the high-performance drive. The authors of [9]
investigate FLC for low-speed induction machine operation. In [10], the authors investigate
the computation burden of FLC depending on the size of the fuzzy rules table. In [11,12],
type 2 FLC is investigated to improve the DTC structure on five- and three-level inverters.
In [13,14], the authors use FLC to improve the classic DTC in an induction machine drive
with a two-level converter and dual-stator machine drive, respectively. The authors of [15]
improve the FOC structure for an induction machine by developing a fuzzy speed con-
troller with an algorithm for automatic gain output adjustment. Tir et al. use fuzzy logic to
improve the FOC structure for a single system in [16] and a multi-machine drive system
in [17]. Bessaad et al. use a fuzzy system in [18] for developing a correction regulator
in a multi-machine system with a single inverter supply. The authors of [19] develop a
custom search algorithm for induction machine fuzzy-PI controller tuning. To improve
efficiency, the authors of [20,21] use fuzzy logic for the online search of the minimum power
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losses of an induction machine drive and self-excited induction generator, respectively.
In [22], the authors use fuzzy logic to develop an expert system for induction machine fault
diagnosis. The authors of [23] use FLC to calculate a suitable voltage vector for a five-phase
induction machine to reduce torque ripple. The authors of [24] use fuzzy logic as a decision
mechanism for weighing factor selection in predictive torque control. In [25], the authors
incorporate two FLCs as inputs to a feedback linearization algorithm to improve drive
dynamics. Saghafinia et al. use FLC in [26] as a speed controller in a sliding mode control
structure. In [27], the author presents a fuzzy-PI controller utilized for minimizing energy
consumption while maximizing the performance of an induction machine drive. In [28],
Youb et al. develop a fuzzy-PI controller for a dual-star induction machine with online
adaptation of proportional and integral gains.

There are a number of research papers showing the usage of fuzzy systems in param-
eter estimation. The authors of [29] use fuzzy logic concepts for estimation purposes by
building an observer using the Takagi–Sugeno model of an induction machine. Jabbour
et al. use fuzzy logic in [30] for online parameter estimation. In [31], the authors utilize
a type 1 and type 2 fuzzy controller for a model reference adaptive system and compare
the results. The authors of [32] build a Luenberger observer using a fuzzy logic system
that outputs state variable estimates. In an older paper [33], the authors optimize a fuzzy
system for the purpose of estimating the rotor time constant. In [34], Shukla et al. use fuzzy
logic for the model reference speed adaptation of an induction machine that is controlled
via DTC.

Fuzzy logic is also used in power and frequency control, as can be seen in papers such
as [35], where the authors use fuzzy logic to tune the proportional, integral, and derivative
gains of a doubly fed induction generator (DFIG) PID controller. In [36], the authors also
use fuzzy concepts to improve the DTC of a DFIG, while in [37], FLC is used for active
power control. In [38], Dewangan et al. replace a classic PI controller with FLC to improve
the performance of a wind-driven self-excited induction generator during fault and variable
wind speed conditions. The authors of [39] develop FLC for a six-phase induction generator
that shows superiority over the classic controller in fault conditions.

In this paper, the authors present an optimization procedure for the fuzzy speed
controller that enhances the speed tracking and torque response of the induction machine,
which is controlled using the PCC algorithm. In recent years, a few papers have dealt
with this problem in the induction machine drive field. In [40], George et al. use an
optimization procedure to optimize the speed control of an electric vehicle. Similarly, the
authors of [41] use an optimization approach to optimize frequency control in multi-area
interconnected power systems. Both papers offer several criteria for objective function
value calculation. In [37], the authors use the integral time squared error to calculate the
objective function value for the particle swarm optimization algorithm, which is used
to optimize DFIG power control. The authors of [42] optimize FLC for an induction
machine and use the mean average error as a criterion to optimize seven membership
functions for inputs and output while using the Mamdani-type defuzzification process. In
this paper, the authors use five membership functions for inputs, and a Takagi–Sugeno-
type defuzzification process. Several criteria for objective function value calculation are
investigated and results show improvements upon the classic speed controller. The paper
is organized as follows: In Section 2, the dynamic model of the induction machine is
presented and a control overview is given. In Section 3, the fuzzy logic speed controller that
is being optimized in this paper is presented and each part of the controller is described.
The problem statement and optimization procedure (optimizer, controller parameters, and
the choice of objective function) are presented in Section 4. In Section 5, results for different
optimization approaches are displayed and discussed. Control system performance is
shown in Section 6, while the comparison with several model predictive methods is carried
out in Section 7. In Section 8, the authors discuss caveats and future research possibilities.
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2. Induction Machine Model and Control Overview

The dynamic model of the induction machine is written in the stationary αβ-reference
frame and it is shown by Equations (1)–(4), where J is the inertia constant of the machine,
ωr is the rotor shaft speed, p is the number of pole pairs, Te is electromechanical torque,
and Tl is load torque.

vsαβ = Rsisαβ +
d
dt

ψsαβ (1)

0 = Rrirαβ − Jr pωrψrαβ +
d
dt

ψrαβ (2)

J
d
dt

ωr = Te − Tl (3)

Te =
3
2

p(ψsαisβ − ψsβisα) (4)

Equation (5) displays electrical quantities, where vsαβ represents the stator voltage
vector, isαβ and irαβ represent the stator and rotor current vector, while ψsαβ and ψrαβ

describe stator and rotor flux linkages.

vsαβ =

[
vsα

vsβ

]
isαβ =

[
isα

isβ

]
irαβ =

[
irα

irβ

]
ψsαβ =

[
ψsα

ψsβ

]
ψrαβ =

[
ψrα

ψrβ

]
(5)

Electrical parameters are described by Equation (6), where Rs and Rr are the stator
and rotor resistance matrices, while Jr represents the rotation matrix.

Rs =

[
Rs 0
0 Rs

]
Rr =

[
Rr 0
0 Rr

]
Jr =

[
0 −1
1 0

]
(6)

Additionally, the relationship between fluxes and currents is described by
Equations (7) and (8), but for a deeper understanding of the induction machine model, the
reader is referred to [43].

ψsαβ = Lsisαβ + Lmirαβ (7)

ψrαβ = Lrirαβ + Lmisαβ (8)

Model predictive control has attracted research interest in recent years, as seen in
papers such as [44–46]. This being the case, the control method that is being modified in
this paper is PCC for an induction machine, which falls into the family of model predictive
control structures. In the following text, it is explained how it works.

Firstly, a discrete state space model for computing the current prediction isαβ[k + 1]
is formed by selecting stator currents isαβ[k] and rotor fluxes ψrαβ[k] as state variables.
Equation (9) represents the final expression to calculate the current predictions, where

σ = 1− L2
m

Ls Lr
represents the leakage inductance factor, τr = Lr

Rr
represents the rotor time

constant, and Ts represents the discretization sampling time.

[
isα[k + 1]
isβ[k + 1]

]
=

1− (Rs+
L2

m
Lrτr )Ts

σLs
0 LmTs

σLs Lrτr

Lm pωrTs
σLs Lr

0 1− (Rs+
L2

m
Lrτr )Ts

σLs
− Lm pωrTs

σLs Lr
LmTs

σLs Lrτr




isα[k]
isβ[k]
ψrα[k]
ψrβ[k]


+

[
Ts

σLs
0

0 Ts
σLs

][
vsα[k]
vsβ[k]

] (9)

Equation (10) represents the cost function that is used to derive the control law by
minimizing the squared error between reference currents i∗α[k], i∗β[k] and current predictions.
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By inserting (9) into (10) and solving (11), the optimal voltage vector v∗αβ can be obtained to
minimize the cost function and drive the machine in the desired state.

G =

[
gα

gβ

]
=

[
(i∗α[k]− iα[k + 1])2

(i∗β[k]− iβ[k + 1])2

]
(10)

∂G
∂vαβ

= 0 (11)

Equation (12) represents the solution of (11), which is used as a control law.

v∗αβ[k + 1] =

[
Rs +

L2
m

Lrτr
− σLs

Ts
0 − Lm

Lrτr
− Lm pωr

Lr

0 Rs +
L2

m
Lrτr
− σLs

Ts

Lm pωr
Lr

− Lm
Lrτr

]
isα[k]
isβ[k]
ψrα[k]
ψrβ[k]


+

[
σLs
Ts

0
0 σLs

Ts

][
i∗sα[k]
i∗sβ[k]

] (12)

Reference current value i∗α[k] is calculated from the desired rotor flux of the machine,
while reference current i∗β[k] is generated by the FLC acting as a speed controller. Figure 1
represents the final topology of the control structure, and more details about the PCC
structure can be found in [47].

Observer

FLC

Predictive 
Current 
Control

InverterRectifierGrid

+ 
-

IM

Figure 1. Simulated control method.

3. Fuzzy Logic Controller

The fuzzy inference system block diagram is shown in Figure 2. It represents the
computation steps used to transfer inputs to the fuzzy system into control outputs used for
generating reference values for induction machine predictive current control. First, input
values are turned into fuzzy values by the process of fuzzification. These fuzzy values
are calculated using predefined membership functions. The following text explains the
selection of input and output variables and membership functions that are to be optimized
for induction machine speed control.
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Rules
Table

DefuzzificationInferenceFuzzificationo z

Figure 2. Fuzzy logic controller structure.

3.1. Input and Output of Fuzzy Controller

Input variables to the fuzzy controller are chosen to be the speed tracking error ωerr
and its derivative ω̇err, while the output is defined as fuzzy error ferr. All relevant vectors
and sets that will be used are: real valued input vector o, input linguistic variable vector ō,
and input linguistic value sets Ōi, where i represents the input ordinal number. Regarding
the output, z represents the real valued output vector, z̄ represents the output linguistic
variable vector, and Z̄ represents the output linguistic value set. Established vectors and
sets are defined as follows:

• o =
[
ωerr ω̇err

]
,

• ō = ["Speed Error" "Speed Error Derivative"],
• Ō1 = Ō2 = {"Negative Big", "Negative Small", "Zero", "Positive Small", "Positive Big"},
• z =

[
ferr
]

,
• z̄ = ["Fuzzy Error"],
• Z̄ = {"Negative", "Zero", "Positive"}.

3.2. Input Membership Functions

Membership functions are structured for ith input linguistic variable ōi and kth possi-
ble linguistic value Ōk. Their structure depends on the observed linguistic variable and its
linguistic value. Equations (13)–(15) represent the membership function definitions for all
the possible combinations of index values i and superscript values k. It can be seen that
they are unit piecewise linear and defined using only two parameters, aik and bik. Figure 3
gives a deeper insight into the membership functions and their parameters.

µŌk
i
(oi) = max

[(
1−

∣∣∣∣ aik − oi
bik

∣∣∣∣), 0
]

, i ∈ {1, 2}, k ∈ {2, 3, 4} (13)

µŌk
i
(oi) =


1, oi < aik

0, oi > bik
aik−oi
bik−aik

+ 1, aik ≤ oi ≤ bik

i ∈ {1, 2}, k = 1 (14)

µŌk
i
(oi) =


0, oi < aik

1, oi > bik
oi−aik
bik−aik

, aik ≤ oi ≤ bik

i ∈ {1, 2}, k = 5 (15)
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Figure 3. Topology of the fuzzy controller.

The fact that there are only two parameters required for membership function defini-
tion offers simplicity of implementation and can be exploited in the optimization procedure
of the fuzzy speed controller, as is seen in the following sections. The next step is to obtain
the controller output value through the process of fuzzy inference and defuzzification.

3.3. Fuzzy Inference

In control, it is common practice to follow the convention shown in Table 1 of [10]
or Table 2 of [40] for fuzzy rule table construction, where an equal number of input and
output linguistic values exist in each set Ōi and Z̄. In this paper, however, this convention
is not followed since the input linguistic value set contains five elements, while the output
linguistic value set consists of three elements. This is done to reduce the number of
decision variables in the optimization problem and speed up the overall computation.
Table 1 represents the fuzzy rule table that is used in this paper. Abbreviations are used to
represent the linguistic values: N for Negative, P for Positive, Z for Zero, S for Small, and B
for Big. Rules are interpreted as follows: “if Speed Error is Negative-Big and Speed Error
Derivative is Negative-Big, then Fuzzy Error is Negative”, and so on.

Table 1. Fuzzy Rules.

ōm
2

ōn
1 NB NS Z PS PB

NB N N N N Z Z̄nm, n, m ∈ [1, 5]
NS N N N Z P
Z N N Z P P
PS N Z P P P
PB Z P P P P

Table 2. Optimization search area.

Parameter Value (θmin) Value (θmax)

aik, bik 0 1
aP, bP,cP 0 100
Be, Bce 0.000001 10,000

KP f 0 10,000
KI f 0 100,000

Using Table 1, it is possible to calculate the rule firing strength matrix W , shown in
Equation (16), whose elements are calculated using Equation (17). This matrix is used to
obtain the output control value in the defuzzification process.
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W =

w11 . . . w1m
...

. . .
...

wn1 . . . wnm

 (16)

wnm = min(µŌn
1
(o1), µŌm

2
(o2)), n, m ∈ [1, 5] (17)

3.4. Defuzzification

Defuzzification is the final step to obtain the real output value, and in this paper, the
Takagi–Sugeno method is used because it is simple to implement and fast for computation.
It is executed by forming rule output level matrix H, shown in Equation (18). Elements of
matrix H are calculated using Equation (19). This equation is structured for each element in
matrix H and its coefficients depend on the output linguistic value Z̄nm defined by Table 1.

H =

h11 . . . h1m
...

. . .
...

hn1 . . . hnm

 (18)

hnm = cnmo1 + dnmo2 + enm

cnm =


cN , Z̄nm = N
cZ, Z̄nm = Z
cP, Z̄nm = P

dnm =


dN , Z̄nm = N
dZ, Z̄nm = Z
dP, Z̄nm = P

enm =


eN , Z̄nm = N
eZ, Z̄nm = Z
eP, Z̄nm = P

n, m ∈ [1, 5]

(19)

Defuzzified output controller value z is calculated from matrices W and H, as shown
in Equation (20).

z =

5
∑

i=n

5
∑

m=1
wnmhnm

5
∑

i=n

5
∑

m=1
wnm

(20)

The final topology of the FLC that is used in the paper is shown in Figure 4. It can be
seen that there are four additional parameters: Be and Bce are base values, which are used
to scale the inputs of the fuzzy controller, since input membership functions are chosen to
be unit piecewise functions. KP f and KI f serve as proportional and integral gains on the
produced fuzzy error.

FLC+ 
-

+ 
+

 

 

Figure 4. Topology of the fuzzy controller.

It can be seen from Figure 1 that the described fuzzy logic controller is used as a
speed controller to generate torque reference, which implicitly generates the reference
β-current component through some scaling and reference frame transformation. Based on
the selected input membership functions, output level functions, and base and gain values
of the controller, there are 33 parameters, represented by vector θ in Equation (21), that
need to be tuned to accurately control the drive. Vector θ is also called a decision variable
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vector that is used in the fuzzy controller optimization procedure, which is explained in
the following section.

θ = {a11 . . . aik, b11 . . . bik, cN , cZ, cP, dN , dZ, dP, eN , eZ, eP, Be, Bce, KP f , KI f }
= {θ1, θ2, . . . , θ33}, k ∈ [1, 5], i ∈ {1, 2}

(21)

4. Optimization of Fuzzy Logic Controller

In the following text, the optimization procedure of the FLC is explained. The prob-
lem statement is given, the objective function structure with decision variables and their
boundaries is selected, and the optimization tool is described.

4.1. Problem Statement

In the proposed control method, FLC is employed as a speed controller that produces
a torque reference for PCC of an induction machine. The reference torque must change in a
timely manner to produce minimal speed tracking error and have a minimal amount of
overshoot so that it does not stress the rotor shaft. To meet these demands, optimal FLC
parameters must be calculated. FLC is defined by a large number of parameters, and to find
the optimal combination of them, optimization must be employed. Parameters calculated
in the optimization process highly depend on the criteria used to calculate the objective
function value. The following text provides insight into how different criteria affect the
final results. By finding the correct criterion, optimal parameters that produce the best
induction machine drive performance can be obtained.

4.2. Objective Function

To optimize FLC, a number of objective functions are explored and the one that
produces the best results (which are small speed tracking error and small torque overshoot)
is further analyzed. These are Integral Absolute Error, Integral Squared Error, Integral Time
Absolute Error, and Integral Time Squared Error, represented by Equation (22), where θ
represents the decision variable vector.

f IAE = f1(ωerr(θ)) =
∫ ∞

0
|ωerr(θ)| dt

f ISE = f2(ωerr(θ)) =
∫ ∞

0
ω2

err(θ) dt

f ITAE = f3(ωerr(θ)) =
∫ ∞

0
|ωerr(θ)| t dt

f ITSE = f4(ωerr(θ)) =
∫ ∞

0
ω2

err(θ) t dt

(22)

ωerr(θ) represents the speed tracking error calculated as the difference between speed
reference ω∗r and induction machine speed response ωr(θ), as shown in Equation (23).
These responses are calculated through Simulink simulation of a drive system, which
is shown in Figure 1. In the optimization procedure, the inverter and observer blocks
are omitted from the simulation to speed up the computation. The parameters of the
induction machine that is controlled are given in Table A1 in Appendix A, along with
relevant simulation parameters.

ωerr(θ) = ω∗r −ωr(θ) (23)

Simulated dynamics of a drive system are shown in Figure 5. It can be seen in Figure 5a
that the speed reference is a function that is ramping from 0 to 1432.5 rpm during a 2 s
period starting at 0.2 s of the simulation. Nominal load torque of 27 Nm is applied at the
3rd second of the simulation and it is constant till the end of the simulation, as can be seen
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from Figure 5b. Figure 5c represents the required machine torque profile calculated using
Equation (24).

Te = J
d
dt

ω∗r + Tl (24)

It can be seen from Figure 5c that torque overshoot can appear at the beginning
of ramping (OS1) and loading instance (OS3), while undershoot can appear at the end
of ramping (OS2). Total torque overshoot is calculated by Equation (25), and it is used
to construct another set of objective functions, represented by Equation (26), where w
represents a weighing factor.

fOS = |OS1|+ |OS2|+ |OS3| (25)

f IAE+OS = f5(ωerr(θ)) = f1(ωerr(θ)) + w · fOS

f ISE+OS = f6(ωerr(θ)) = f2(ωerr(θ)) + w · fOS

f ITAE+OS = f7(ωerr(θ)) = f3(ωerr(θ)) + w · fOS

f ITSE+OS = f8(ωerr(θ)) = f4(ωerr(θ)) + w · fOS

(26)

Equation (27) represents the optimal decision variable values θ
opt
i , obtained by the

minimization of the previously formulated objective functions, where S represents a con-
straint on the optimization search area, while index i represents the ordinal number of
objective functions that was used in the optimization procedure. In the following text,
decision variable selection is further explained, along with the imposed constraints.

θ
opt
i = argmin

θ∈S⊂R
[ fi(ωerr(θ))], i ∈ [1, 8]

S ∈ [θmin, θmax]

(27)

(a)

(b)

(c)
Figure 5. Drive dynamics. (a) Reference speed commanded to the machine. (b) Load torque profile
applied to the machine. (c) Required torque profile.
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4.3. Decision Variables

Fuzzy controller parameters (membership function and output level function pa-
rameters, base and gain values) lead to the decision variable vector θ, as was previously
established by Equation (21) in the previous section. Some simplification measures can be
taken to reduce the number of elements in the vector: it can be concluded that the controller
must have the same output in absolute value for negative and positive inputs. This means
that only membership functions corresponding to positive linguistic values can be defined,
and the opposites can be used for the negative counterparts. This reduces the number of
decision variables regarding input membership functions from 20 to 10. The same is true
for the rule output level functions. Coefficients aZ, bZ and cZ from Equation (19) can be
set to zero and only coefficients regarding positive linguistic values can be defined, which
reduces the number of variables from 9 to 3. This means that the final vector of decision
variables θ contains only 17 instead of 33 elements. Table 2 represents the limits of the
optimization search area.

4.4. MIDACO Optimizer

In this paper, the authors use the MIDACO solver, which stands for “Mixed Integer
Distributed Ant Colony Optimization” , which is one of many metaheuristic methods for
global optimum search, inspired by nature. It is chosen because it is easy to use and works
well with a large number of decision variables and can also work in co-simulation with
the Matlab environment. Out of the many settings that the solver offers, it only requires
settings for decision variable limits and the start point of the search. Figure 6 represents the
co-simulation between Matlab/Simulink and MIDACO that is executed to optimize the
fuzzy controller parameters, where θj represents the decision variable values of the current
evaluation.

MIDACO Matlab/Simulink

Figure 6. Co-simulation: MIDACO←→Matlab/Simulink.

5. Optimization Results

In this section, the optimization results, obtained by criteria from Equations (22), (25),
and (26), are presented. Figure 7 shows the speed and torque responses that are obtained by
using only criteria from Equation (22). It can be seen that the dynamics of the drive system
have almost no impact on the speed response; in other words, the speed response has only
around 0.2 rpm maximum tracking error and a fast settling time, but when observing the
torque response, an unacceptable overshoot of around 20 Nm is observed. The reason for
the large overshoot is the fact that the speed error is the only criterion for the optimization.
To keep it at its lowest value, large control action is required at every instance when the
speed diverges from the reference value. Since there is no criterion that would limit or
penalize the torque, optimized parameters allow this kind of behavior. An attempt is made
to remedy this problem with a multi-objective optimization approach. The first objective
is selected as f ISE from Equation (22) and the second as overshoot from Equation (25).
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Figure 8 represents the optimization result in the form of a Pareto front, where the x-axis
represents the f ISE value and the y-axis represents the total overshoot value.

(a) (b)

(c) (d)

Figure 7. Speed tracking error and torque responses produced by: (a) Integral absolute error criterion.
(b) Integral squared error criterion. (c) Integral time absolute error criterion. (d) Integral time squared
error criterion.

Depending on the application, a range of solutions are available to choose from, and
they are represented by the circles in the graph. The green hexagon in the figure is the area
of the Pareto front that the optimizer selected a solution from, and Figure 9 represents the
system response produced by its parameters.

It can be seen from Figure 9 that the overshoot in the torque response is greatly
reduced. To obtain the unique solution that offers the best system response, criteria from
Equation (26) are investigated.
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Figure 8. Pareto front of multi-objective optimization.

Figure 9. System response using the solution of the Pareto front.

Figure 10 represents the speed and torque responses of the criteria from Equation (26)
with the weighing factor of value 10. It can be seen that the torque overshoot is greatly
reduced, while preserving a good speed tracking response.
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(a) (b)

(c) (d)

Figure 10. Speed tracking error and torque responses produced by: (a) Integral absolute error
criterion with overshoot penalization. (b) Integral squared error criterion with overshoot penalization.
(c) Integral time absolute error criterion with overshoot penalization. (d) Integral time squared error
criterion with overshoot penalization.

To summarize, nine different optimization procedures are conducted for nine different
types of objective functions. Table 3 shows relevant metrics for each optimization procedure.
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Table 3. Optimization results.

Optimization
Procedure

Objective Function
Max Torque Overshoot

(Nm)
Max Speed Tracking

Error (rpm)

1 f IAE 24.34 0.25
2 f ISE 23.80 0.26
3 f ITAE 21.28 0.28
4 f ITSE 22.23 0.26

5 (multi-objective) f1 = f ISE, f2 = fOS 2.28 0.40
6 f IAE+OS 0.84 0.63
7 f ISE+OS 0.20 0.83
8 f ITAE+OS 1.34 0.66
9 f ITSE+OS 0.24 0.75

It can be seen from the results that single-objective optimizations that utilize objective
functions f ISE+OS and f ITSE+OS produce the best results regarding torque overshoot, while
keeping the speed tracking error below 1 rpm. Even though they do not differ significantly,
the f ISE+OS criterion produces slightly better results, which is why it was chosen to be
further investigated. Figure 11 shows the optimized membership functions and Table 4
shows the optimized gain and output level function coefficient values for the f ISE+OS
criterion.

Table 4. Gain and output level function coefficient values obtained by optimization.

Parameter Value

Be 6049.6
Bce 3212.6
KP f 6076.7
KI f 98,680.5
aP 77.5
bP 51.66
cP 94.78

It should be noted that coefficients aN , bN and cN have opposite values to their positive
counterparts.

Figure 11. Membership functions obtained by optimization.
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6. Control System Performance

In this section, a full simulation with the drive, inverter, and observer is evaluated.
Control parameters used for the fuzzy controller are the ones obtained by the f ISE+OS
criterion in the optimization procedure. A block diagram of the simulated control method
is shown in the Figure 1. From the Figure 12a it can be seen that optimized controller
parameters produce great speed tracking with maximum tracking error of only 2 rpm, but
still produce large torque overshoot at the loading instance. By reducing the proportional
and integral gain of the fuzzy logic controller, it is possible to adjust the response and
remedy this problem. Figure 12b shows the performance of the system with reduced
gains—in this case, KP f = 500 and KI f = 4000. It can be seen that the torque overshoot is
greatly improved, while the speed response is slightly affected, but the system still offers a
small maximum tracking error of around 10 rpm. In the following section, a comparison
with several conventional model predictive control methods will be performed.

(a) (b)

Figure 12. System performance. (a) With original optimized parameters. (b) With reduced KP f and
KI f parameters.

7. Discussion

The optimization procedures conducted in the study show improvements in the
speed tracking response of the induction machine drive. Figure 9 shows the improvement
when using multi-objective optimization over single-objective optimization, whose results
are represented by Figure 7. The reason for the improvement is that torque overshoot
penalization is added via a second objective function, and the result is a Pareto front that
offers a range of solutions to chose from, based on the application. Figure 10 shows further
improvements: single-objective optimization is used and torque overshoot can be arbitrarily
penalized using a weighing factor, which results in the smallest amount of overshoot and
good speed tracking behavior. A comparison between the proposed method and PCC
method that utilizes a classic PI speed controller is shown in Figure 13. In Figure 13a, it
can be seen that the speed response is greatly improved, with a much smaller value of
maximum speed tracking error but similar settling time. Torque responses are filtered
to better represent overshoots, and as can be seen from the same figure, the optimized
fuzzy speed controller produces less torque overshoot than the classic PI controller. The
reason for the better response is the fact that the fuzzy speed controller acts on the speed
tracking error derivative along with the speed tracking error. The speed tracking error
derivative can be understood as a form of torque estimation which increases control action
in the instances when the torque is changing. The classic PI controller does not have this
advantage, since it only acts on the speed tracking error. Figure 13b shows the unfiltered
torque response for both methods. It can be seen that the chattering produced by both
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methods is in the same range. To further confirm the effectiveness of the method, two
more comparisons with different predictive control methods are conducted. Figure 14
shows a comparison of the proposed method with Finite Control Set-Predictive Current
Control (FCS-PCC), while Figure 15 represents a comparison of the proposed method with
Finite Control Set-Predictive Torque Control (FCS-PTC). To gain an understanding of both
methods, the reader is referred to [48,49]. It can be seen from Figures 14a and 15a that the
speed tracking error and filtered torque responses are similar to the original comparison:
the proposed method has less torque overshoot and superior speed tracking. Table 5
represents relevant numerical values for each method. Figures 14b and 15b show unfiltered
torque responses. It can be concluded that finite control set methods produce a larger
amount of chattering compared to the proposed method, which means that the proposed
method produces less stress on the rotor shaft during operation.

Table 5. Comparison of proposed method with other model predictive control methods.

Fuzzy-PCC PI-PCC FCS-PCC FCS-PTC

Max. speed
tracking error

(rpm)
9.48 21.68 21.05 20.88

Max. torque
overshoot (Nm)

0.63 2.16 2.72 2.45

In future research, alternative inputs to the FLC will be investigated, since the speed
derivative has several drawbacks: it can be computationally unstable and it can be a cause
of high control action. Estimated load torque can be explored as an alternative input to the
FLC. This could provide more stable input to the controller, which would produce a more
stable output with less control action and potentially less torque overshoot.

(a) (b)

Figure 13. System response comparison between proposed method and classic PCC method.
(a) Speed tracking error and filtered torque response. (b) Unfiltered torque response.
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(a) (b)

Figure 14. System response comparison between proposed method and FCS-PCC method. (a) Speed
tracking error and filtered torque response. (b) Unfiltered torque response.

(a) (b)

Figure 15. System response comparison between proposed method and FCS-PTC method. (a) Speed
tracking error and filtered torque response. (b) Unfiltered torque response.

8. Conclusions

An optimization procedure for a fuzzy logic speed controller used in the predictive
current control of an induction machine is presented in this paper. The topology of the
controller and the choice of optimization decision variables are explained, along with the
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chosen limits of the optimization search area. Several different criteria for objective function
value calculation are investigated, and the one that produces the best results (small torque
overshoot and good speed reference tracking) was the single-objective integral squared
error criterion with overshoot limitation using the weighing factor. A drive model with an
omitted inverter, modulator, and observer is used for the optimization procedure. This kind
of model produces torque and current responses without any ripple or added harmonics.
To verify the improvement of the method, optimized parameters are plugged into the
full drive model, which produces ripple in the current and torque responses. Torque
ripple affects the speed response, which consequently produces a larger speed derivative,
which is used as the input of the fuzzy controller. Because of the larger speed derivative
during the operation of the drive, high control action can be expected when this derivative
becomes even larger, which is why a large amount of torque overshoot still persists when
the drive is loaded with nominal torque. By reducing the proportional and integral gains
of the controller, this overshoot can be reduced significantly, while still preserving a good
speed response. A comparison between the proposed method and several different model
predictive control methods is conducted, and proposed method shows a 55% average
improvement regarding speed tracking error and 74% average improvement regarding
torque overshoot.
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FLC Fuzzy Logic Controller
PCC Predictive Current Control
FOC Field-Oriented Control
DTC Direct Torque Control
DFIG Doubly Fed Induction Generator
FCS-PCC Finite Control Set-Predictive Current Control
FCS-PTC Finite Control Set-Predictive Torque Control

Appendix A

Table A1. Induction machine and simulation parameters.

Parameter Value

Stator resistance Rs (Ω) 1.1507
Rotor resistance Rr (Ω) 1.0107

Stator inductance Ls (H) 0.1315
Rotor inductance Lr (H) 0.1315

Mutual inductance Lm (H) 0.126
Pole pairs p 2

Inertia J (kgm2) 0.129
Simulation step size Ts (s) 10−4

Solver Fixed-step Runge–Kutta
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