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Abstract: This article describes the manufacturing of a horn antenna using a 3D commercial printer.
The horn antenna was chosen for its simplicity and practical versatility. The standardised horn
antenna is one of the most widely used antennas in microwave technology. A standardised horn
antenna can be connected to standardised waveguides. The horn antenna has been selected so that
this antenna can be fabricated by 3D printing and thus obtain the equivalent of a standardised horn
antenna. This 3D horn antenna can then be excited by a standardised waveguide. The 3Dprinted
horn antenna with metallic layers has very good impedance characteristics, standing wave ratio
and radiation patterns that are close to those of a standardised horn antenna. The 3D-based horn
antenna is suitable for applications where low antenna weight is required, such as aerospace and
satellite technologies. The article also describes a manufacturing procedure for a horn antenna
(E-sector horn antenna) that is plated with galvanic layers of silver and gold. The design of the
plated horn antenna in the Matlab application using the Antenna Toolbox extension is also described,
including 3D printing procedures, post-processing procedures (plating) and practical testing of its
functionality. The measured results are compared to simulations of the standardised horn antenna
and then analysed.

Keywords: horn antenna; Matlab; 3D printing; galvanic plating

1. Introduction

The article introduces options for using 3D printing when manufacturing a horn
antenna. Nowadays, there is great progress in 3D printing technologies, both in the 3D
printers themselves and in the materials from which the final object is printed. Three-
dimensional printing is the process of creating a three-dimensional fixed object from a
digital file, where the resulting printed object is gradually created by laying (printing)
continuous layers of material until the entire object is completed [1–3]. This technology
is rapidly developing along with today’s demands of end users. There are many 3D
printer manufacturers world-wide, who are interested in developing and manufacturing
different kinds and sizes of 3D printers. Our proposed horn antenna was printed on an
original Prusa i3 MK3S+ 3D printer from Prusa Research [4]. This printer has a print
area of 25 × 21 × 21 cm with the option to adjust the print quality (print height) between
0.05 and 0.35 mm.

A standard E-sector horn antenna was selected to be 3D printed so that the parameters
of the manufactured and standardised antenna could be accurately compared. In order
to be able to print the antenna on a 3D printer, it was necessary to model (design) parts
of the antenna in a program designed for 3D modelling. Nowadays, many software
programs are available for drawing 3D objects. Autodesk Inventor Software and Onshape’s
programming environment were selected for the modelling of our horn antenna. Exact
geometric parameters of a standardised horn antenna were measured and modelled in
both Autodesk Inventor (paid license) and Onshape (freeware).

Electronics 2022, 11, 1539. https://doi.org/10.3390/electronics11101539 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11101539
https://doi.org/10.3390/electronics11101539
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4873-3070
https://orcid.org/0000-0002-5979-009X
https://orcid.org/0000-0002-4068-3817
https://doi.org/10.3390/electronics11101539
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11101539?type=check_update&version=1


Electronics 2022, 11, 1539 2 of 15

Autodesk Inventor is a parametric, adaptive 3D program—a software CAD applica-
tion from Autodesk [5,6]. Figure 1a shows a modelled horn antenna in Autodesk Inventor.
Onshape is a computer design software system supplied over the internet through the
model “Software as a Service” [7]. Figure 1b shows a modelled horn antenna in Onshape.
After printing the antennas on a 3D printer, both antennas had the same geometric pa-
rameters as the standardised horn antenna. Both programs are, therefore, suitable for our
application. Onshape has the advantage that it is not difficult to install, as it works online.
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2. Analysis of a Standard Horn Antenna

When choosing the horn antenna itself, it was important to choose a type of horn
antenna that could easily be printed on a 3D printer and could be galvanically plated. The
E-sector horn type (see Figure 2) was selected. This was very important for comparing
(evaluating) simulations with the measured data of the manufactured horn antenna [8].
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2.1. Description of a Standardised Horn Antenna

A sector horn antenna (see Figure 3) is a special horn antenna extending only in one
plane. These horn antennas are also referred to as planar or flat. The estuary of this horn
antenna type may, in some cases, be considered a one-dimensional mouth [9–11].
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Radiation characteristics of sector horn antennas have the shape of a fan, which is
narrow in one plane and wide in the other plane. Typical use of this radiation pattern is in
radiolocation technology. If the horn is open in plane H (magnetic field lines of force), then
there is a significant decrease in the lateral lobe level and a decrease in the beam width of
the radiation pattern, compared to the direction of the opening only in plane E (electric
field lines of force). A composition of the sector horn radiation pattern open in both E and
H planes produces radiation patterns typical of pyramidal horn antennas [10–13].

2.2. Features of a Standardised Horn Antenna

For simulations of horn antennas with different metal plating, it is important to first
perform a detailed analysis of the standardised E-sector horn antenna (see Figure 4). This
analysis includes detailed measurements of the horn antenna radiation properties and the
precise measurement of the actual standardised horn antenna dimensions. This information
was very important for both the simulations in the Matlab environment and for the actual
3D printing of the horn antenna.
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Figure 4 and Table 1 show the exact dimensions of the E-sector horn antenna. Ac-
cording to the transversal dimensions of the excitation waveguide of this antenna, the
working band frequency was determined as 8.2–12.4 GHz (see Figure 5), where TE10 is the
dominant mode. The limit frequency fm of the TE10 mode was, for this waveguide, equal to
9.55 GHz [14–18].

Table 1. Dimensions of the analysed horn antenna with Adapter.

Designation Dimension [mm] Title

l1 52.00 Estuary length
h1 45.00 Estuary height
w1 23.00 Estuary width
l2 50.00 Waveguide length
h2 10.16 Waveguide height
w2 22.86 Waveguide width
h3 8.00 Current probe height
w3 5.00 Current probe width
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A Matlab simulation program with the Antenna Toolbox was selected to simulate
the pattern of the proposed galvanically plated antenna. Figure 6 shows the gold-plated
horn antenna designed in the Matlab Antenna Toolbox environment. Figures 7 and 8
show directional characteristics of the proposed horn antenna. All the simulations were
performed at a frequency of 9.5 GHz.
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3. Manufacturing of a Horn Antenna
3.1. Material Selection (Filament) for Horn Antenna

Before printing a horn antenna on a 3D printer, it is important to choose the most suit-
able filament (printing string). The most commercially available and most used filaments
(PLA, ABS and PET/PET-G) were used for comparison [19].
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3.1.1. PLA Material

PLA material (polylactic acid) is the most used material for 3D printing, and at the
same time is the most versatile material for the FDM method. PLA is biodegradable, as
it is made from potato or corn starch. Due to its low thermal expansion, it is suitable for
printing large products that do not twist. PLA prints are flexible, hard and durable.

3.1.2. ABS Material

ABS material (acrolonitril–butane–styrene) is a tough, rigid and solid material made
from oil. It is biodegradable and has a very high thermal expansion. This causes compli-
cations when printing large products as the product twists and peels off the printing pad.
Therefore, the printer must be equipped with a heated pad and the material must be slowly
cooled during printing.

3.1.3. PET/PET-G Material

PET/PET-G (polyethylene-terephthalate) is the most used plastic in the world, the
advantage of which is the possibility of recycling. Its modified PET-G version is less fragile
and more impact-resistant. PET-G combines the properties of ABS and PLA materials
and is suitable for printing mechanically stressed parts [20]. A general comparison of the
above-described types of materials (filaments) is shown in Table 2.

Table 2. Comparison of different types of materials (filaments).

Filament PLA PET/PET-G ABS

Nozzle temperature during printing 180–230 ◦C 220–260 ◦C 210–250 ◦C
Melting point 150–160 ◦C - 130–140 ◦C
Deformation 60 ◦C 100 ◦C 70 ◦C

ABS material was selected from the above options for our application [21]. Although
ABS is more demanding to print, it is most suitable for galvanic plating. When applying
galvanic plating, the printed antenna is exposed to temperatures of around 70 ◦C. PLA,
PET and PET-G materials would become deformed during this process. For 3D printing,
the “Prusament black EasyABS” material was selected, which is a printing string (filament)
of 1 kg with a diameter of 1.75 mm.

3.2. Preparing Antenna Design for the 3D Printing

When designing the horn antenna using Autodesk Inventor software and Onshape’s
program environment, the design files must be exported to an STL format as they are
saved. STL files describe only the surface geometry of a three-dimensional object without
representing the colours, textures, or other common CAD attributes of the model [22–24].

Different types of slicers work with these other files. This is a software that edits
CAD data for 3D printing. These files then have the GCODE extension. The GCODE file
contains commands in G-code, which stands for geometric code. This is a programming
language whose main task is to instruct the 3D printer on how to move the printer in three
dimensions, how quickly to print and instructions for setting the temperature. GCODE
files are created by “slicing” programs. Simplify3D, PrusaSlicer and Slic3r are among the
best-known programs that can convert 3D objects into G-code.

These programs convert CAD drawings into G-code, which a 3D printer is able to
read. PrusaSlicer was selected for our application, and it is a free software available on
PrusaSlicer a.s website, the Czech 3D printer manufacturer [25]. Figure 9 shows a horn
antenna in PrusaSlicer.

Print quality was set to 0.1 mm (height of one layer). For the actual 3D printing,
a so-called “collar” was used to prevent twisting and peeling off the printing pad. Print
settings are displayed in Figure 10.
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3.3. Preparing Printed Antenna for Galvanic Plating

After printing the horn antenna, it was important to smooth the surface thoroughly
before plating. Although high print quality was applied, the resulting surface was not
perfectly smooth. Figures 11 and 12 show the unevenness of the printed horn antenna
surface using the Keyence VHX-7000 microscope. For this reason, the horn antenna was
printed from two parts. This made the surface smoothing process easier (also that inside
the horn antenna).
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Furthermore, galvanic plating was applied and the two plated parts were glued
together after plating. To smooth the surface, a grinding with different types of sandpaper
grains was applied (see Figure 13).

Electronics 2022, 11, x FOR PEER REVIEW 7 of 16 
 

 

 
Figure 11. Print quality 0.1 mm, magnified 20× and 400×. 

 
Figure 12. Unevenness at 0.1 mm print quality using Keyence VHX microscope (all distance values 
in the figure are in units of µm). 

Furthermore, galvanic plating was applied and the two plated parts were glued to-
gether after plating. To smooth the surface, a grinding with different types of sandpaper 
grains was applied (see Figure 13). 

 
Figure 13. Comparison of horn antenna surface, 10×-magnified left before smoothing the surface;
right after smoothing the surface.

3.4. Preparing Printed Antenna for Galvanic Plating

After achieving the necessary smoothness of the horn antenna surface, the surface was
further cleaned for dirt and grease. Galvanic plating is a method where metal layers are
gradually applied until the surface is perfectly plated with a complete layer. A 24-carat
piece of gold (99.99% Au) was used for the plating of our 3D printed horn antenna. Gold
plating ensures functional surface properties featuring good electrical conductivity, chemi-
cal stability, corrosion resistance and long service life. The market currently offers all-metal
horn antennas with gold-plated surfaces. For our gold plating, a LISS, a.s. company was
used, providing a number of high-tech manufacturing technologies for the metallization of
non-conductive materials [26].

To reduce the final price of gold plating, the first layer, i.e., the bottom layer, was
plated with silver. Silver was applied to the antenna surface (made of ABS filament)
using a “spraying” technique, preparing the surface for the final gold plating. This initial
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silver plating was the most important process in the whole plating process, significantly
increasing the success of the final gold application. Silver was applied in thin layers in the
order of units of µm until a layer of 25–30 µm was reached (this is an economical option for
gold plating). In addition, silver helps to strengthen the mechanical properties of the horn
antenna’s plastic parts, especially toughness. The final upper layer was a “flash” layer of
24-carat gold (purity 999/1000) with a thickness of 0.3 µm.

The galvanic application was carried out manually, without automation. Manual
application ensured the necessary thickness and quality of the metal layers. Some initial
attempts at the gold plating were unsuccessful, and thus it was necessary to determine the
minimum size of the gold layer that would assure the final gold surface had no defects.
Figure 14 left shows the horn antenna flange with a gold layer of 0.2 µm. This layer proved
insufficient as several gaps appeared in the gold layer. Figure 14 right shows a gold layer
of 0.3 µm that shows no gaps in the gold layer, and thus, the correct parameters.
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Figure 14. Horn antenna flange with (left) wrong thickness of gold layer; (right) proper thickness of
gold layer.

To measure the thickness of the applied metal layers, the Fischerscope X-RAY XDAL
237 universal X-ray-fluorescence spectrometer was used. This method is ideal for measuring
layer thickness as it is a non-destructive method.

Table 3 shows the measurements of the layer thicknesses. The mean value of the layer
thickness was calculated from the measured layer thicknesses for Au = 0.333 µm and for
Ag = 29.66 µm. Figure 15 shows a horn antenna set with a gold-plated surface.
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Table 3. Thickness measurements of the galvanically applied layers.

Measurement Layer Thickness
Au [µm]

Layer Thickness
Ag [µm]

1 0.323 28.4
2 0.321 30.0
3 0.355 30.6

4. Testing the Standardised and Printed Horn Antenna

For the reason of uniform deposition of the metallic layers, the individual components
of the printed antenna were manufactured separately. The individual components of the
printed horn antenna have to be glued together using plastic glue. Figure 16 shows an
assembled horn antenna with a gold-plated surface.
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Figure 16. Assembled horn antenna with a gold-plated surface.

In order to compare the radiation patterns of the standardised horn antenna and the
printed horn antenna, it is necessary to perform the measurements in an anechoic chamber
to eliminate the negative influence of the surrounding environment on the experiment.

Tests of the printed antenna were performed in an anechoic (non-reflective) chamber.
Figure 17 shows the test setup in the anechoic chamber and Figure 18 shows the

measured horn antenna position on the antenna rotator in the anechoic chamber. All tests
were carried out at a frequency of 9.5 GHz.
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Figure 18. Horn antenna placed on the antenna rotator in anechoic chamber.

4.1. Testing the Standardised Horn Antenna

Figure 19 shows the measured radiation of the standardised horn antenna in the
non-reflective chamber. The red line represents the radiation flow in the E plane and the
green line in the H plane.
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Figure 19. Measured radiation characteristics of the standardised horn antenna.

Measurements at 9.5 GHz showed that the standardised horn antenna has an aperture
angle of 40 degrees in the E plane and an aperture angle of 20 degrees in the H plane. Using
a Rohde & Schwarz analyser, the standing wave ratio was measured in the frequency range
from 8 to 11.3 GHz.

Figure 20 shows the measured Stand Wave Ratio (SWR), and Figure 21 shows the
measured Smith diagram for the standardised horn antenna.

The results of the SWR measurements and the plot of the reflection coefficient s11
on the Smith chart show that the normalized horn antenna has optimal characteristics at
9.54 GHz. The obtained results should be compared with those of the printed horn antenna.
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4.2. Testing the 3D Printed Horn Antenna

Figure 22 shows the measured radiation of the 3D printed horn antenna in the non-
reflective chamber. The red line represents the radiation flow in the E plane and the green
line that in the H plane.

Measurements at 9.5 GHz showed that the printed horn antenna has an aperture angle
of 40 degrees in the E plane and an aperture angle of 30 degrees in the H plane. Figure 23
shows the measured Stand Wave Ratio (SWR), and Figure 24 shows the measured Smith
diagram for the 3D printed horn antenna.
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The results of SWR measurements and the plot of the reflection coefficient s11 on the
Smith chart show that the printed horn antenna has optimal characteristics at 9.494 GHz.
Comparing the results obtained for the standardised horn antenna and the printed horn
antenna results, it is clear that the printed horn antenna has very similar results to the
standardised horn antenna. This means that the manufacturing process of the printed horn
antenna is correct. The printed horn antenna achieves very similar characteristics to the
standardised horn antenna. The results show that the printed horn antenna can be used in
practical applications as an equivalent to the standardised horn antenna.

5. Discussion

The presented test results clearly show that the 3D printed horn antenna is fully
functional. Figure 25 shows a comparison of the standardised horn antenna characteristics
with the 3D printed horn antenna characteristics in the E plane. The red line shows the
radiation characteristics of the standardised horn antenna and the green line those of the
3D printed horn antenna.
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Figure 26 shows a comparison of the radiation patterns of the standardised horn
antenna with the 3D printed horn antenna in the H plane. The red line shows the radiation
characteristics of the standardised horn antenna and the green line those of the 3D printed
horn antenna.

After the completion of the 3D printed horn antenna, both the standardised and the
printed antennas were weighed. The weight of the standard (all-metal) horn antenna was
139 g. The weight of the 3D printed gold-plated (metallic spraying method) horn antenna
was 13 g, which is approximately 10% of the standardised all-metal horn antenna weight.
This weight reduction is beneficial, for example, in applications where horn antennas are
placed onboard aircraft, serving as onboard radio locator antennas.

Experiments have shown that the described method of manufacturing a horn antenna,
based on 3D printing and with silver–gold galvanic plating layers, is a suitable method
for the production of antennas where extremely low weight is required. By following the
technological procedure during the 3D printing of the antenna, depending on the choice
of filament material, and by following the technological procedure during the process of
electroplating the metallic layers on the printed antenna, it is possible to obtain a horn
antenna with equivalent properties to a standardised horn antenna.
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6. Conclusions

The article described how to use 3D printing for the manufacturing of a horn antenna.
The main goal was to verify the proposed manufacturing technological procedure and to
compare the printed antenna to a standardised horn antenna. The results show that the 3D
printed and plated horn antenna has the same parameters as a standardised horn antenna.
The presented antenna manufacturing procedure is suitable not only for the presented horn
antenna, but also for all different types of antennas. The only limitation is the size of the 3D
printer print area. The use of 3D printing with galvanic plating offers the manufacturing of
exact antennas with specific radiation parameters, and thus is very suitable for experimental
testing of various antenna prototypes or antenna systems. Another great advantage is
the low weight of the manufactured antenna. This low weight is beneficial for special
applications where weight reduction in the whole system is crucial.

The production of equivalents of standardised antennas using 3D printing with elec-
troplating is also a possible route for the design and realization of other types of antennas,
e.g., slot antennas and slot antenna arrays used in the aerospace industry. Similarly, 3D
printed antennas can also be used for small satellites and space exploration equipment.
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