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Abstract: Periodic pattern mining is an emerging technique for knowledge discovery. Most previous
approaches have aimed to find only those patterns that exhibit full (or perfect) periodic behavior
in databases. Consequently, the existing approaches miss interesting patterns that exhibit partial
periodic behavior in a database. With this motivation, this paper proposes a novel model for finding
partial periodic patterns that may exist in temporal databases. An efficient pattern-growth algorithm,
called Partial Periodic Pattern-growth (3P-growth), is also presented, which can effectively find
all desired patterns within a database. Substantial experiments on both real-world and synthetic
databases showed that our algorithm is not only efficient in terms of memory and runtime, but is
also highly scalable. Finally, the effectiveness of our patterns is demonstrated using two case studies.
In the first case study, our model was employed to identify the highly polluted areas in Japan. In the
second case study, our model was employed to identify the road segments on which people regularly
face traffic congestion.

Keywords: data mining; knowledge discovery in databases; pattern mining; periodic patterns

1. Introduction

Frequent pattern mining is a valuable and interesting technique for knowledge discov-
ery within data mining. It plays a crucial role in a wide range of real-world applications,
such as market basket analysis [1], air pollution analysis [2], traffic congestion analysis [3],
privacy-preserving analysis [4], and fraud detection analysis [5]. The primary objective
of frequent pattern mining is the identification of frequently co-occurring patterns (items,
events, sensor identifiers, etc.) within a group of transactions (i.e., database) based on a
user-specified minimum support threshold. For example, when we analyze transactions in
a supermarket database, we can see that most consumers who purchased jaggery will also
purchase milk as part of an Ayurvedic home remedy treatment for certain types of skin
diseases. Another example is an air pollution database; after analyzing transactions, we
can discover the frequently polluted geographical areas in which harmful air pollutants
(i.e., PM 2.5) are present so as to provide valuable suggestions for people to avoid those
areas. In the vast literature, multiple approaches for the discovery of frequent patterns
in transactional databases have been discussed. Therefore, mining frequently occurring
patterns in transactional databases is valuable and highly important, with several real-
world applications. However, one significant shortcoming of these approaches is that the
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temporal behavior of the patterns have not been considered and the time of occurrence of
transactions in the database has been completely ignored.

Against this background, it is crucial to preserve information about the time of occur-
rence of transactions in temporal databases. All temporal databases maintain fundamental
characteristics, such as: (i) the raw data that are available in a transactional database are
sorted according to their time of occurrence in ascending order; (ii) the time of occurrence of
each transaction is not uniform, i.e., the inter-arrival time between any two transactions is
not constant; (iii) there is a possibility that many of the transactions may occur at the same
time. Therefore, we can conclude a notable difference between temporal and transactional
databases from these characteristics.

Periodic pattern mining considers the temporal behavior of the items as an important
factor in the discovery of interesting patterns in temporal databases. Periodic patterns
are classified into full periodic patterns and partial periodic patterns. In the case of full
periodic patterns, cyclic behavior is strictly monitored inside the databases and uninterest-
ing patterns are discarded based on user-specific constraint measures, such as maximum
periodicity. Based on this measure, when the maximum inter-arrival time (or period) of
any pattern is greater than the user-specified value, that pattern is discarded from the full
periodic patterns. In the real world, one period is not enough to satisfy the user-specified
threshold for declaring an interesting pattern as non-periodic. In the case of partial periodic
patterns, some events (or patterns) only occur during a particular point in time (such
as during weekends), at a particular time of the day or on a particular day of a month.
However, these events do occur regularly. For example, when we consider the supermarket
database, most customers purchase meat items frequently and other standard items only
during the weekends. When we look at a traffic congestion database, traffic congestion is
very high during peak hours of the day, such as from 9 a.m.–10 a.m. or 5 p.m.–8 p.m., at
particular locations. Similarly, traffic congestion is very high during the weekends, whereas
it may be a bit lower on other days. Even though the full periodic behavior of the pattern is
significant to the user, partial periodic behavior also exists in most real-world scenarios. As
a result, it is often helpful to mine the partial periodic patterns in temporal databases as
well.

In a temporal database, partial periodic pattern mining [6,7] entails the discovery
of all patterns that show partial periodic behavior. The discovery of partial periodic
patterns in a temporal database comprises two essential sub-tasks: (i) assessing the periodic
interestingness of a pattern and (ii) discovering all of the partial periodic patterns in the
given temporal database. While the second sub-task can be solved using a variety of
pattern-growth algorithms [8,9], the first sub-task is non-trivial and challenging due to the
following reasons:

1. The temporal occurrence information of an item in a database has been completely
overlooked in most earlier studies on periodic pattern mining [10–18]. These studies
implicitly assume that transactions in a transactional database occur uniformly. Re-
searchers need a model that considers the actual temporal occurrence data of an item
in order to discover partial periodic patterns in temporal databases;

2. In a temporal database, it is possible that the time of occurrence of any two consecutive
transactions is not uniform and that some of the transactions may share a common
time stamp. Therefore, a the regularly occurring behavior of a pattern must be deter-
mined with both its support and inter-arrival times in the database. Unfortunately,
existing periodic pattern models have only considered the support of a pattern when
determining its interestingness [19]. As a result, we need to look into new metrics that
can determine the interestingness of a pattern by considering both its support and
temporal occurrence data.

Furthermore, the combination of the two tasks mentioned above has significant conse-
quences. It has to be noted that the transformation of a temporal database into a transac-
tional database through the merging of transactions with a common time stamp must be
avoided because it causes the subsequent issues:
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• Type I issue: merging transactions with the same time stamp can result in the loss
of the actual support of a pattern. This may result in an interesting pattern not being
identified as a partial periodic pattern.

Example 1. Let us consider any two transactions in a market basket database, e.g., {Bread,
Jam} and {Bread, Milk}, which occurred at the same time stamp, e.g., 9:00 h. When we merge
these two transactions into a single transaction, i.e., {Bread, Jam, Milk}, then we lose the
actual support of Bread in the accurate data. This may result in the partial periodic patterns
that involve the Bread item being missed.

• Type II issue: merging transactions with a common time stamp creates false correla-
tions (or associations) between the items, which may result in an uninteresting pattern
being identified as a partial periodic pattern.

Example 2. Continuing with the previous example, merging the transactions with a common
time stamp induces an incorrect correlation between the Jam and Milk items. This may then
identify the uninteresting pattern of {Jam, Milk} as a partial periodic pattern.

The model for finding partial periodic patterns in a temporal database was first
described in [6]. In this paper, we present the accuracy of our 3P-growth algorithm. This
paper extends the related work by extensively reviewing the current literature. More
importantly, the experimental results section (Section 5) was significantly expanded by
considering additional databases. This paper shows that the 3P-growth algorithm is efficient
in terms of memory and runtime and is highly scalable in all databases, irrespective of the
minimum period-support (minPS) and periodicity (per). Finally, we show the usefulness of
our model with the help of two case studies: the first regarding air pollution analytics and
the second regarding traffic congestion analytics.

The major contributions of this paper are as follows:

• We introduce a new model for finding partial periodic patterns in temporal databases;
• A new measure called period suppor is proposed to determine the periodic interest-

ingness of a pattern in a database. In contrast to existing support-based measures, the
period support measure takes the number of cyclic repetitions into account when deter-
mining the interestingness of a pattern in temporal databases. When the inter-arrival
time is less than the user-specified period, it is considered cyclic (or periodic);

• We propose a 3P-tree that consists of two important components: a linear list-based
data structure, named 3P-list, and a non-linear tree-based data structure, named a
prefix tree. We also present the Partial Periodic Pattern-growth (3P-growth) algorithm,
which is a pattern-growth algorithm that can be used to find entire sets of partial
periodic patterns in temporal databases;

• The results from substantial experiments on both real-world and synthetic databases
show that the 3P-growth algorithm is memory- and runtime-efficient and highly
scalable;

• Finally, we demonstrate the usefulness of our model using two case studies: one on
air pollution analytics and one on traffic congestion analytics.

The remainder of the paper is organized as follows. Section 2 discusses the related
work. The proposed model for finding partial periodic patterns is described in Section 3.
Section 4 introduces our algorithm for discovering all of the partial periodic patterns in a
database. Section 5 discusses the findings of the experiments. Finally, Section 6 concludes
the paper by outlining future research directions.

2. Review of Literature

In this section, we discuss the existing literature on finding frequent patterns. We then
discuss the existing literature on finding periodically occurring patterns.
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2.1. Frequent Pattern Mining

The discovery of frequent patterns has numerous real-world applications [1–3,5] in
web and data mining technologies. Several approaches [20,21] for discovering valuable
and interesting patterns in large databases have been discussed in recent decades. A
recent survey on frequent pattern mining can be found at [22]. Most of the existing
approaches utilize measures that are related to the support (or frequency of occurrence)
as the primary criteria for discovering interesting patterns in transactional databases.
However, each measure contains a selection bias that exaggerates the importance of a
valuable and the interesting pattern. Therefore, no universally accepted optimum measure
exists for assessing the knowledge of patterns in any database. Instead, researchers have
proposed criteria for choosing measures that depend on the needs of the user and/or the
application [19]. Unfortunately, all of the earlier approaches entirely ignored the temporal
occurrence information of patterns in databases. For example, when considering an air
pollution database, it is crucial to identify the sets of frequently polluted areas (patterns)
and the time of occurrence of the pollution in those sets. Hence, researchers have considered
the time of occurrence (periodicity) of a pattern to be one of the primary measures for
discovering the periodic patterns in temporal databases.

2.2. Periodic Frequent Pattern Mining

Ozden et al. [23] designed two novel algorithms, named the sequential and interleaved
algorithms, to discover the temporal behavior of patterns in transactional databases. The
authors used cycle pruning, cycle elimination, and cycle skipping techniques to effectively
discover the full cyclic behavior of patterns by designing cyclic association rules. For this,
the complete dataset was divided into disjoint sub-sets based on the time stamp information
of each transaction so as to complete the mining process. The non-cyclic patterns could
then be pruned from these sub-sets with the help of the proposed pruning techniques and
the authors claimed that they could complete the mining process as quickly as possible.

Tanbeer et al. [17] designed a novel periodic frequent pattern-growth algorithm to
discover the full periodic frequent patterns in transactional databases. The authors also
introduced a novel tree-based data structure, named periodic frequent pattern tree (PF-
tree), to store patterns and complete the mining process. The PF-tree had a particular node
called a tail node, which was used to maintain a list of the transaction identifiers of the
patterns. While pruning these nodes, this list was moved to its parent node to preserve
the occurrence information. The authors claimed that the complete mining process was
efficient. They generated full cyclic periodic frequent patterns using a novel maximum
periodicity measure and a support-based measure in transactional databases.

Amphawan et al. [18] designed a non-support metric-based algorithm, named mining
top-k periodic frequent patterns (MTKPP). The authors used an efficient list-based data
structure, named the top-k list structure, to maintain the k periodic frequent patterns by
only scanning the transactional database once. The MTKPP algorithm used an efficient
best-first strategy to discover the top-k periodic frequent patterns in these top-k lists.

In the past, we have also made several attempts to discover full periodic frequent
patterns in transactional databases [24–29]. Uday et al. [24] designed a model-based
pattern-growth approach to discover rare full periodic frequent patterns in non-uniform
transactional databases. The authors used an efficient list-based tree data structure, named
the multi-constraint periodic frequent pattern tree (MCPF-tree), to effectively complete
the mining process. The MCPF-tree had an MCPF-list and a prefix tree to preserve the
transactional identifiers of the patterns. The authors also used two novel constraint mea-
sures, named minimum item support and maximum item periodicity, to overcome the
combinatorial explosion problems that occur while performing the mining. Furthermore, a
novel method was proposed that could dynamically assign the maximum item periodicity
value of any pattern. Finally, the authors claimed that the designed approach could extract
rare full periodic frequent patterns, but it was slightly slower than the model in [17].
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Surana et al. [25] designed an extended model for the MCPF-tree-based approach [24].
However, the MCPF-tree-based approach did not satisfy the downward closure properties
while mining rare full periodic frequent patterns in transactional databases. Hence, the
authors proposed another efficient list-based tree data structure, named the maximum con-
straints periodic frequent pattern tree (MaxCPF-tree), to speed up the mining process. The
MaxCPF-tree had a MaxCPF-list and a prefix tree to preserve the transactional identifiers of
the patterns. Furthermore, the authors used similar constraint measures to those that were
used in the MCPF-tree-based approach, called the minimum item support and maximum
item periodicity, to overcome the combinatorial explosion problems that occur while per-
forming the mining. In addition, the authors also used two other pruning techniques while
discarding the uninteresting patterns. Therefore, some of the uninteresting patterns that
were discovered in the MCPF-tree-based model were pruned from the MaxCPF-tree using
these techniques. Finally, the authors showed that the designed approach could extract
rare full periodic frequent patterns faster than the MCPF-tree-based model.

Uday et al. [26] designed an interesting novel measure that was named the minimum
periodic ratio to discover full periodic frequent patterns in transactional databases. The
authors also introduced the concept of potential patterns only consisting of a single item
and proposed a novel tree, named extended periodic frequent pattern tree (ExPF-tree), and
the so-called extended periodic frequent pattern-growth (ExPF-growth) algorithm to mine
the databases. The ExPF-tree had an ExPF-list and a prefix tree to preserve the transactional
identifiers of the patterns. In addition, the authors also used two other pruning techniques
to discarding the uninteresting patterns.

Uday et al. [27] designed an efficient algorithm, named periodic frequent pattern-
growth++ (PFP-growth++), to discover the full periodic frequent patterns in transactional
databases. The authors also introduced a tree-based data structure, named periodic frequent
pattern tree++ (PF-tree++), to store the patterns and complete the mining process. The
PF-tree++ had a PF-list++ and a prefix tree to preserve the transactional identifiers of the
patterns. Furthermore, the authors used a novel concept that was named local periodicity
to complete the mining process as quickly as possible by using two different phases, which
were called the expanding phase and the shrinking phase. Finally, two novel pruning
techniques were introduced to complete the mining process efficiently.

Venkatesh et al. [29] designed an extended periodic frequent pattern-growth (EPF-
growth) algorithm to discover rare full periodic frequent patterns in non-uniform trans-
actional databases. The authors used an efficient list-based tree data structure, named
the extended periodic frequent pattern tree (EPF-tree), to complete the mining process
effectively. The EPF-tree had an EPF-list and a prefix tree to preserve the transactional
identifiers of the patterns. The authors also used a novel constraint measure, which was
named periodic-all-confidence, to extract the interesting rare periodic frequent patterns.
Finally, the authors claimed that the designed approach could extract rare full periodic
frequent patterns more efficiently compared to different existing models [17,24,25].

In the literature, the model for finding periodic frequent patterns was extended to
discover fuzzy periodic frequent patterns [30], local periodic patterns [31], stable periodic
patterns [32], top-k periodic patterns [18], recurring patterns [33], periodic high-utility
sequential patterns [34], non-overlapping sequential pattern mining [35], and periodic
sequential patterns [36].

Most of the approaches mentioned above only discover the full periodic frequent
patterns using specific constraint measures. Even though the full periodic behavior of
a pattern is significant to the user, partial periodic behavior also exists in most real-
world scenarios. As a result, it is often helpful to mine partial periodic patterns in
temporal databases as well.

Overall, the proposed method [6] for finding partial periodic patterns in temporal
databases is novel and distinct from the other existing studies. However, this is a substan-
tially extended version of that method [6].
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3. Partial Periodic Pattern Model

A complete set of items (e.g., events or symbols) that appeared in a database was
represented by I = {i1, i2, · · · , ic}, where c ≥ 1 is the unique items count in the database. A
sample set of items Y ⊆ I was called a pattern.We defined a pattern as a z-pattern when it
contained z items. Furthermore, the length of the pattern was said to be z. We let a temporal
database TDB be an ordered set of transactions, i.e., TDB = {tr1, tr2, · · · , trd}, where
d = |TDB| is the database size (d number of transactions) and trd, d ≥ 1 is a transaction in
the database. Each transaction trd contained three tuples, i.e., the transaction identifier, time
stamp, and pattern. Therefore, tr = (tid, ts, X) , where tid is the transactional identifier,
ts ∈ R is the transaction time (or time stamp), and X is the pattern. We let tsmin and tsmax
denote the minimum and maximum time stamps in TDB, respectively. Please note that the
difference between (tsmax − tsmin + 1) might not be equal to |TDB| as a temporal database
allows time gaps between consecutive transactions and for transactions to share common
time stamps. This was contrary to the previous works on finding full periodic frequent
patterns in transaction databases [17], as they considered (tsmax − tsmin + 1) = |TDB|. In
other words, a temporal database could represent a transactional database but not vice
versa. For a transaction tr = (tid, ts, X), such that Y ⊆ X, it was said that Y occurred at tr
and such a time stamp was denoted as tsY. We let TSY = (tsY

k , tsY
l , · · · , tsY

m) and k ≤ l ≤ m
be the ordered list of the time stamps of transactions in which Y appeared in TDB. The
number of transactions that contained Y in TDB (i.e., the size of TSY) was defined as the
support of Y and denoted as sup(Y), i.e., sup(Y) = |TSY|. The complete list of symbols
that are used in this paper are shown in Table 1.

Example 3. A temporal database with I = {klmnopq} is shown in the Table 2. The pattern km
comprised the items k and m. This pattern contained two items; therefore, it was a 2-pattern. The
length of this pattern was also two. In the first transaction, tr1 = (1001, 1, klm), where 1001 is
the tid of the transaction, 1 is the time stamp of this transaction, and klm denotes the items that
occurred in this transaction. Other transactions in this database were represented in the same way.
There were 14 transactions in this database. As a result, d = 14. The minimum and maximum time
stamps in the database were 1 and 13, respectively. As a result, tsmin = 1 and tsmax = 13. The
pattern km appeared in the transactions that had time stamps of 1, 3, 4, 6, 9, and 13. As a result,
TSkm = {1, 3, 4, 6, 9, 13}. The support of km was sup(km) = |TSkm| = 6.

Table 1. A complete list of symbols that are used in this paper.

Notation Abbreviation

TDB The temporal database that was used in our paper
I Te set of items used in our TDB
c The unique items count in the database
X or Y A pattern consisting of a sub-set of items that was chosen from the complete set I
d The total number of transactions present in a TDB
tid The transactional identifier
ts The transaction time (or time stamp)
TSY The ordered list of the time stamps of transactions in which Y appeared in TDB
tsY

k The kth entry of the pattern Y in the list TSY

tsmin The minimum time stamp
tsmax The maximum time stamp
IATY A list of all inter-arrival times of Y in TDB
iatY

k The kth entry of the pattern Y in the list IATY

per The user-specified periodicity

ÎATY The set of all inter-arrival times in IATY that have iatY ≤ per(Y)
PS(Y) The period support of the pattern Y
minPS The user-specified minimum period support



Electronics 2022, 11, 1523 7 of 22

Definition 1 (Periodic appearance of pattern Y). We let tsY
a , tsY

b ∈ TSY, and 1 ≤ a < b ≤ d
denote any two consecutive time stamps in TSY. The time difference between tsY

b and tsX
a was

referred to as an inter-arrival time of Y and denoted as iatY, i.e., iatY = tsY
b − tsY

a . We let
IATY = {iatY

1 , iatY
2 , · · · , iatY

b } and b = sup(Y)− 1 be the list of all inter-arrival times of Y in
TDB. An inter-arrival time of Y was said to be periodic (or interesting) when it was no more
than the user-specified period (i.e., per). That is, a iatY

i ∈ IATY was said to be periodic when
iatY

i ≤ per.

Table 2. The temporal database.

tid ts Items

1001 1 k, l, m
1002 3 o, p, q
1003 3 k, l, m, p
1004 4 k, l, m, p, q
1005 5 k, n, q
1006 6 k, l, m, n, p
1007 7 k, p, q
1008 7 k, l, o, p
1009 8 m, n, q
1010 9 k, l, m, n
1011 11 k, l, p
1012 12 l, p, o
1013 13 k, l, m, n
1014 13 o, p, q

Example 4. The pattern km initially appeared at the time stamps of 1 and 3. The difference
between these two time stamps produced an inter-arrival time of km, i.e., iatkm

1 = 2 (= 3− 1).
Similarly, the other inter-arrival times of km were iatkm

2 = 1 (= 4− 3), iatkm
3 = 2 (= 6− 4),

iatkm
4 = 3 (= 9− 6), and iatkm

5 = 4 (= 13− 9). Therefore, the resultant IATkm = {2, 1, 2, 3, 4}.
When the user-specified per = 2, then iatkm

1 , iatkm
2 and iatkm

3 were considered to be the periodic
occurrences of km in the database. The iatkm

4 and iatkm
5 were considered to be aperiodic occurrences

of km because iatkm
4 and iatkm

5 6≤ per.

In the proposed model, we considered an inter-arrival time of Y to be interesting when
iatY ≤ per. However, our model was adaptable and allowed for other ways of considering
the inter-arrival time of a pattern to be interesting. For example, we could consider the
inter-arrival time of a pattern to be interesting when iatY ≤ per ± Ω, where Ω > 1 is
a constant that denotes time tolerance. Nevertheless, for brevity, we stuck to the above
definition.

Definition 2 (Period support of pattern Y). We let ÎATY be the set of all inter-arrival times in

IATY that had iatY ≤ per(Y). Therefore, ÎATY ⊆ IATY, such that when ∃iatY
b ∈ IATY : iatY

b ≤
per(Y), then iatY

b ∈ ÎATY. The period support of Y was denoted as PS(Y) = | ÎATY|.

Example 5. Continuing with the previous example, ÎATkm = {2, 1, 2}. Therefore, the period
support of km was PS(km) = |k̂m| = |{2, 1, 2}| = 3.

As defined previously, the period support represented the number of cyclic repetitions
of a pattern in the database. In other words, the proposed measure considered both the
support and inter-arrival times in the database to determine the interestingness of a pattern.

Definition 3 (Partial periodic pattern Y). A pattern Y was a partial periodic pattern when
PS(Y) ≥ minPS, where minPS is the user-specified minimum period support.
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Example 6. Continuing with the previous example, when the user-specified minPS = 2, then km
was a partial periodic pattern because PS(km) ≥ minPS.

(Problem definition) Given a temporal database (TDB), a set of items (I), period (per), and
minimum period support (minPS), the problem of finding partial periodic patterns involved
discovering all patterns in TDB that had a period support of no less than minPS.

The support of a pattern could be expressed as a percentage of |TDB|. The period
support of a pattern could be expressed as a percentage of |TDB| − 1, where |TDB| − 1 is
the maximum period support that a pattern could have in the database. The inter-arrival
times of a pattern and the period could be expressed as a percentage of (tsmax − tsmin). This
paper employs the above definitions of support, period support, inter-arrival times, and period
for brevity.

The partial periodic patterns that were found by the proposed model satisfied the
downward closure properties. The correctness of our statement is demonstrated by Lemma 1
and is based on Property 1. The following section describes our algorithm, which discovers
all of the partial periodic patterns in a temporal database using this property.

Property 1. when Y ⊂ X, then TSY ⊇ TSX . Therefore, PS(Y) ≥ PS(X).

Lemma 1. Let X and Y be two patterns, such that Y ⊂ X and Y 6= ∅. When X is a partial
periodic pattern, then Y is also a partial periodic pattern.

Proof. According to Definition 3, when X is a partial periodic pattern, then PS(X) ≥
minPS. Based on Property 1, it turns out that PS(Y) ≥ PS(X) ≥ minPS. Henceforth, Y is
also a partial periodic pattern.

4. 3P-Growth

Traditional pattern-growth algorithms, which are extensions of FP-growth [8], cannot
be used to find partial periodic patterns in an unevenly spaced time series. Therefore, we
developed a novel algorithm named 3P-growth to find interesting partial periodic patterns
in temporal databases. The proposed algorithm consists of two phases: (i) in the initial
phase, we scan the entire database and build a tree that is named the partial periodic pattern
tree (3P-tree) and (ii) in the next phase, we recursively mine the 3P-tree by pruning each
one-length partial periodic pattern according to its support to discover the complete set of
partial periodic patterns in the temporal database. The 3P-tree structure is explained in the
subsequent section.

4.1. The 3P-Tree Structure

A 3P-tree consists of two components: a linear list-based data structure, named a
3P-list, and a non-linear tree-based data structure, named a prefix tree. Initially, a 3P-list
is constructed by reading the complete database. It consists of two distinct components:
(i) an item, which is denoted as i, and (ii) period support, which is denoted as ps and also
maintains a pointer to store the link of the first node in the prefix tree that carries the item.
Even though the overall representation of the items in a 3P-tree looks similar to an FP-tree,
i.e., both trees arrange the items according to their support in descending order, the nodes
in a 3P-tree are named ordinary nodes and tail nodes. The former is a node that is similar
to that used in an FP-tree [8]. In contrast, the latter represents the temporal occurrence
information of the last item of any sorted transaction. The 3P-tree maintains a particular
data structure, named a ts-list, in the tail nodes to preserve the temporal information.
Hence, the structure of a tail node is k[tsa, tsb, ..., tsd] and 1 ≤ a ≤ b ≤ d, where k is the
item name of the node and tsk ∈ R is the time stamp of the transaction that contains the
items from the root up to the node k. Figure 1 depicts the conceptual structure of a 3P-tree.
Each node in a 3P-tree has parent, children, and node traversal pointers, as with an FP-tree.
Please note that, unlike an FP-tree, none of the nodes in a 3P-tree preserve the support
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count. The items in the prefix tree are organized in descending order of support to permit a
high degree of compactness.

{}

tsi, tsj, ...
Figure 1. Conceptual structure of the prefix tree in a 3P-tree. Dotted ellipses represent ordinary nodes,
while the other ellipses represent the tail nodes of the sorted transactions with time stamps of tsi and
tsj ∈ R.

It can be assumed that the structure of the prefix tree in a 3P-tree may not be memory-
efficient since it explicitly preserves the time stamps of each transaction. However, it has
been suggested that such a tree could achieve memory efficiency by only retaining transac-
tion information in the tail nodes and omitting the support count field at each node [17].
Furthermore, 3P-trees avoid the complicated combinatorial explosion problem of candidate
generation, unlike Apriori-like algorithms [20]. On the other hand, keeping transactional
identifier information in a tree can lead to inefficient frequent pattern mining [37] and
periodic frequent pattern mining [17].

4.2. Construction of a 3P-Tree

The construction of a 3P-tree is a two-step process. First, a 3P-list is built by reading the
complete database at once and generating 1-patterns (one-length partial periodic patterns).
After that, the prefix tree is built as the generated partial periodic patterns satisfy the
anti-monotonic properties. The user-defined parameters per and minPS are then used to
discard the uninteresting (or aperiodic) patterns. Figure 2 demonstrates how Algorithm 1
was used to create a 3P-list for Table 2. In this study, we fixed the values of both per and
minPS at two.

In this study, we used two temporary lists to build the complete 3P-list structure. We
let sup be a temporary list variable that was used to hold the support information of the
items and tsl also be a temporary list variable that was used to hold the time of the last
occurrence of an item, i.e., k j ∈ I. After reading the first transaction of 1001:1:klm, items k, l,
and m were inserted into the 3P-list and their ps, sup, and tsl values were set as 0, 1, and 1,
respectively (lines 5 and 6 in Algorithm 1). Figure 2a shows the 3P-list that was generated
after reading the first transaction. After reading the second transaction of 1002:3:opq, items
o, p, and q were inserted into the 3P-list and their ps, sup, and tsl values were set as 0, 1,
and 3, respectively. Figure 2b shows the 3P-list that was generated after reading the second
transaction. After reading the third transaction of 1003:3:klmp, the ps, sup, and tsl values of
the items o, p, and q were kept in the 3P-list without any change. In addition, the ps, sup,
and tsl values of existing items k, l, m, and p were updated to 1, 2, and 3, respectively (lines
8 to 10 in Algorithm 1). Figure 2c shows the 3P-list that was generated after reading the
third transaction. After reading the fourth transaction of 1004:4:klmpq, the ps, sup, and tsl
values of the item o were kept in the 3P-list without any change. In addition, the ps, sup,
and tsl values of existing items k, l, m, and p were updated to 2, 3, and 4, respectively, and
for item q, the ps, sup, and tsl values were updated to 1, 2, and 4, respectively. Figure 2d
shows the 3P-list that was generated after reading the fourth transaction. After reading
the fifth transaction of 1005:5:knq, item n was inserted into the 3P-list by setting its ps, sup,
and tsl values to 0, 1, and 5, respectively, and maintaining the ps, sup, and tsl values of the
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items l, m, o, and p in the 3P-list without any change. In addition, the ps, sup, and tsl values
of existing item k were updated to 3, 4, and 5, respectively. The ps, sup, and tsl values of
existing item q were also updated to 2, 3, and 5, respectively. Figure 2e shows the 3P-list
that was generated after reading the fifth transaction. After reading the sixth transaction
of 1006:6:klmnp, the ps, sup, and tsl values of the items o and p were maintained in the
3P-list without any change. In addition, the ps, sup, and tsl values of existing items l, m,
and p were updated to 3, 4, and 6, respectively. The ps, sup, and tsl values of existing item
k were also updated to 4, 5, and 6, respectively. The ps, sup, and tsl values of existing item
n were updated to 1, 2, and 6, respectively. Figure 2f shows the 3P-list that was generated
after reading the sixth transaction. A similar procedure was followed for the remaining
transactions that were available in the database and generated the complete 3P-list structure.
The full 3P-list, which was generated after reading the complete database, is shown in
Figure 2g. Finally, some of the aperiodic patterns that were available in the 3P-list were
pruned based on the user-defined minPS value, i.e., item o was pruned from the 3P-list as
its PS value was less than the minPS value. As a result, only one-length partial periodic
patterns were displayed and these patterns were sorted in descending order based on their
support (sup) values (line 11 in Algorithm 1). Figure 2h shows the final 3P-list, which
contained a sorted list of all of the partial periodic items. We let CI denote this sorted list of
partial periodic items.

i PS sup tsl

k 0 1 1

l 0 1 1

m 0 1 1

i PS sup tsl

k 0 1 1

l 0 1 1

m 0 1 1

o 0 1 3

p 0 1 3

q 0 1 3

i PS sup tsl

k 1 2 3

l 1 2 3

m 1 2 3

o 0 1 2

p 1 2 3

q 0 1 2

i PS sup tsl

k 2 3 4

l 2 3 4

m 2 3 4

o 0 1 3

p 2 3 4

q 1 2 4

(a)                  (b)               (c)                 (d)

i PS sup tsl

k 3 4 5

l 2 3 4

m 2 3 4

o 0 1 3

p 2 3 4

q 2 3 5

n 0 1 5

i PS sup tsl

k 4 5 6

l 4 4 6

m 3 4 6

o 0 1 3

p 3 4 6

q 2 3 5

n 1 2 6

i PS sup tsl

k 9 10 13

l 8 9 13

m 5 7 13

o 1 1 13

p 7 9 13

q 4 6 13

n 3 5 13

i PS

k 9

l 8

p 7

m 5

q 4

n 3

(e)                  (f)               (g)                  (h)

Figure 2. Construction of the 3P-List: (a) the content of the list after reading the first transaction;
(b) the content of the list after reading the second transaction; (c) the content of the list after reading
the third transaction; (d) the content of the list after reading the fourth transaction; (e) the content of
the list after reading the fifth transaction; (f) the content of the list after reading the sixth transaction;
(g) the content of the list after reading the entire database; (h) the final 3P-list containing the sorted
list of items.

We conducted another scan of the database after discovering the partial periodic items
and created the prefix tree of the 3P-tree, as shown in Algorithms 2 and 3. These are the
same algorithms that are used to build an FP-tree [8]. The primary distinction is that, unlike
an FP-tree, none of the nodes in a 3P-tree keep track of the support count.
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Algorithm 1 Construction of 3P-list: TDB, temporal database; I, set of items; minPS,
minimum period support; per, period.

1: The timestamps of the last occurring transactions of all items in the 3P-list are explicitly
recorded in a temporary array called tsl for each item. Similarly, all items in the 3P-
list have their support explicitly recorded in another temporary array called sup. (To
achieve memory efficiency, the 3P-tree will be built in the support descending order
of items.) After finding partial periodic items (or 1-patterns), these two arrays can be
ignored.

2: Let t = {tid, tscur, Y} denote the current transaction with identifier tid, tscur represent-
ing the time stamp, and Y as a pattern, respectively;

3: for each transaction t ∈ TDB do
4: for each item j ∈ Y do
5: if j does not exist in 3P-list then
6: Add j to the 3P-list and set ps(j) = 0, sup(j) = 1 and tsl(j) = tscur;
7: else
8: if tscur − tsl(j) ≤ per then
9: Set ps(j) + +;

10: Set tsl = tscur and sup(j) + +;
11: Prune any aperiodic items from the 3P-list with a period support value of less than minPS.

Then, consider the remaining items in the 3P-list as partial periodic items, and sort
them by support in descending order. The symbol CI denotes this sorted list of items.

The 3P-tree in this study was constructed as follows. We created the root node of
the tree and labeled it null. Then, we scanned the database once more. The items of
each transaction were processed in CI order (i.e., sorted according to descending support
count). For each transaction, a branch was created so that only the tail nodes recorded the
transaction time stamps. For instance, the scan of the first transaction of 1001:1:klm, which
contained three items (k, l, and m in CI order), resulted in the first branch of the tree being
built with three nodes: 〈k〉, 〈l〉, and 〈m:1〉, where m is linked as a child of the root, l is linked
as a child of the node k, and finally, m:1 is linked as a child of the node l. Figure 3a shows
the 3P-tree that was formed after scanning the first transaction. The second transaction
of 1002:3:opq, which had items p and q in CI order, resulted in a branch in which p was
linked as a child of the root and q:3 was linked as a child of the node p. Figure 3b shows
the 3P-tree that was formed after scanning the second transaction. The third transaction of
1003:3:klmp, which had items k, l, p, and m in CI order, resulted in a branch in which p was
linked as a child of the node l and m:3 was linked as a child of the node p. Figure 3c shows
the 3P-tree that was formed after scanning the third transaction. The fourth transaction of
1004:4:klmpq, which had items k, l, p, m, and q in CI order, resulted in a branch in which
q:4 was linked as a child of the node m:3. On the other hand, this branch shared the prefix
klpm with the current path of the third transaction. Figure 3d shows the 3P-tree that was
formed after scanning the fourth transaction. The fifth transaction of 1005:5:knq, which had
items k, q, and n in CI order, resulted in a branch in which n was linked as a child of the
node k and n:5 was linked as a child of the node q. Figure 3e shows the 3P-tree that was
formed after scanning the fifth transaction. The sixth transaction of 1006:6:klmnp, which
had items k, l, p, m, and n in CI order, resulted in a branch in which n:6 was linked as a
child of the node m:3. Figure 3f shows the 3P-tree that was formed after scanning the sixth
transaction. The remaining transactions were processed in the same way and the tree was
updated accordingly. Figure 3g shows the 3P-tree that was built after scanning the entire
database. For clarity, we do not display the node traversal pointers in the trees; however,
they were maintained the same way as those in an FP-tree.
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Figure 3. Construction of the 3P-tree: (a) the tree after reading the first transaction; (b) the tree after
reading the second transaction; (c) the tree after reading the third transaction; (d) the tree after reading
the fourth transaction; (e) the tree after reading the fifth transaction; (f) the tree after reading the sixth
transaction; (g) the final 3P-tree that was generated after reading the entire database.

Algorithm 2 3P-tree: TDB, 3P-list

1: A root node is created for the 3P-tree and label it as “null”;
2: for each transaction t ∈ TDB do
3: Set the corresponding transaction’s time stamp to tscur;
4: Choose and sort the partial periodic items in t according to CI’s order. Let’s say the

sorted candidate item list in t is [p|P], with p being the first item and P being the rest
of the list;

5: Call insert_tree([p|P], tscur, T);

Algorithm 3 Insert tree: [p|P], tscur, T.

1: while P is non-empty do
2: if T has a child N such that p.itemName 6= N.itemName then
3: Make a new node N. Allow its parent link to point to T. Allow its node-link to

be linked to nodes that have the same itemName using the node-link structure. p
should be removed from P;

4: Add tscur to the leaf node;

The 3P-tree stored the complete information of all of the partial periodic patterns in
the database. Property 2 was used to determine the correctness, as shown in Lemmas 2 and
3, where CI(t) is the set of all partial periodic items in t for each transaction t ∈ TDB, i.e.,
CI(t) = item(t) ∩ CI, and was named as the partial periodic item projection of t.
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Property 2. For each transaction in a database, a 3P-tree only keeps a complete set of partial
periodic item projections once.

Lemma 2. A 3P-tree can be used to derive a complete set of all of the partial periodic item projections
of all transactions in the TDB for a set TDB and user-defined per and minPS values.

Proof. According to Property 1, each transaction t ∈ TDB is mapped onto just one path
in the tree and any path from the root up to a tail node keeps the complete projection
for exactly d transactions, where d is the total number of entries in the ts-list of the tail
node.

Lemma 3. The size of a 3P-tree (without the root node) in a TDB for the user-specified per and
minPS values is bounded by ∑

t∈TDB
|CI(t)|.

Proof. Each transaction t contributes at most one path of size |CI(t)| to the 3P-tree, ac-
cording to the 3P-tree construction process and Lemma 2. As a result, at best, the overall
size contribution of all transactions is ∑

t∈TDB
|CI(t)|. The size of the 3P-tree is signifi-

cantly smaller than ∑
t∈TDB

|CI(t)| since there are usually numerous common prefix patterns

throughout the transactions.

4.3. Mining Partial Periodic Patterns

Even though the overall representation of items in a 3P-tree is similar to that in an
FP-tree, i.e., both the trees arrange the items according to their support in descending order,
we could not directly utilize the FP-growth algorithm to mine the 3P-tree because FP-trees
do not maintain the temporal information of the transactions. In contrast, 3P-trees maintain
a particular data structure, named a ts-list, in each tail node to preserve the temporal
information. We also designed a novel pattern-growth-based algorithm to generate partial
periodic patterns in a bottom-up manner. We utilized the following property and lemma of
3P-trees as part of this algorithm.

Property 3. In a 3P-tree, a tail node keeps track of the temporal occurrence information of the
patterns for all nodes in the path (from the tail node to the root), at least in its ts-list.

Lemma 4. Let U = {k1, k2, · · · , kd} be a path in a 3P-tree where node kd is the tail node that
carries the ts-list of the path. When the ts-list is pushed up to node kd−1, then kd−1 keeps the temporal
occurrence information of the path U′ = {k1, k2, · · · , kd−1} for the same set of transactions in the
ts-list without losing any information.

Proof. According to Property 3, kd keeps track of the occurrences of path U′ in the trans-
actions in its ts-list, at least. As a result, the same ts-list at node kd−1 keeps the same
transaction information for U′ with no losses.

In this study, the 3P-tree was mined in the following manner: (i) the mining process
was initiated with each partial periodic item being named as the initial suffix pattern; (ii)
subsequently, the conditional pattern base of this pattern was built, i.e., a sub-database
that consisted of the sets of prefix paths in the 3P-tree that co-occurred with the suffix
patterns was created and its conditional 3P-tree was built to mine recursively; (iii) finally,
the suffix patterns with the patterns that were generated by the conditional 3P-tree were
concatenated, which resulted in the generation of partial periodic patterns.

Algorithms 4 and 5 show the procedure for discovering partial periodic patterns in a
3P-tree. The working of these algorithms was as follows. Starting with the bottom-most
item, i.e., k, we built the conditional pattern base (or prefix tree) for each partial periodic
item in the 3P-list. The prefix sub-paths of node k were accumulated in a tree structure PTk
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to construct the prefix tree for k. Since k was the bottom-most item in the 3P-list, every node
in the 3P-tree that was labeled k had to be a tail node. Based on Property 3, we explicitly
mapped the ts-list of each node of k onto all of the items in the corresponding path in the
temporary array (one for each item) while constructing PTk. The calculation of period support
for each item in PTk was made easier using this temporary array (line 2 in Algorithm 4).
For example, when item l in PTk had PS(l) ≥ minPS, we built a conditional tree for it and
mined it recursively to find partial periodic patterns (lines 3 to 6 in Algorithm 4 and the
entire Algorithm 5). Furthermore, according to Lemma 4, the ts-lists were pushed up to the
respective parent nodes in the original 3P-tree as well as in PTk to enable the construction
of the prefix tree for the next item in the 3P-list. Following that, all k nodes in the original
3P-tree and k entries in the 3P-list were deleted (line 7 in Algorithm 4).

Algorithm 4 3P-growth: tree, γ.

1: for each k j in the header of Tree do
2: Generate pattern ∆ = k j ∪ γ. Collect all of the k′js ts-lists into a temporary array, TS∆,

and calculate PS(∆) by calling calculatePeriodSupport(TS∆);
3: if PS∆ ≥ minPS then
4: Construct ∆’s conditional pattern base then ∆’s conditional 3P-tree Tree∆;
5: if Tree∆ 6= ∅ then
6: call 3P-growth(Tree∆, ∆);
7: Prune k j from the Tree and push the k j’s ts-list to its parent nodes;

Algorithm 5 Calculate period support: TS∆, a list of time stamps that contained ∆ in the
TDB.

1: Set PS(∆) = 0;
2: for int j = 0; j < TS∆.length− 1;++ j do
3: if TS∆[j + 1]− TS∆[j] ≥ per then
4: ++ PS(∆);
5: return PS(∆)

Considering item n, which was the last item in the 3P-list, as shown in Figure 2h, we
used the 3P-tree shown in Figure 3g to construct a prefix tree for an item n, which was called
PTn and is presented in Figure 4a. It was also named as a conditional pattern base and
is represented as a tuple entry in the second column of Table 3, under the item n. In PTn,
there were five items: k, l, m, p, and q. Only item m fulfilled the condition PS(m) ≥ minPS.
As a result, the conditional tree CTn from PTn was built with only one item, m, as shown in
Figure 4b. It was also named as a conditional 3P-tree and is represented as a tuple entry in
the third column of Table 3, under the item n. TSmn was generated using the ts-list of m in
CTn. Algorithm 5 was used to calculate the period support of mn. Since PS(mn) ≥ minPS,
mn was treated as a partial periodic pattern and is represented as a tuple entry, along with
its period support, in the fourth column of Table 3, under the item n. Then, as illustrated in
Figure 4c, n was pruned from the original 3P-tree and its ts-lists were moved to its parent.
Next, we chose the item q, which was the next last item in the 3P-list, as shown in Figure 2h.
We used the 3P-tree shown in Figure 4c to construct a prefix tree for an item q, which was
called PTq and is presented in Figure 4d. It was also named as a conditional pattern base
and is represented as a tuple entry in the second column of Table 3, under the item q. In PTq,
there were four items: k, l, m, and p. Only item k fulfilled the condition PS(k) ≥ minPS. As
a result, the conditional tree CTq from PTq was built with only one item, k, as shown in
Figure 4e. It was also named as a conditional 3P-tree and is represented as a tuple entry
in the third column of Table 3, under the item q. TSkq was generated using the ts-list of k
in CTq. Algorithm 5 was used to calculate the period support of kq. Since PS(kq) ≥ minPS,
kq was treated as a partial periodic pattern and is represented as a tuple entry, along with
its period support, in the fourth column of Table 3, under the item q. Then, as illustrated in
Figure 4f, q was pruned from the 3P-tree, as shown in Figure 4c, and its ts-lists were moved
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to its parent. A similar process was repeated until the 3P-list 6= ∅. The complete mining
process of the 3P-tree that is shown in Figure 3h is represented in Table 3.
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Figure 4. Mining the 3P-tree: (a) conditional pattern base of item n; (b) conditional 3P-tree of item n;
(c) 3P-tree after pruning item n; (d) conditional pattern base of item q; (e) conditional 3P-tree of item
q; (f) 3P-tree after pruning item q.

Table 3. The partial periodic patterns that were generated by mining the 3P-tree using the conditional
pattern bases.

Item Conditional Pattern Base Conditional 3P-Tree Partial Periodic Patterns

n {klm:9, 13}, {klpm:6}, {kq:5},
{mq:8} 〈m:6, 8, 9, 13〉 {mn:2}

q {klpm:4}, {k:5}, {kp:7}, {p:3, 13},
{m:8} 〈k : 4,5,7〉 {kq:2}

m {kl:1, 9, 13}, {klp:3, 4, 6} 〈k:1, 3, 4, 6, 9, 13〉, 〈l:1, 3, 4, 6, 9, 13〉,
〈p:3, 4, 6〉

{km:3}, {lm:3}, {pm:2}, {klm:3},
{kpm:2}, {lpm:2}, {klpm:2}

p {kl:3, 4, 6, 8, 11}, {k:7}, {l:12} 〈k:3, 4, 6, 7, 8, 11〉, 〈l:3, 4, 6, 8, 11, 12〉 {kp:4}, {lp:4}, {klp:3}

l {k:1, 3, 4, 6, 8, 9, 11, 13} 〈k:1, 3, 4, 6, 8, 9, 11, 13〉 {kl:7}

5. Experimental Results

In the literature, no algorithm exists that can discover partial periodic patterns in large
temporal databases. Therefore, we evaluated the efficiency of the proposed algorithm by
varying the per and minPS parameters and also showed that the proposed algorithm is
highly scalable.

5.1. Experimental Setup

The 3P-growth algorithm was written in Python and executed on an Intel I5 2.66 GHz
machine with 8 GB of memory. The operating system of our machine was Ubuntu 18.04. The
3P-growth algorithm was evaluated using both synthetic (T10I4D100K and T10I4D1000K)
and real-world (FAA-incidents, Pollution, and Congestion) databases.

The T10I4D100K and T10I4D1000K databases are sparse synthetic databases that
were produced by the IBM data generator [20]. Pattern mining techniques are frequently
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evaluated using this data generator. The tid of a transaction also represents its time stamp in
these databases. The T10I4D1000K is a massive sparse database. We utilized this database
to test the scalability of the 3P-growth algorithm.

The FAA incidents database comprises aircraft incidents that were reported to the
Federal Aviation Authority (FAA) between 1 January 1978 and 31 December 2014. The
FAA raw data included both numerical and category information. We only considered
the categorical attributes for our experiments, namely aircraft series, aircraft engine make,
aircraft model, aircraft make, primary flight type, operator, event city, event type, aircraft
damage, flight conduct code, flight phase, event airport, flight plan filed code, local event
date, and PIC certificate type. Any missing values for these attributes were ignored while
creating this database.

Air pollution is the leading cause of many of the cardio-respiratory problems that are
reported by Japanese residents. For this reason, the Japanese Ministry of Environment
established the Atmospheric Environmental Regional Observation System (AEROS) [38]
to combat pollution. This system consists of multiple air pollution measurement sensors,
which are spread across Japan. Each station collects data about various air pollutants, i.e.,
PM2.5, NO2, and O3 , on an hourly basis. In this experiment, we confined air pollution
to PM2.5 to show the pollution levels at each location. We collected the raw data hourly
from each sensor and converted it into a temporal database, which was named Pollution.
It is a high-dimensional real-world dense database, which contains 1600 items and 720
transactions.

Monitoring traffic congestion in smart cities is a difficult but critical problem for intel-
ligent transportation systems. For this reason, the Japan Road Traffic Information Center
(JARTIC) installed several sensor networks to monitor congestion in several smart cities.
The data that are generated by this sensor network represent a spatio-temporal database.
For our experiment, we employed the traffic congestion data that were generated by the
sensor network that is located in Kobe, Japan. Each transaction in this database was a 5-min
interval and contained the following information: time stamp at 5-min intervals and road seg-
ment identifiers that reported congestion of more than 300 m. The data were collected from 1 July
2015 to 31 July 2015. The Congestion database contains 1414 items and 8928 transactions.

The complete statistics of the databases that were used in our experiments are shown
in Table 4. It can be observed that the Pollution and Congestion databases are high-
dimensional databases that contain long transactions.

Table 4. The complete statistics of the databases that were used in our experiments: the minimum,
average, and maximum transactions of the databases are represented by min., avg., and max.,
respectively.

S. No Database Type Nature
Transaction Length (in Count)

Database Size (in Count)
Min. Avg. Max.

1 T10I4D100K Synthetic Sparse 1 10 29 1,00,000
2 T10I4D1000K Synthetic Sparse 1 10 31 9,83,155
3 FAA Incidents Real Sparse 2 12 14 78,864
4 Congestion Real Sparse 1 58 337 8928
5 Pollution Real Dense 11 460 971 720

5.2. Evaluation of 3P-Growth

Figure 5a–d show the number of partial periodic patterns that were generated using 3P-
growth in the T10I4D100K, Congestion, Pollution, and FAA incidents databases for various
per and minPS values. These figures allowed us to make the subsequent observations: (i)
when we increased the value of per, then the total number of partial periodic patterns that
were generated in each of the databases could also increase because when we increased
the per constraint, most of the aperiodic patterns became partial periodic patterns; (ii) an
increase in minPS could result in a decrease in the number of partial periodic patterns
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because increasing the minPS value increased the minimum number of cyclic repetitions
that were required for a pattern to be considered as a partial periodic pattern.
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Figure 5. Number of partial periodic patterns that were generated in the various databases (a–d) for
different minPS and per values.

Figure 6a–d show the runtime requirements of the 3P-growth algorithm in the T10I4D100K,
Congestion, Pollution, and FAA incidents databases for various per and minPS values.
These figures allowed us to make the subsequent observations: (i) the runtime requirements
of 3P-growth could increase as the per value increased, which was because 3P-growth had
to find more partial periodic patterns with the increase in per; (ii) an increase in minPS
could decrease the runtime requirements of the 3P-growth algorithm because as the minPS
value increased, 3P-growth had to find fewer partial periodic patterns.
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Figure 6. Runtime requirements of the 3P-growth algorithm in the various databases (a–d) for
different minPS and per values.

Figure 7a–d show the memory consumption details of the 3P-growth algorithm in
the T10I4D100K, Congestion, Pollution, and FAA incidents databases for various per and
minPS values. These figures allowed us to make the subsequent observations: (i) the
memory requirements of 3P-growth could increase as the per value increased because
as the per value increased, 3P-growth had to find a greater number of partial periodic
patterns; (ii) an increase in minPS could reduce the memory requirements of the 3P-growth
algorithm because as the minPS value increased, 3P-growth had to find fewer partial
periodic patterns. Changes in the per and minPS values had the same runtime effects as
the generation of partial periodic patterns.

Overall, it could be observed from the above three results that the 3P-growth algorithm
could find a vast number of partial periodic patterns in massive databases, even at low
minPS values and high per values.
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Figure 7. Memory consumption details of the 3P-growth algorithm in the various databases (a–d) for
different minPS and per values.

5.3. Scalability of 3P-Growth

We also investigated the scalability of the 3P-growth algorithm in terms of runtime
and memory by varying the length of the temporal database. We used a large temporal
database named T10I4D1000K to carry out the scalability task. Initially, it was divided
into five equal portions, with each portion consisting of 0.2 million transactions. Next, we
investigated the performance of the 3P-growth algorithm at each iteration. We accumulated
the previous portion of transactions to the present iteration in order to effectively generate
the partial periodic patterns. The values for per and minPS were chosen as 1500 and 0.05%,
respectively. The runtime and memory requirements of 3P-growth for the different sizes of
the T10I4D1000K database are shown in Figure 8a,b, respectively. These graphs showed
that the overall tree construction, mining time, and memory requirements increased as
the database grew. However, the 3P-tree exhibited a stable linear increase in runtime and
memory consumption in terms of database size. As a result of the scalability test, it was
found that the 3P-growth algorithm could mine partial periodic patterns across massive
databases and different items with significant runtime and memory requirements.
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Figure 8. Scalability of the 3P-growth algorithm: (a) Runtime and (b) Memory.

5.4. Case Study 1: Interesting Patterns that were Generated in Pollution Database

Japan’s Ministry of Environment set up the Atmospheric Environmental Regional
Observation System to combat air pollution. The spatial locations of the sensors (or air
pollution monitoring stations) that are situated throughout Japan are shown in Figure 9a.
The raw data that are produced from these sensors for a particular air pollutant, i.e., PM2.5,
are shown in Figure 9b. These raw data were transformed into a temporal database by
grouping together the sensor identifiers whose PM2.5 values were greater than 16 µg/m3.
The generated temporal database is shown in Figure 9c. The proposed 3P-growth algorithm
took this temporal database as input and discovered all of the partial periodic patterns
within it (see Figure 9d). Figure 9e shows some of the partial periodic patterns that were
generated in the temporal database. The spatial visualization of these patterns is shown
in Figure 9f. It was observed that people living in southern Japan are regularly exposed
to high levels of PM2.5. This information could benefit an environmentalist for various
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purposes, including the development of policies to control industrial emissions and alert
systems for (elderly) people who are sensitive to air pollution.
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Figure 9. Air pollution data analytics (a–e). The term SID stands for sensor identifier.

5.5. Case Study 2: Interesting Patterns that were Generated in the Congestion Database

The spatial locations of the sensors (or road segments) in each of these patterns are
shown in Figure 10a for the networks that were established in Kobe, Japan. The raw
traffic congestion data that were collected from these sensors are shown in Figure 10b.
These raw data were converted into a temporal database by grouping together the road
segments whose congestion was more than 300 m. The proposed 3P-growth algorithm (see
Figure 10d) accepted this temporal database as input. It output a set of highly congested
road segments on which people regularly experienced traffic congestion. Some of the inter-
esting patterns that were generated in the temporal database are shown in Figure 10e. The
spatial locations of these patterns are shown in Figure 10f. The generated data could benefit
users for various purposes, including urban planning and traffic monitoring (especially
during disasters).

Several statistical and machine learning models [39,40] have been developed to predict
on-road congestion segments. The proposed model could be employed on the data that are
generated by those prediction models to discover sets of highly congested road segments.
As a result, for people who regularly experience traffic congestion, such knowledge on
heavily congested roads could help traffic control rooms to divert traffic, suggest police
patrols, and alert pedestrians on the roads.
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Figure 10. Congestion data analytics (a–e). The terms RID and CL stand for road identifier and
congestion length, respectively.

6. Conclusions and Future Work

In this paper, we proposed a novel model for finding partial periodic patterns in
temporal databases. Two constraints (minimum period support and periodicity) were
utilized to find all of the desired patterns. An efficient pattern-growth algorithm was also
proposed in this paper, which could enumerate all of the desired patterns efficiently. We
experimented with synthetic and real-world databases and from these experiments, we
could conclude that the proposed algorithm is memory- and runtime-efficient and highly
scalable. Finally, we presented two case studies to demonstrate the effectiveness of the
proposed patterns in real-world applications: one on air pollution analytics and one on
traffic congestion analytics.

There are several opportunities for future work. Firstly, our investigation was limited
to the extraction of periodic patterns in static temporal databases. On the other hand, the
method that was proposed here could be applied to the incremental mining of temporal
databases. Secondly, the data that are produced from several real-world applications exist
naturally as data streams in the era of big data. As a result, it is worth looking into the prob-
lem of finding partial periodic patterns in data streams. Thirdly, it is worthwhile exploring
alternative measures of period support to meet user and/or application requirements.
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