
����������
�������

Citation: Albert, A.A.; de Mingo

López, L.F.; Allbright, K.; Gomez Blas,

N. A Hybrid Machine Learning Model

for Predicting USA NBA All-Stars.

Electronics 2022, 11, 97. https://

doi.org/10.3390/electronics11010097

Academic Editors: Heung-Il Suk,

Imad Rida, Lunke Fei, Dan Istrate

and Amir Mosavi

Received: 22 October 2021

Accepted: 22 December 2021

Published: 29 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

A Hybrid Machine Learning Model for Predicting USA NBA
All-Stars

Alberto Arteta Albert 1,*,† , Luis Fernando de Mingo López 2,† , Kristopher Allbright 1,† and Nuria Gómez Blas 2,†

1 College of Arts and Sciences, Troy University, 129-A MSCX, 600 University Avenue, Troy, AL 36082, USA;
kallbright@troy.edu

2 Escuela Técnica Superior de Ingeniería de Sistemas Informáticos, Universidad Politécnica de Madrid,
28031 Madrid, Spain; fernando.demingo@upm.es (L.F.d.M.L.); uria.gomez.blas@upm.es (N.G.B.)

* Correspondence: aarteta@troy.edu
† These authors contributed equally to this work.

Abstract: Throughout the modern age, sports have been a very important part of human existence.
As our documentation of sports has become more advanced, so have the prediction capabilities.
Presently, analysts keep track of a massive amount of information about each team, player, coach,
and matchup. This collection has led to the development of unparalleled prediction systems with
high levels of accuracy. The issue with these prediction systems is that they are proprietary and very
costly to maintain. In other words, they are unusable by the average person. Sports, being one of
the most heavily analyzed activities on the planet, should be accessible to everyone. In this paper, a
preliminary system for using publicly available statistics and open-source methods for predicting
NBA All-Stars is introduced and modified to improve the accuracy of the predictions, which reaches
values close to 0.9 in raw accuracy, and higher than 0.9 in specificity.

Keywords: sports statistics; sports patterns classification; sports awards; MLP; random forests;
adaboost

1. Introduction

In the third century BC, the Grecian hero Phayllos recorded a long jump of 16.3 m [1].
This number has been considered inaccurate and the methods to measure it have been
questioned considering that the current men’s long jump world record stands at 8.95 m [1].

To again put the period into perspective, Phayllos’ accomplishments occurred over
a century before Alexander the Great’s conquests. While the number in the record may
be inaccurate, the fact that humans have long been interested in recording the athletic
achievements of standout performers is obvious.

As time has gone on, a greater interest in athletics and greater time devotion towards
it have developed. This is due to a multitude of factors; however, the leading causes can
be attributed to the increase in leisure time in the average person’s household, increased
societal stability allowing for an upward trending move in Maslow’s hierarchy of needs,
and the increase in the frequency of as well as access to athletic events. To see the ancient
Olympics, a citizen may need to walk or ride for days simply arrive at the event. Now, as
the ability to record games in more precise ways has developed, an interest in the outcomes
of games becomes more of an interesting piece among the average person. Instead of
hearing that Phayllos jumped 16.3 m, we can see a player’s full stat line as well as a video
recording of the event. Some modern recording methods are used to provide insights into
player movements using computer vision [2].

Since the records are correctly verified, athletic feats have been recorded in official
rankings. These range from thorough, blow-by-blow accounts of duels to simple kill counts.
Records of accomplishments in the Olympic games date back to the first Olympics in
776 BC [3]. At this point, many of the events of the biblical old testament were in full
swing [4]. While these records do exist, their precision and accuracy are not optimal and
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not comparable with modern sports statistics [5] as the first example described in this
section. These records were sometimes exaggerated beyond belief as well. This becomes
apparent with the statement that in the 5th be America-centered. In Alan Schwarz’s
book The Numbers Game [6], he highlights the history of baseball’s come up as a numbers-
focused game. He begins the exploration by talking about how the Olympic Ball Club
of Philadelphia, in 1837, mandated that a scorebook be kept to record runs scored by all
players. This trend continued up until 1858 when box scores including 11 columns were
published in major newspapers from across the United States. By 1883, the American
Association was awarding the pitching championship to Tim Keefe because of his earned-
run-per-at- bat-ratio [6]. This obscure stat is not present in today’s books, but it goes to
show how early American sports fans allowed statistics to become a normal part of the
sports experience. The father of sports analytics, unsurprisingly, found his start in Baseball.
Bill James’ background in economics, not sports, lead him to pioneer sabermetrics, or
sports analytics. James initially began publishing a column in local newspapers offering
statistical answers to odd baseball questions. Later on, in 1977 [7], James began publishing
the Bill James Baseball Abstract, in which he studied box scores and created new statistical
insights involving the stats [8]. While this revolution was confined to baseball, the ideas
came to the public’s eye with Billy Beane, the Oakland A’s, and the popular book and
film, Moneyball. Soon thereafter James’ ideas began being adopted by other sports. Since
James has risen to relevance in the past decades, his ideas have been adopted, cited, and
referenced by everyone from academia to various sports [9]. While this work has become
widely influential, James’ influence remains the heaviest within the sport of baseball [10].

The performance of any recognition system heavily depends on finding a good and
suitable feature representation space where observations from different classes are well
separated [11].

In 1981, James Naismith invented the game of basketball as a method of keeping his
physical education students occupied indoors during the winter. By 1982, the first public
game of basketball was played in Springfield, Massachusetts. At this point, the game only
consisted of 13 rules and was a very simple version of what it is today. The first professional
league was founded in 1898. Basketball spread outward from the United States to Europe,
with the first international game played in 1909. The National Basketball Association
(NBA) was formed in 1946, becoming the foundation of the league known today. The NBA
has kept stats since its inception but began to step up the game in 1979–1980 when they
introduced the three-point line to the game. Soon thereafter, the league began keeping
almost all statistics used today. The major exception was the Games Started stat, which
began in 1981–1982 [12].

With 1984–1985 came the first gambling odds on the NBA championship. This was
a major step forward as oddsmakers were beginning to use Bill James’ philosophies, just
applied to basketball. Some gambling odds were introduced as late as 2008–2009. As
these odds were introduced and as technology improved, the oddsmakers developed ever
more sophisticated methods of predicting winners. In the modern, information, era, these
oddsmakers collect thousands of points of data on each player in attempts to predict the
winners of different titles and awards.

The historical facts described above have shaped the design of the proposed model.
The known models used in sport predictions are studied in our proposal and determined
the creation the introduced hybrid proposal.

Even though these systems are good starting points to build robust systems to predict
winners/all-stars, none of them has been widely recognized to predict successful sports
players. That is the main research gap this work aims to address. Our contribution consists
of a hybrid system based on known techniques that shows more stable metrics than the
ones displayed in the introduction.
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2. Current Landscape of Sports Predictions
2.1. Monte Carlo Simulation

As it stands currently, the prediction of sports using machine learning is largely
centralized in the gambling field [7], and betting lines are often created by looking at
thousands of different relevant data points and by calculating a normal distribution of
potential outcomes. This method of using normal distribution as a guideline allows models
to simplify down to two variables, mean, and standard deviation. This is a common trick.

A widely used method of developing accurate normal distributions for potential
outcomes is called the Monte Carlo Simulation [13]. This is a simulation that is used to
predict the likelihood of outcomes where the equations contain random variables. For
example, a player being injured is defined as a random variable. There is no method of
predicting whether this will occur, so it is best to consider it random for the simulation.
The Monte Carlo Simulation works by making guesses about the outcome of these random
variables and then by simulating the outcome iteratively. This produces a bell curve that
models the likelihood of different outcomes. These Monte Carlo simulations are widely
used in the field of sports betting due to their ability to handle unpredictable variables very
well and to still produce a model that predicts likely outcomes.

The betting odds are available from many places across the internet, some more
transparent than others. One of the most transparent providers of statistical predictions
is that of Nate Silver’s FiveThirtyEight.com (accessed on 10 October 2021) [14], which
provides political odds as well as sports predictions. FiveThirtyEight also uses the Monte
Carlo Simulation method mentioned above.

2.2. Tennis

Sascha Wilkens published a paper “Sports Prediction and Betting Models in the
Machine Learning Age: The Case of Tennis” [15] discussing the potential for using machine
learning models to predict tennis outcomes. She also discusses the possibility of using such
a model for sports betting, stating potential strategies. Her results, after studying nearly
39,000 professional tennis matches, were models that predicted an outcome correctly with
an overall accuracy equal to 0.7. Her paper has been supremely influential in shaping the
methods and results of the research presented in this paper.

2.3. Baseball

Another study published by researchers at Missouri State University discussed predict-
ing the Cy Young Pitching Award winner. This study used a Bayesian classifier to predict
this outcome and compared it with other models. When the researchers restricted the
dataset to starting pitchers, the model proved near 0.8 of overall accuracy in its predictions.

In 2018, Ryan Pollack of the Hardball Times, a baseball column, undertook the task of
attempting to predict the Most Valuable Player (MVP) of each of Major League Baseball’s
(MLB) two divisions. His implementation was successful, with the confusion matrix shown
above. In Ryan’s own words:

“I evaluated the models using precision, recall, and the F1 score. I chose these
metrics instead of sensitivity, specificity, and accuracy because the data set is
wildly imbalanced. Out of 1517 player-seasons, only 20 (1.3 percent) are classified
as having won the MVP, see Table 1. With so little data about what makes an MVP,
precision, and recall represent the model’s performance better than sensitivity
and specificity do.” [16].

Table 1. Confusion matrix for MVP predictor model.

Is ActualMVP Is Not ActualMVP

Predicted MVP: 13 7
Not predcited MVP: 7 1490

FiveThirtyEight.com
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While this approach was moderately successful for Ryan, most researchers have
approached the problem by defining target metrics differently [12,17].

2.4. Daniel Bratulić

Daniel Bratulić, a data scientist and writer, tackled the NBA’s Most Valuable Player
(MVP) prediction problem in 2018. Bratulić’s work is reminiscent of Bill James’ work in
baseball as he worked to answer specific questions using basketball statistics, see Figure 1.
The system he developed is based on the NBA MVP voting system [18].

Figure 1. Confusion matrix of a multifeatured model based on the MVP system.

The method used to decide the season MVP has changed throughout the years, but a
consistent primary source of votes comes from 100 media members. Each voter is given a
ballot with which they can vote for five players. They make a vote for first place, which
awards the player 10 points; for second place, which awards the player 7 points; and all the
way down to fifth place (1 point). Therefore, it is fairly simple to turn this type of voting
system into a regression problem. Bratulić attempted to predict the winner of each season’s
MVP by predicting a votes distribution, Figure 2. This led him to obtain fairly accurate
results [18].
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Figure 2. Fifty models’ average scores of candidate players.

His method used 19 features, a mix of basic and advanced statistics, to predict award
share. Bratulić then calculated and visualized feature correlation, closely correlated pruning
features. Using the pruned features, he was able to estimate individual award shares,
predicting the top award share player as the winner of the MVP award. This approach also
allowed him to predict all vote-getters award shares. This resulted in graphs such as the
one displayed in Figure 3.

Figure 3. Generic ANN.
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3. Methods
3.1. Defining Metrics

The goal of the proposed model is to predict as many NBA All-Stars as possible. While
this may seem simple, deciding on a metric to measure the accuracy is a challenge. It is
common in Machine Learning modeling to set up in advance the metrics needed to define
the most feasible accuracy for the target model. Differing the metrics used to measure
the success of a model could result in the same model being “accurate” and “inaccurate”
simultaneously. Thus, for this project, the goal is to predict as many NBA All-Stars as
possible (correctly or incorrectly), up to 40 per year. As the All-Star teams never consist of
more than 30 people total, a goal of 40 may seem reasonably high.

One of the standard metrics we consider is the sensitivity, formally defined as follows:

Sensitivity =
True positive

True positive + False negative
(1)

For our model, true positives are players that are correctly classified as All-Stars. False
positives are players that have been incorrectly classified as All-Stars. In other words,
these are the players that the model incorrectly predicts as All-Stars. True negatives are
non-All-Star players that were correctly predicted to be non-All-Stars. False Negatives are
the All-Stars that were incorrectly predicted to be non-All-Stars.

Pivoting back to sensitivity, it can be easily understood by noticing it is the measure-
ment of All-Stars classified correctly over the total number of All-Stars. As in Ryan Pollack’s
model from above, the number of true negatives is very large when compared with the true
positives. If the metric that was chosen was raw accuracy (total correct predictions/total
predictions), most models would be extremely accurate. For example, that would show
Ryan’s model as 99.06% accurate. This is not the metric targeted to improve as it is already
defined as an optimal metric by the author. Since it is known that most players will be
correctly classified as non-All-Stars, it seems the best focus on the All-Star group as it is
considerably smaller. This is where sensitivity comes into play. It allows measurement of
the percentage of correctly identified All-Stars.

3.2. Dataset Development

This project developed a dataset of over 17,000 players scraped from basketball-
reference.com (accessed on 10 October 2021) [4]. For this project, a player can be defined as
a single person’s single-season statistics. For example, Kobe Bryant in 2008 was a different
“player” from Kobe Bryant in 2009. Each player is a single season’s worth of statistics. The
dataset contains all players from the year 1980 until the most recent season. Each player’s
data contains 30 features, some of which were redundant. Examples of this are Field Goals
Made and Field Goals Attempted, in combination with Field Goal Percentage. After the
addition of the features, it was still necessary to add in the target values. In this case, these
values came in the form of a Boolean value stating whether the player was an All-Star.

Using previous knowledge of basketball and the NBA, the dataset was filtered down
to 4833 players using three criteria. The first requirement was that the player must have
played in 50 games. The second is that the player must have started in 25 games. This is
to weed out the players that were bench players and non-contributors. Rarely do bench
players receive the All-Star honor. The last requirement is that a player must have played
at least 15 min per game on average. This again is meant to eliminate players that would
not have won the award regardless. The models were tested on both the cleaned dataset
and the full 17,000 player list with similar results.

3.3. Choosing Models and Cross-Validation

After the development of the dataset, the next step was to test different models to view
their accuracy. After choosing sensitivity as a metric, a method of splitting the data needed
to be implemented. While the common approach to this is to use sklearn’s train_test_split
method, this is not the approach taken here. Since sports occur in seasons, it seemed

basketball-reference.com
basketball-reference.com
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prudent to use a single season as the test set and every other season as training data. Using
this method of splitting the data allowed for a realistic picture of how the models perform
on a full season of information, which is the entire goal.

K-fold cross-validation was used to validate the results of each model. Cross-validation
is a method of validating results by testing each model on different sets of training and test
data. This is particularly helpful as it relies on multiple tests to check model performance.
K-fold cross-validation is a method of performing this validation by dividing the data up
into folds, training the model on all the data but a single fold and using the left-out fold
as test data. This process is repeated for all folds, allowing for an accurate picture of the
model’s accuracy.

In this case, K-fold cross-validation was used by dividing the data into 40 folds (years)
and by performing the validation this way. With each iteration, sensitivity was measured
and at the end and then averaged. A simple average was used to obtain an estimation of
each model’s accuracy to compare them. The graphic below shows the models tested and
their average sensitivity. The random forest classifier, the AdaBoost classifier, and the MLP
classifier performed the best out of the models tested, see Table 2. These were the models
that cut to the next stage.

Table 2. Sample of six Machine Learning models predicting SVC score.

SVC: 0.34
K-Nearest Neighbor: 0.47

Decision Tree classifier: 0.54
Gaussian Process Classifier: 0.56
Random Forest Classifier: 0.56

AdaBoost Classifier 0.56
Multilayer Perceptron Classifier 0.57

3.4. Models
3.4.1. Background: Decision Trees

Before discussing the theory behind the three models chose—AdaBoost, random forest,
and Multilayer perceptron (MLP)—it is prudent to review the foundations on which these
models stand.

Adaboost and random forest classification methods rely heavily on decision trees.
MLP, is a class of feedforward artificial neural networks and is a different sort of model,
requiring less background information to understand on a cursory level.

A decision tree is a supervised machine learning algorithm that uses an inverted
tree-like structure to make decisions. Decision trees “ask” specific yes/no questions to
make decisions and classify data. For example, a decision tree could ask “Is the player’s
points scored per game (ppg) greater than 20?” in its attempt to predict All-Stars. This
question would be the first of many in the tree’s attempt to predict whether the player was
an All-Star. The goal of each of these questions is to subdivide the data into adequately
many subcategories so that each subcategory is classified as either true or false.

The process of deciding how a tree is structured is important as improper placement
of different questions can make a tree much more complicated. As an example, consider if
a decision tree attempted to predict All-Stars using a question such as personal fouls. The
goal of any question is to divide data points up more correctly than they were previously
divided. As All-Stars do not commit more personal fouls when compared with non-
All-Stars, dividing players based on personal fouls makes very little sense as it would
perform terribly when categorizing players. Points per game, on the other hand, is an
excellent metric for this division. While there are high-scoring non-All-Stars and low-
scoring All-Stars, these players are outliers. On average, All-Stars score more points than
their non-All-Star counterparts. Therefore, it follows that dividing players based on points
per game would more correctly divide the players when compared with other metrics such
as personal fouls.
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Decision trees use two different metrics to determine which questions to ask. These
metrics are Gini impurity and entropy. Both of these metrics are used to measure how well
a specific question divides data. A question is generated, such as “Is the player’s points
per game greater than 15.6?”; the data are divided using that question; and then, the Gini
impurity or entropy are calculated. Once these metrics are calculated, a new question is
created, for example, “Is the player’s points per game greater than 20?”. The process is
repeated with the new question until another Gini impurity or entropy value has been
obtained. The new values are then compared with the old values. The question with the
lowest value out of all possible questions becomes the question used to divide the data.
If all new questions categorize the data in a manner that is so poor, it is no better than
categorizing the entire group as an All-Star or not an All-Star; then, the group is categorized
as a whole instead of being subdivided more.

To fully understand this method, it is important to define several terms used in the
model. These are root, node, and leaf. A root is the base of the tree or the first question that
divides the data. A node, in the same vein, is a decision point. The root node is the base of
the tree, whereas further down, the nodes are simply called decision nodes. A leaf is a node
that does not subdivide the data. These nodes are the parts of the tree that is classified.

Each leaf node is where a final answer has been reached: All-Star or non-All-Star.
The Gini impurity metric is calculated by measuring the true positive, true negative,

false positive, and false negative metrics of each leaf and then by adding them up as
weighted averages. The weighted values are used instead of true values because one node
may only categorize 3 players, whereas another may categorize 50. It is understandable
to allow the 50-player node to have more say in the final value than the 3-player decision
node. The way that a decision tree decides what the root node should be is by comparing
the Gini impurity using each feature as its root. In the end, it chooses the feature with the
lowest impurity value for its root node. It continues this process recursively down the tree,
choosing each node’s decision feature by minimizing impurity. If using another decision
node has the worst Gini impurity value, a leaf is used instead.

Gini = 1−
c

∑
j=1

p2
j (2)

The above description is for Boolean values. To categorize data using numeric features,
as in this case, the algorithm would calculate the averages of a feature between adjacent
players before checking each of the calculation’s impurity values to attempt to separate the
data. Therefore, if attempting to separate data by points per game, we would calculate the
average between adjacent players in the sorted list and then check to see which of these
values would be the best separator of the data using the Gini impurity metric. The lowest
of the averages is then chosen to be the question.

Entropy, on the other hand, is much simpler than Gini impurity. It is often considered
to be a measure of disorder within data. The goal of each node of a decision tree should
be to categorize more and more players correctly the further it goes down the tree. For
example, dividing players by points per game is a good first question to initially make
a divide among the players, but the next question should improve the true positive and
negative rate even further. Below, the mathematical formula for entropy is displayed [19].

E(S) =
c

∑
i=1
−pilog2 pi (3)

A dataset is considered tidy [15] if it contains only items with the same label (All-Star
or not an All-Star), and messy [15] if it contains a mix of items with differing labels. for
example, when there is no item with label 1 in the data (pi = 0) or if the data contains only
items of label 1 (pi = 1), then the entropy equals 0. If the data are split evenly, entropy will
be maximum as p = 1/2. The summation of these measurements defines the entropy of the
entire tree. The lower the entropy at the leaf nodes of the tree, the more players the tree
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properly classified [1]. In particular, decision trees as part of data mining have been used in
specific sports such as baseball [10,20] and as a fundamental part of sports in general [21,22]

3.4.2. Random Forest

According to The Elements of Statistical Learning [23], “trees have one aspect that
prevents them from being the ideal tool for predictive learning, namely inaccuracy”.

Random forest, on the other hand, makes up for this while still holding on to the
benefits given by decision trees. Random Forest is a machine learning model that can be
used in regression tasks as well as classification tasks. The first step in creating a random
forest is to create a bootstrapped data set. This means, in essence, that the data are randomly
sampled to create a dataset that maintains the same size as the original. The difference
is that the same sample is allowed to be used multiple times. The next step is to create a
decision tree using the bootstrapped dataset but only using a random subset of features
at each step. This process, from creating a bootstrapped dataset to creating a full decision
tree is iterated over multiple times until many decision trees have been created. Each of the
trees should look different, as different data were used to create them. This is the feature of
random forests that allow them to be more effective than individual decision trees. After
the model is created, it passes the new information through each tree and tallies up the
“votes” from each tree. The category with the most “votes” at the end is the decision tree’s
classification.

Adaboost is a machine learning algorithm that is most commonly used with decision
trees. Consider it a modification on the random forest model. Due to this similarities, the
differences are covered in detail here, but the basic idea is the same.

To begin, in random forests, there is no predetermined size on decision trees. To
contrast this, in AdaBoost, trees are often just one node and two leaves. This arrangement
of a decision tree is often called a stump. This is the first main difference between AdaBoost
and random forests. Next, while in random forests each tree obtain an equal “vote”, in
AdaBoost, some stumps obtain more say in the final classification than others. The last
main difference between AdaBoost and random forests is in how the trees are made. In
random forests, each tree is made independently of one another. However, in AdaBoost,
the order is important. The errors one stump makes influence how the next stump is made.

Making an AdaBoost classifier is fairly straightforward. The process starts by assigning
each sample in a dataset a weight. In the beginning, each sample has equal weight, meaning
that they are all equally important. After assigning weight, a stump is made for each feature
in the dataset. The stumps are created using the processes described in the decision tree
described above. After each stump is created, the Gini impurity is calculated for each
stump. Instead of allowing each stump to turn into an entire tree, it is simply cut off here
by making the stump with the lowest Gini impurity value the first stump in the forest.

The next step is determining how much “say” the newly generated stump gets. This
is performed by calculating the total error of the stump by adding the weights of the
incorrectly classified samples. Therefore, if there were eight samples and one was classified
incorrectly, then the error of that stump is 1/8. The amount of “say” each stump has
towards the final tally is calculated using the following equation:

Amount of say =
1
2

log(
1− total error

total error
) (4)

Next, the weights of each sample must be modified to allow the algorithm to grow
as the next stump responds to the previous one’s errors. First, consider the incorrectly
classified sample. This sample’s “say” increases so that it is more important in the next
classification. The formula to increase weight is shown below.

New sample weight = sample weight× eamount of say (5)
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Another change that is needed is to modify the sample weights for the correctly
classified samples. The new weights are lower than the previous so they decrease in
importance to the next stump. The formula to decrease weights is shown below.

New sample weight = sample weight× e– amount of say (6)

The final modification needed is the normalization of sample weights from 0 to 1. This
is performed by dividing each new sample weight by the new total weight. This number is
the normalized sample weight. Once this step is accomplished, the process is repeated on
another stump. Once a forest of stumps is created, new data are fed through each stump.
In the end, the amount of say for each classification is totaled. The class with the highest
amount of say wins the AdaBoost classifier’s classification. These slight modifications on
random forests make AdaBoost effective.

MLPs (Multi-layer Perceptron) is a form of neural network based on the concept of
a perceptron. A perceptron is a machine learning algorithm that inputs a vector of n + 1
dimensions and outputs another vector. A perceptron has a learning rate that governs
how quickly it adjusts its decision boundary as well as a bias that acts the role of an axis
intercept. After a perceptron calculates its result, the value is passed through an activation
function. This function performs the role of smoothing the result into an accepted output.
For example, if the perceptron outputs a 0.323 but the classes are 0 or 1, then the activation
function takes 0.323 as its input and output a 0 or 1.

Multi-layer perceptrons are slightly more complex but can be simple enough if you
consider the perceptrons as black boxes that input values with different weights attached
to each, adjust them, and then output a new value. The illustration below shows how an
MLP is organized.

Each node in the illustration is a perceptron. When an input is given, it starts at the
left-hand side of the illustration and works its way towards the right. The leftmost layer is
called the input layer as it is the layer that takes the initial inputs. Each perceptron adjusts
the initial inputs and outputs the result to every perceptron in the second layer. This would
mean that each perceptron in the second layer has some inputs equal to the input layer’s
size. The perceptrons continue to adjust themselves based on new information and adjust
weights and biases. This allows each neuron (perceptron) to predict more correctly each
time. After passing through the input layer into the second and third layers (all layers
except the input and output are considered hidden layers), the network feeds into the
output layer. The output layer’s length depends on the number of outputs needed by a
specific use case. For example, an output layer could output the probability percentage that
a handwritten digit is each digit 1–10. The output layer can be as long as it needs to be to
output the necessary number of outputs.

4. Results

In predicting whether an NBA player was an All-Star, each of these three algorithms
was incredibly effective. Running a test case from the 1998 NBA season, it is possible to see
real outputs as well as statistics on performance in a real-world test case.

4.1. Random Forest

The random forest classifier was the worst performer among the models tested with
the 1998 test data. The random forest results can be seen below.

Out of the 115 predictions made from that season, it received a raw accuracy score of
87.3%, actually scoring between the other models tested. As discussed before, sensitivity is
the primary metric that was used to determine accuracy whereas raw accuracy is secondary.
This 11/21 or 0.524 means that the model correctly predicted 52% of true All-Stars. It is
important to note that this number, while seemingly low, is very high for what the model
attempted to predict. The sensitivity number of 0.524 coupled with the raw accuracy
measurement of 87.3% means that overall accuracy was very high and over half of the
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All-Stars were predicted correctly. These results provide much encouragement for the
future of sports predictions, see Table 3.

Table 3. Random forest metrics for the target dataset.

Year: 1998
Predictions: 115

Raw accuracy: 0.878
True Positives: 11
False positives: 4
True Negatives 90
False Negatives 10

Sensitivity: 0.524
Specificity: 0.957

4.2. Adaboost

Adaboost performed much better than random forest in its sensitivity measurement.
The score of 0.619 is the standout measurement with AdaBoost. The raw accuracy, on the
other hand, dropped slightly, see Table 4. The accuracy drops by 2 percent; however, this
model proves to be more sensitive in real-world numbers. That jump would mean two
extra All-Stars were predicted correctly. Statistically, the 2% drop in raw accuracy has little
to no effect on the model.

Table 4. Adaboost metrics for the target dataset.

Year: 1998
Predictions: 115

Raw accuracy: 0.852
True Positives: 13
False positives: 9
True Negatives 85
False Negatives 8

Sensitivity: 0.619
Specificity: 0.94

4.2.1. MLP

The multi-layer perceptrons, on the other hand, were the clear winner among the
three models. This model performed as well as AdaBoost in terms of sensitivity and
outperformed both the other models in raw accuracy. This was the most effective model in
performing All-Star classifications, see Table 5.

Table 5. Multilayer perceptron metrics for the target dataset.

Year: 1998
Predictions: 115

Raw accuracy: 0.887
True Positives: 13
False positives: 5
True Negatives 89
False Negatives 8

Sensitivity: 0.619
Specificity: 0.94

4.2.2. Hybrid Proposal

Considering that each of these models performed well in overall testing, our proposal
considers a formula of both methods assigning a variable weight to the prediction. The
results suggest that the known techniques tested in this paper have proven to be decent
models in terms of sensitivity and specificity. Our proposal adds a new layer of pattern
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detection by defining a basic ANN in which the input neurons are the output of the previous
models. This ANN has one hidden layer. Adaboost, MLP, and random forest are logical
models that could be used to accurately predict All-Stars for any upcoming NBA season.
Initially, weights were assigned with random weights. The topology proposed follows the
following architecture:

The input has this format (x0, ω0), (x1, ω1), (x2, ω2), where xi represents the input; ωi
is the initially assigned weights; and ωij represents the weight assigned to neuron i, which
connects to neuron j, as any ANN standard architecture. The ANN is a standard 3-6-1
topology. The input layer has three neurons, following the shape of the observations in
the datasets and the requirements. The input layer’s weighting is defined randomly, and
the activation function is the sigmoid function. The hidden layer has six neurons fully
connected to the input and output layers.

The output layer contains one neuron and represents a value between 0 and 1: 1 is the
highest probability of being the star player, and 0 the lowest. The architecture and topology
was chosen by focusing on the MLP stucture and the observations shown below. As MLP
showed a decent overall accuracy, it was the main inspiration in the hybrid proposal, where
we tried to use a similar basis to the one described above.

The observations in the dataset follow the pattern illustrated below:

[Pos Year Age Tm G GS MP FG FGA FG% 3P 3PA 3P% 2P 2PA 2P% eFG% FT FTA FT% ORB DRB TRB AST STL

BLK TOV PF PTS] [STAR]

where [STAR] represents the output label 1 if the player is a star that year or 0 if not. Pos
refers to the position that the player played, Year means the year that the player played,
Age is the age of the player when they played in that year, and Tm is the team that the
player played on that year. These are the main variables that are part of the observation for
every potential player. [STAR] is the prediction, and it is the variable used to construct the
accuracy metric in the next sections.

The models composed of ANN (Adaboost, Random Forest, and MLP) feed off the
same data set. This weighted combination of the conventional three models has not been a
subject of research research, which makes this approach novel in this field.

4.3. Training Phase ANN

The training phase aims to solve an optimized combination of the three models. The
objective function is defined as the mean of the residual sum of squared errors. (See
formula below).

f (ω0, ω1, ω2) =
2

∑
0
[ωi fi − yi]

2 (7)

where fi is the known component function of the hybrid proposal. f0 = random forest
prediction, f1 = adaboost prediction, f2= MLP prediction, and yi is the Real observation
(the real value assigned to the player).

For the training phase of the ANN, setting the gradient to 0 or working with the
Gradient Descent algorithm are well-known methods [17]. Setting the gradient equal to 0
and solving the systems of equations is usually ruled out due to the high complexity. np,
where p is the number of weights to adjust. However, its advantage is that it can calculate
the optimal value without waiting for convergence as other methods such as Gradient
Descent or Particle Swarm. This method was chosen to be the one to train the ANN as it is
usually the most accurate. The number of weights is small, and therefore, the problems of
high complexity in the number of calculations associated with this method are not present.

Table 6 displays the weights obtained from the training phase and the training er-
ror (normalized value of the residual sum of squares) that occurred when setting the
gradient = 0).
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Table 6. Obtained weights from the training phase and the training error setting gradient to 0.

Training Error 0.0824432

ω0 0.28873472
ω1 0.38407212
ω2 0.32719316

The coding environment has four different related technologies: Keras Version 2.3.0,
TensorFlow 2.0, Anaconda 3.51, and Python 3.6.

4.4. Testing and Avoiding Overfitting

Overfitting can occur when minimizing the training error. The weights of the ANN
might be adjusted to minimize that training error. However, there might be another
combination of weights with a higher training error but a lower testing error. That usually
occurs when the number of neurons in the intermediate layers is more extensive than
needed. One of the most effective methods to measure an overfitted model is using cross-
validation.

In our case, cross-validation divides the observations into ten datasets: nine for training
and one for testing.

In every iteration, the testing accuracy is calculated. The total accuracy is defined as the
average of the ten rounds. Cross-validation compares ten possible optimal combinations
of weights based on the observations in the training datasets. Choosing the model with a
good test accuracy helps decrease overfitting as it compares the test accuracy of different
optimized training models, see Figure 4.

Figure 4. Sample of ANN performance. Green: hits. Red: faults.

4.5. Testing—Results in ANN

As mentioned in the previous section, our ANN is tested in different epochs using
K-fold cross-validation. This is described as follows:

1. Split the training data set into six equal subsets or folds. f1, f2, · · · , f6
2. For i = 1→ 6

(a) The data set data in fi works as the validation set, and the rest of the k − 1
folds are the cross-validation training set.

(b) Estimating the accuracy of your machine learning model by averaging the
accuracies derived in all of the k cases of cross-validation.
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Accuracy: Tables 7 and 8 shows the accuracy found in every k-fold rounded to five
digits of precision for proper display.

Table 7. Accuracy in every k-fold.

0.89726 0.90351 0.90045 0.89756 0.90812 0.903221

Table 8. ANN metrics for testing the same dataset.

Year: 1998
Predictions: 115

Raw accuracy: 0.887
True Positives: 17
False positives: 9
True Negatives 85

Sensitivity: 0.81
Specificity: 0.904

Example test. To illustrate this point, a union of the predictions made by each model
is shown below. The incorrectly classified players are highlighted in red. Moreover,
it is a correct list of All-Stars for that year. The green highlights show the accurately
predicted players.

When comparing the results of this proposal with the models in [9,15], the improve-
ment is also shown. In [9], Tolbert used Support Vector Machines with different kernels
for baseball players with accuracy values reaching 0.6. In the Pollack confusion matrix,
specificity and sensitivity are considerably lower.

As is visible, this combined, hybrid model performed significantly better than each
model in terms of sensitivity, while the raw accuracy was not diminished. Although the
prediction accuracies do not reach values such as 0.97, unlike other ML methods for patterns
recognition, these numbers are around the highest in prediction successful stars in different
sports. This is due to the different prediction methods of each model. Each model predicts a
specific subset of players as an All-Star, but that subset differs between models. The results
suggest that this proposal is an improvement in previous models, and this study concludes
that it is a reliable approach as it is a combination of known and reliable methodologies.

Therefore, combining the models into a single prediction set allows for correct guesses
to stand while minimizing the effects of the, mostly unanimous, incorrect predictions. This
can be seen by the over 20% increase in terms of sensitivity.

5. Conclusions

While each model performed admirably on its own, the hybrid model outstripped
them by a significant margin.

This hybrid model requires the user to use a multimodel to better improve accuracy in
sports predictions as well as in other fields. The significant jump in accuracy is a conclusive
sign that total sensitivity can be increased even higher.

The results show that these models have received the best scores that can be expected
with the studied data sets. However, improvements can still be made. The first one involves
the data shape. While the data is comprehensive to the player, more than a player’s statistics
go into earning an All-Star roster spot, such as a player’s popularity. That affects voting.
Thus, considering that each player’s followers on various social media platforms could
play a part in future iterations of these predictions, another possible improvement that
could be made to the data is to include the player’s statistics with regards to their team. For
example, a team’s win/loss record as well as a player’s win shares (an estimation of how
many wins each player contributes to a team throughout the season) could be included.

Other improvements could involve using deep learning models. Beyond using deep
learning models, it is feasible to use combinations of other models such as the one attempted
above. This would allow for another layer of abstraction beyond the basic models used
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here. Perhaps layering these models in this manner could provide a system for weighting
each entry to weed out false positives as well.

Overall, this attempt to predict NBA All-Stars was successful. Each model performed
admirably independently before coming together to predict over 80% of true positives
correctly. The next steps in making this technology widely accessible will be to make these
suggested improvements to the dataset as well as to publicize the methods used in this
work as well as those developed in the future.

This work also shows that combining different models might be an excellent choice
for predicting sport features in the future. Thus, further work needs to be conducted in
exploring combining different techniques as this can open new ways to improve the known
models rather than finding new ones.
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