
����������
�������

Citation: Liu, M.; Fu, W.; Xia, J.

Low-Latency and Minor-Error

Architecture for Parallel Computing

XY-like Functions with

High-Precision Floating-Point Inputs.

Electronics 2022, 11, 69. https://

doi.org/10.3390/electronics11010069

Academic Editor: Shinichi Yamagiwa

Received: 22 November 2021

Accepted: 24 December 2021

Published: 27 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Low-Latency and Minor-Error Architecture for Parallel
Computing XY-like Functions with High-Precision
Floating-Point Inputs

Ming Liu 1,*, Wenjia Fu 2 and Jincheng Xia 2

1 School of Microelectronics, Shenzhen Institute of Information Technology, Shenzhen 518000, China
2 Shenzhen Key Laboratory of IoT Key Technology, Harbin Institute of Technology, Shenzhen 518000, China;

wenjiafu@stu.hit.edu.cn (W.F.); jinchengxia@stu.hit.edu.cn (J.X.)
* Correspondence: lium@sziit.edu.cn or lm_hit_1986@126.com; Tel.: +86-0755-8922-6908

Abstract: This paper proposes a novel architecture for the computation of XY-like functions based
on the QH CORDIC (Quadruple-Step-Ahead Hyperbolic Coordinate Rotation Digital Computer)
methodology. The proposed architecture converts direct computing of function XY to logarithm,
multiplication, and exponent operations. The QH CORDIC methodology is a parallel variant of the
traditional CORDIC algorithm. Traditional CORDIC suffers from long latency and large area, while
the QH CORDIC has much lower latency. The computation of functions lnx and ex is accomplished
with the QH CORDIC. To solve the problem of the limited range of convergence of the QH CORDIC,
this paper employs two specific techniques to enlarge the range of convergence for functions lnx
and ex, making it possible to deal with high-precision floating-point inputs. Hardware modeling
of function XY using the QH CORDIC is plotted in this paper. Under the TSMC 65 nm standard
cell library, this paper designs and synthesizes a reference circuit. The ASIC implementation re-
sults show that the proposed architecture has 30 more orders of magnitude of maximum relative
error and average relative error than the state-of-the-art. On top of that, the proposed architec-
ture is also superior to the state-of-the-art in terms of latency, word length and energy efficiency
(power × latency × period /efficient bits).

Keywords: floating point; XY-like functions; QH CORDIC; high accuracy; low latency

1. Introduction

XY-like functions usually find their place in engineering and scientific applications
such as digital signal processing, real-time 3D (three dimensions) graphics, scientific com-
puting and so forth [1]. Currently, customized hardware designs for XY-like functions
are becoming more promising due to the demanding timing constraints of these applica-
tions [2].

For most scientific applications, 64-bit floating-point (FP) numbers conforming to the
IEEE-754(2008) standard are extensively applied. However, a rapidly growing number of
scientific applications such as climate modeling, fluid mechanics, and economic analysis
require a higher level of numerical precision [3]. This means that hundreds or more digits,
such as 128 bits, are needed to gain valid numerical results.

Since XY = eYlnX, the computation of function XY can be decomposed into the logarith-
mic computation of lnX, the multiplication of lnX and Y, and the exponential computation
eYlnX. Therefore, the computation of XY-like functions can be converted to the computation
of logarithmic and exponential functions. The hardware methods of computing XY-like
functions directly or indirectly can be divided into four categories: digit-recurrence [4–6],
functional iteration [7–9], LUT (Look-Up Table)-based [10–12], and CORDIC-based [13–15].
In fact, CORDIC is one of the digit-recurrence algorithms.

Electronics 2022, 11, 69. https://doi.org/10.3390/electronics11010069 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11010069
https://doi.org/10.3390/electronics11010069
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://doi.org/10.3390/electronics11010069
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11010069?type=check_update&version=1

Electronics 2022, 11, 69 2 of 20

The LUT method is simple and convenient, since look-up tables give the stored data
according to their address index. Chen et al. [12] proposed a symmetric-mapping LUT-
based method and an architecture to directly compute XY-like functions. The size of LUTs
has a linear relation with the word length of address indexes and an exponential relation
with the word length of storage data. It can be seen that the LUT method performs well in
the case of low precision. However, as the precision of inputs increases, the size of LUTs
expands dramatically. Under the requirement of high-precision inputs such as 128-bit FP
inputs, the size of LUTs seems obviously unreasonable.

The functional iteration method usually computes eYlnX or 2Ylog2X indirectly instead
of computing XY-like functions directly. Its principle is to transform logarithms and expo-
nentials into a sum of a series of power exponents. Refs. [16–19] evaluate binary logarithms
and exponentials via simple piecewise linear approximation. The main shortcoming of a
simple linear approximation method is the high relative error with limited lookup tables.
Paul et al. [20] use a second-order polynomial approximation method to reduce the relative
error. In addition to binary logarithms and exponentials, a piecewise polynomial approxi-
mation for natural logarithms and exponentials is presented in [21]. To approximate natural
logarithms and exponentials, Langhammer and Pasca [9] adopt a third-order piecewise Tay-
lor expansion approximation method, which yields a faster processing speed than in [21].
All the functional iteration methods above require LUTs. LUTs of larger size contribute to
higher computing precision. However, the improvement of calculation precision calls for
more terms of power exponents and more LUTs with much larger sizes, which leads to an
increase in both the computing complexity and timing latency. Therefore, the functional
iteration method is likewise not suitable for XY-like functions with high-precision inputs.

Compared with the LUT and functional iteration methods, the digit-recurrence method
is more suitable for hardware implementation of XY-like functions with wide word length.
The characteristics of digit recurrence are bit-by-bit approximation and repeated calculation,
which can be concisely constructed with logical and control blocks. The precision of the
digit-recurrence method increases with the number of iterations. Pineiro et al. [4] exploits
this method with high-radix arithmetic units to reduce the number of iterations when
extracting binary logarithms and exponentials. Today, many commercial applications
demand decimal floating-point arithmetic units. Therefore, Chen et al. [22,23] propose
architectures for decimal logarithms and exponentials using the digit-recurrence method.

There are many kinds of digit-recurrence methods, including the CORDIC algorithm,
the Gold–Schmidt (GS) iteration method, the Newton–Raphson (NR) iteration method,
and so on. The convergence speed of GS iteration depends on the precision of the seed
values corresponding to inputs. LUTs employed in Gold-Schmidt iteration to store seed
values will expand sharply for high-precision inputs, with a similar effect on timing latency.
The NR iteration method requires an initial guess, which may result in different precisions
in the outputs [24–26]. The hardware complexity of the NR method increases with the
increasing value of N.

Contrary to GS and NR iterations, the CORDIC algorithm is simple to implement, only
includes shift and addition operations, and has a stable convergence speed and relatively
fixed sizes of LUTs. Therefore, the CORDIC algorithm is widely used in the realization of
transcendental functions.

The majority of CORDIC architectures for computing XY-like functions are based
on the hyperbolic CORDIC algorithm. Traditional hyperbolic CORDIC suffers from
high latency, large circuit area, and costly power consumption for the sake of its linear
convergence speed.

In the latest literatures, Mack et al. [27] proposed an expanded hyperbolic CORDIC
algorithm to compute powering functions for any FP number. Mopuri and Acharyya [14]
did work on Nth power computations based on the binary hyperbolic CORDIC, which is
a special case of the generalized hyperbolic CORDIC [13]. Luo et al. [28] employed the
generalized hyperbolic CORDIC to directly compute logarithms and exponentials with an
arbitrary fixed base.

Electronics 2022, 11, 69 3 of 20

However, there is not much research on general computation for XY-like functions
with high-precision FP inputs. Such a generic approach for Nth power computation is
proposed in [1] based on the natural logarithm–exponent relation, i.e., XY = eYlnX.

Duprat and Muller [29] introduced the Branching CORDIC algorithm, which enables a
fast implementation of the CORDIC algorithm by performing two basic CORDIC rotations
in parallel in two separate modules. D.S. Phatak [30] has improved the algorithm and
proposed a double step branching CORDIC algorithm where two circular mode rotations
are performed in a single step with little additional hardware. To achieve the goal of
high-precision, high-accuracy, and low-latency in computing XY-like functions, this paper
adopts the QH CORDIC methodology [31], which is inspired by the double step branching
CORDIC algorithm. In this paper,

• We propose a parallel computing architecture with low-latency based on the QH
CORDIC methodology;

• We enlarge the feasible range of FP inputs of the proposed architecture with specific
techniques to make sure the proposed architecture applies to high-precision computing;

• We conduct hardware modeling on the proposed architecture to achieve the lowest
possible circuit complexity and resource consumption;

• We compare the hardware implementation results with related works to show the
minor-error and high-accuracy features of the proposed architecture.

The rest of this paper is organized as follows. Section 2 provides the necessary theo-
retical background of the QH CORDIC methodology. Section 3 introduces the hardware
modeling of XY-like functions for 128-bit FP numbers. Section 4 shows the ASIC implemen-
tation results of the proposed architecture and compares it with the state-of-the-art in terms
of correctness, word length, timing, and power. Section 5 concludes this paper.

2. QH CORDIC-Based Methodology of XY-Like Functions

In Section 2, emphasis is placed on the feasibility of logarithmic function lnx and
exponential function ex computing with the QH CORDIC methodology.

We first review the QH CORDIC methodology in terms of iterative formulae. Then, we
discuss the range of convergence (ROC) of the QH CORDIC methodology. Given the ROC
of the QH CORDIC, the validity of computing of logarithmic function lnx and exponential
function ex based on the QH CORDIC is analyzed.

2.1. Iterative Formulae of QH CORDIC Methodology

Based on shift-addition and vector rotation, the hyperbolic CORDIC algorithm is
simple and efficient. However, hyperbolic CORDIC only generates one accurate bit per iter-
ation, which is an apparent drawback for real-time scientific computing. Unlike traditional
hyperbolic CORDIC, the QH CORDIC methodology combinates four sequential iterations
into a single integrated iteration, greatly cutting down the quantity of iterations.

The iterative formulae of hyperbolic CORDIC are shown in Equation (1):

xn+1 = xn + σn2−nyn

yn+1 = yn + σn2−nxn

zn+1 = zn − σnθn

(1)

where σ is the rotation direction of the n-th rotation, θn = tanh−1(2−n), and n starts from 1.
Accordingly, the iterative formulae of the QH CORDIC are shown in Equation (2):

Electronics 2022, 11, 69 4 of 20

xn+4 =
{

1 + σn+3σn+2σn+1σn ∗ 2−(4n+6)

+[16 σn+1σn + 8σn+2σn+4σn+2σn+1+4σn+3σn+2σn+3σn+1 + σn+3σn+2] ∗ 2−(2n+5)
}
∗ xn

+
{
[8σn + 4σn+1 + 2σn+2 + σn+3] ∗ 2−(n+3)

+[8σn+2σn+1σn + 4σn+3σn+1σn + 2σn+3σn+2σn + σn+3σn+2σn+1] ∗ 2−(3n+6)
}
∗ yn

yn+4 =
{

1 + σn+3σn+2σn+1σn ∗ 2−(4n+6)

+[16 σn+1σn + 8σn+2σn+4σn+2σn+1+4σn+3σn+2σn+3σn+1 + σn+3σn+2] ∗ 2−(2n+5)
}
∗ yn

+
{
[8σn + 4σn+1 + 2σn+2 + σn+3] ∗ 2−(n+3)

+[8σn+2σn+1σn + 4σn+3σn+1σn + 2σn+3σn+2σn + σn+3σn+2σn+1] ∗ 2−(3n+6)
}
∗ xn

zn+4 = zn − σn+3θn+3 − σn+2θn+2 − σn+1θn+1 − σnθn

(2)

where σn, σn+1, σn+2, and σn+3 are rotation directions of the n-th, (n + 1)-th, (n + 2)-th, and
(n + 3)-th rotations; θn = tanh−1(2−n), θn+1 = tanh−1[2−(n+1)], θn+2 = tanh−1[2−(n+2)], and
θn+3 = tanh−1[2−(n+3)]; and n starts from 1.

The key of the QH CORDIC lies in the prediction of σ in four sequential steps, which is
also the necklace of traditional hyperbolic CORDIC. In basic hyperbolic CORDIC, the value
of σ is either −1 (rotating in a clockwise direction) or 1 (rotating in a counterclockwise
direction). For a group of four sequential steps, the corresponding {σn, σn+1, σn+2, σn+3}
has 16 possible cases for its values, from {−1, −1, −1, −1} to {1, 1, 1, 1}.

Substitute the 16 possible cases of {σn, σn+1, σn+2, σn+3} into (2) and obtain the 16 corre-
sponding simplified expressions for xn+4, yn+4 and zn+4. Table 1 details the corresponding
iterative formulae of yn+4 when {σn, σn+1, σn+2, σn+3} ranges from {−1, −1, −1, −1} to
{1, 1, 1, 1}. Since the corresponding iterative formulae of xn+4 are almost the same as those
of yn+4, a table that lists the iterative formulae of xn+4 is omitted.

Table 1. Corresponding iterative formula of yn+4.

Case σn σn+1 σn+2 σn+3 Iterative Formula of yn+4

1 −1 −1 −1 −1 yn+4 = [1 + 2−(4n+6) + 35 × 2−(2n+5)] × yn + [201315 × 2−(n+3) − 15 × 2−(3n+6)] × xn
2 −1 −1 −1 1 yn+4 = [1–2−(4n+6) + 21 × 2−(2n+5)] × yn + [−13 × 2−(n+3) − 2−(3n+6)] × xn
3 −1 −1 1 −1 yn+4 = [1–2−(4n+6) + 9 × 2−(2n+5)] × yn + [−11 × 2−(n+3) + 7 × 2−(3n+6)] × xn
4 −1 1 −1 −1 yn+4 = [1–2−(4n+6) − 9 × 2−(2n+5)] × yn + [–7 × 2−(n+3) + 11 × 2−(3n+6)] × xn
5 1 −1 −1 −1 yn+4 = [1–2−(4n+6) − 21 × 2−(2n+5)] × yn + [2−(n+3) + 13 × 2−(3n+6)] × xn
6 −1 −1 1 1 yn+4 = [1 + 2−(4n+6) − 2−(2n+5)] × yn + [–9 × 2−(n+3) + 9 × 2−(3n+6)] × xn
7 −1 1 −1 1 yn+4 = [1 + 2−(4n+6) − 15 × 2−(2n+5)] × yn + [–5 × 2−(n+3) + 5 × 2−(3n+6)] × xn
8 −1 1 1 −1 yn+4 = [1 + 2−(4n+6) − 19 × 2−(2n+5)] × yn + [–3 × 2−(n+3) − 3 × 2−(3n+6)] × xn
9 1 −1 −1 1 yn+4 = [1 + 2−(4n+6) − 19 × 2−(2n+5)] × yn + [3 × 2−(n+3) + 3 × 2−(3n+6)] × xn
10 1 −1 1 −1 yn+4 = [1 + 2−(4n+6) − 15 × 2−(2n+5)] × yn + [5 × 2−(n+3) − 5 × 2−(3n+6)] × xn
11 1 1 −1 −1 yn+4 = [1 + 2−(4n+6) − 2−(2n+5)] × yn + [9 × 2−(n+3) − 9 × 2−(3n+6)] × xn
12 −1 1 1 1 yn+4 = [1–2−(4n+6) − 21 × 2−(2n+5)] × yn + [–2−(n+3) − 13 × 2−(3n+6)] × xn
13 1 −1 1 1 yn+4 = [1–2−(4n+6) − 9 × 2−(2n+5)] × yn + [7 × 2−(n+3) − 11 × 2−(3n+6)] × xn
14 1 1 −1 1 yn+4 = [1–2−(4n+6) + 9 × 2−(2n+5)] × yn + [11 × 2−(n+3) − 7 × 2−(3n+6)] × xn
15 1 1 1 −1 yn+4 = [1–2−(4n+6) 21 × 2−(2n+5)] × yn + [13 × 2−(n+3) + 2−(3n+6)] × xn
16 1 1 1 1 yn+4 = [1 + 2−(4n+6) + 35 × 2−(2n+5)] × yn + [15 × 2−(n+3) + 15 × 2−(3n+6)] × xn

Table 2 details the corresponding iterative formulae of zn+4 when {σn, σn+1, σn+2, σn+3}
ranges from {−1, −1, −1, −1} to {1, 1, 1, 1}.

Electronics 2022, 11, 69 5 of 20

Table 2. Corresponding iterative formula of zn+4.

Case σn σn+1 σn+2 σn+3 Iterative Formula of zn+4

1 −1 −1 −1 −1 zn+4 = zn + θn + θn+1 + θn+2 + θn+3
2 −1 −1 −1 1 zn+4 = zn + θn + θn+1 + θn+2 − θn+3
3 −1 −1 1 −1 zn+4 = zn + θn + θn+1 − θn+2 + θn+3
4 −1 1 −1 −1 zn+4 = zn + θn–θn+1 + θn+2 + θn+3
5 1 −1 −1 −1 zn+4 = zn–θn + θn+1 + θn+2 + θn+3
6 −1 −1 1 1 zn+4 = zn + θn + θn+1 − θn+2 − θn+3
7 −1 1 −1 1 zn+4 = zn + θn–θn+1 + θn+2 − θn+3
8 −1 1 1 −1 zn+4 = zn + θn–θn+1 − θn+2 + θn+3
9 1 −1 −1 1 zn+4 = zn − θn + θn+1 + θn+2 − θn+3

10 1 −1 1 −1 zn+4 = zn − θn + θn+1 − θn+2 + θn+3
11 1 1 −1 −1 zn+4 = zn − θn − θn+1 + θn+2 + θn+3
12 −1 1 1 1 zn+4 = zn + θn − θn+1 − θn+2 − θn+3
13 1 −1 1 1 zn+4 = zn − θn + θn+1 − θn+2 − θn+3
14 1 1 −1 1 zn+4 = zn − θn − θn+1 + θn+2 − θn+3
15 1 1 1 −1 zn+4 = zn − θn − θn+1 − θn+2 + θn+3
16 1 1 1 1 zn+4 = zn − θn − θn+1 − θn+2 − θn+3

For an iteration step of the QH CORDIC in vectoring mode, parallelly compute
16 iterative formulae of yn+4 shown in Table 1 and obtain a group of 16 different values.
Sort the closest-to-zero value out from the 16 yn+4 values and take it as the output of yn+4
in the current iteration step of the QH CORDIC. Simultaneously, take {σn, σn+1, σn+2, σn+3}
corresponding to the iterative formula of the output of yn+4 as rotation directions in the
current iteration step. Then, the computer outputs xn+4 and zn+4 with the iterative formulae
of xn+4 and zn+4 corresponding to the rotation directions, respectively.

For an iteration step of the QH CORDIC in rotating mode, parallelly compute 16 iterative
formulae of zn+4 shown in Table 2 and obtain a group of 16 different values. Sort the closest-
to-zero value out from the 16 zn+4 values and take it as the output of zn+4 in the current
iteration step of the QH CORDIC. Simultaneously, take {σn, σn+1, σn+2, σn+3} corresponding
to the iterative formula of the output of zn+4 as the rotation directions in the current iteration
step. Then, the computer outputs xn+4 and yn+4 with the iterative formulae of xn+4 and
yn+4 corresponding to the rotation directions, respectively.

It can be seen in Table 1 that the eight upper iterative formulae of yn+4 (Cases 1–8)
are partly symmetric to the eight lower iterative formulae (Cases 9–16). Such elaborate
symmetry also exists with the iterative formulae of xn+4. To reduce the computational
burden for every iteration step of the QH CORDIC, multiplications with the same absolute
value of the coefficients can be simplified. By merging repeated multiplications into one
multiplication and one sign-inversing operation, it takes 34 additions, 12 multiplications,
and four shifts to parallelly finish the computation of the 16 iterative formulae of yn+4
shown in Table 1. Similarly, it takes 34 additions, 12 multiplications, and four shifts to
parallelly finish the computation of the 16 iterative formulae of xn+4.

2.2. Range of Convergence of QH CORDIC Methodology

The ROCs of traditional hyperbolic CORDIC [32] are showed in Equation (3):

∣∣∣tan−1 y1
x1

∣∣∣ ≤ θN +
N−1
∑

n=1
θn∣∣∣tanh−1 y1

x1

∣∣∣ ≤ 1.1182, N → ∞∣∣∣ y1
x1

∣∣∣ ≤ 0.80694, N → ∞

(3)

where y1 and x1 are initial inputs. It can be inferred that the angle of an input vector in
radians for traditional hyperbolic CORDIC must be located in (−1.1182, 1.1182).

Electronics 2022, 11, 69 6 of 20

Similar to traditional hyperbolic CORDIC, constraints on the ROC of the QH CORDIC
also exist.

Since the logarithmic function lnu cannot be attained directly by the QH CORDIC, the
computation of function lnu is done through Equation (4):

ln u = 2tanh−1(
u− 1
u + 1

). (4)

The initial conditions and terminated statuses for QH CORDIC-based computation of
lnu are listed in Equations (5) and (6), respectively:

x1 = u− 1
y1 = u + 1
z1 = 0

(5)

x∞ = 2
√

u
K∞

y∞= 0
z∞ = tanh−1

(
u−1
u+1

)
K∞ =

∞
∏
i=1

1√
1−2−2i

(6)

Accompanied by Equation (3), the ROC of input u for function lnu is (0.11, 9.51).
As for the exponential function ev, the computation of function ev is done through

Equation (7):

ev =
ev + e−v

2
+

ev − e−v

2
= cosh v + sinhv. (7)

The initial conditions and terminated statuses for QH CORDIC-based computation of
ev are listed in Equations (8) and (9), respectively:

x1 = K∞
y1 = 0
z1 = v

K∞ =
∞
∏
i=1

1√
1−2−2i

(8)

x∞ = cosh v
y∞ = sinhv
z∞ = 0

(9)

According to Equation (3), the ROC of input v for function ev is (−1.1182, 1.1182).
Furthermore, when iteration times come to be 4, 13, 40, 121, ···, (3i+2 − 1)/2, ··· where

i starts from 0, repeated iterations are necessary in order to ensure the convergence of the
QH CORDIC [33]. In this manner, the actual sequence of iteration times of the QH CORDIC
is 1, 2, 3, 4, 4, 5, ···, 12, 13, 13, ···.

2.3. Validity of Computation for Logarithmic Function and Exponential Function with
QH CORDIC

As XY = eYlnX, it is necessary to study the validity of the computation for logarithmic
function lnu and exponential function ev with the QH CORDIC, that is to say, to enlarge
ROC of the QH CORDIC for logarithmic and exponential functions.

Since the inputs of the proposed architecture for XY-like functions are all FP numbers,
suppose that the input FP number u is (−1)S × M × 2E, where S is sign of u, E is the
exponent of u after correcting bias, M is the mantissa of u after complementing the implicit
bit, and M ∈ [1, 2).

Electronics 2022, 11, 69 7 of 20

There is nothing ambiguous about S = 0 because the input FP number u for the
logarithmic function lnu is bound to be positive. So, we obtain u = M × 2E. Perform natural
logarithmic computation of both sides of u = M × 2E to obtain

ln u = lnM + e× ln 2 (10)

To adjust M into the range of (0.11, 9.51), right-shift M one bit. Represent the right-
shifted M as M′. Equation (10) is updated as

ln u = ln M′ + (e + 1)× ln 2 (11)

From Equation (11) we can see that the computation of lnu can be split into one logarithmic
operation and one constant multiplication, as well as one addition.

In a similar way, the validity of the computation for exponential function ev with the
QH CORDIC can also be ensured [15].

3. Hardware Modeling of XY-Like Functions with QH CORDIC

The QH CORDIC can be applied to both fixed-point and FP operations. Based on the
QH CORDIC, this paper presents a quad-precision (128 bits) FP hardware modeling of
XY-like functions.

The overall architecture of the quad-precision FP XY-like functions is illustrated in
Figure 1. The proposed architecture is divided into three parts. As for XY-like functions, X
is base while Y is index. Inputs are two quad-precision FP numbers: base and index (X and
Y) and two control signals: clk and rst_n. Outputs are power_result and finish, which are a
128-bit calculated result of function XY and a completed signal of function XY, respectively.
There are three segments in the overall hardware architecture for XY-like functions, the
preprocessing module, the QH module, and the postprocessing module.

Electronics 2022, 10, x FOR PEER REVIEW 7 of 22

Since the inputs of the proposed architecture for XY-like functions are all FP numbers,
suppose that the input FP number u is (−1)S × M × 2E, where S is sign of u, E is the exponent
of u after correcting bias, M is the mantissa of u after complementing the implicit bit, and
M∈[1,2).

There is nothing ambiguous about S = 0 because the input FP number u for the loga-
rithmic function lnu is bound to be positive. So, we obtain u = M × 2E. Perform natural
logarithmic computation of both sides of u = M × 2E to obtain

= + ×ln ln ln2u M e (10)

To adjust M into the range of (0.11, 9.51), right-shift M one bit. Represent the right-
shifted M as M’. Equation (10) is updated as

= + + ×’ln ln (1) ln2u M e (11)

From Equation (11) we can see that the computation of lnu can be split into one log-
arithmic operation and one constant multiplication, as well as one addition.

In a similar way, the validity of the computation for exponential function ev with the
QH CORDIC can also be ensured [15].

3. Hardware Modeling of XY-Like Functions with QH CORDIC
The QH CORDIC can be applied to both fixed-point and FP operations. Based on the

QH CORDIC, this paper presents a quad-precision (128 bits) FP hardware modeling of
XY-like functions.

The overall architecture of the quad-precision FP XY-like functions is illustrated in
Figure 1. The proposed architecture is divided into three parts. As for XY-like functions, X
is base while Y is index. Inputs are two quad-precision FP numbers: base and index (X and
Y) and two control signals: clk and rst_n. Outputs are power_result and finish, which are a
128-bit calculated result of function XY and a completed signal of function XY, respectively.
There are three segments in the overall hardware architecture for XY-like functions, the
preprocessing module, the QH module, and the postprocessing module.

Preprocessing Module

QH CORDIC Module

Postprocessing Module

index_e index_mindex_sign base_ebase_m exception exception_result

base index

128 128

base_sign
16 113 113 16 3 128

clk rst_n

x_out y_out exp_out exception_out

finish

{base_m,35'b0}

power_result

1 1

136 136 16 3

128

1

1 1

Figure 1. Overall architecture of quad-precision FP XY-like functions.

3.1. Preprocessing Module

Figure 1. Overall architecture of quad-precision FP XY-like functions.

3.1. Preprocessing Module

The preprocessing module judges whether exception situations exist after breaking
down the two FP inputs base and index into three portions: sign (base_sign and index_sign),
exponent (base_e and index_e) and mantissa (base_m and index_m). The program flowchart
of the preprocessing module is presented in Figure 2. As it is shown in Figure 2, for the
quad-precision FP input base, base_sign is a 1-bit sign; base_e is a 15-bit exponent of base after
correcting bias, and base_m is a 113-bit mantissa of base after complementing an implicit bit
“1”. Meanwhile, index_sign, index_e, and index_m are generated in the same way.

Electronics 2022, 11, 69 8 of 20Electronics 2022, 10, x FOR PEER REVIEW 9 of 22

Start

Input
base[127:0]

index[127:0]

base_sign, index_sign
base_m, index_m
base_e, index_e

(sign_1_2|sign_1_4|sign_3_4|sign_1_8|
sign_3_8|sign_5_8|sign_7_8) && (base_sign)

Define sign_1_2,
sign_1_4,sign_3_4,sign_1_8,
sign_3_8,sign_5_8,sign_7_8;
base_nan,base_inf,base_zero,

index_nan,index_inf,index_zero

base_nan || index_nan

base_zero && index_inf

base_inf && index_zero

base_zero && index_zero

base_inf && index_inf

exception = 1
exception_result = NaN

exception = 1
exception_result = Zero

exception = 1
exception_result = One

exception = 0

Finish

Yes

Yes

No

No

No

No

No

Yes

Yes

No

Yes

Yes

Figure 2. Program flowchart of the preprocessing module.

3.2. QH Module
In this paper, hardware modeling of the function XY is done through the logarithmic

function lnX, the multiplication of lnX and Y, and the exponential function eYlnX. In the QH
module, the implementation of the logarithmic function and the exponential function with
QH CORDIC methodology in Section 2.1 is abstracted as in Figure 3.

In Figure 3, the vectoring mode of the QH CORDIC is for the logarithmic function
lnX, while the rotating mode of the QH CORDIC is for exponential function eYlnX. The
vectoring mode of the QH CORDIC bears a close resemblance to the rotating mode of the
QH CORDIC because they both have three major data paths and seven submodules. Their
differences mainly lie in the signal that determines the rotation direction of the next iter-
ation (signal s_ln and signal s_exp). As explained in Section 2.2, in order to ensure the ROC
of QH CORDIC, when i = 5, 13, 41, 121, ···, (3i + 2 − 1)/2, ··· where i starts from 0, repeated
iterations are needed. Therefore, except for the iterative X/Y/Z data path that performs the

Figure 2. Program flowchart of the preprocessing module.

The new definitions sign_1_2, sign_1_4, sign_3_4, sign_1_8, sign_3_8, sign_5_8, and
sign_7_8 in Figure 2 denote that index equals 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, and 7/8, respec-
tively. Although the inputs base and index have quite a wide range around their numerical
values, both of them are still rational numbers, which means that base and index can be
expressed by p/q where p and q are two integers with the denominator q not equal to
0. Denote base = p1/q1 and index = p2/q2. When the denominator q2 is even, base must
be nonnegative. This is difficult to check in an actual implementation, as p2 and q2 of
index are difficult to confirm when index is an irregular high-precision FP number. In this
paper, we only focus on eight common cases: index equals 1/2, 1/4, 3/4, 1/8, 3/8, 5/8,
and 7/8. When index = 1/2, 1/4, 3/4, 1/8, 3/8, 5/8, or 7/8, and, in the meantime, base is
negative (base_sign = 1), the 1-bit exception judgement signal exception of the preprocessing
module is set to be 1 and the 128-bit exception output signal exception_result is set to be
NaN (128′h7fff_8000_0000_0000_0000_0000 _0000_0000).

Another set of new definitions base_nan, base_inf, and base_zero (index_nan, index_inf,
and index_zero) also appears in Figure 2. To be specific, base_nan (index_nan) means that the

Electronics 2022, 11, 69 9 of 20

FP input number base (index) is not a number (NaN); base_inf (index_inf) means that base
(index) is infinite either negatively or positively; base_zero (index_zero) means that base (index)
equals to zero.

According to Figure 2, there exist certain cases the where exception judgement signal
exception is set to be 1 and exception output signal exception_result is set to a corresponding
numerical value. Otherwise, exception is set to be 0, which means that there is no excep-
tional situation in the preprocessing module. After the preprocessing module, the signals
base_sign, index_sign, base_e, index_e, base_m, index_m, exception, and exception_result are
transferred to next module, the QH module.

3.2. QH Module

In this paper, hardware modeling of the function XY is done through the logarithmic
function lnX, the multiplication of lnX and Y, and the exponential function eYlnX. In the
QH module, the implementation of the logarithmic function and the exponential function
with QH CORDIC methodology in Section 2.1 is abstracted as in Figure 3.

Electronics 2022, 10, x FOR PEER REVIEW 10 of 22

iterative formulae xn + 4/yn + 4/zn + 4, the iterative X/Y/Z data paths when i = 5, 13, 41, 121 are
also listed.

Rotating-mode
iterative X data

path
 yi

xi

xi+4

Plus 4 counter

136

136

136

Vectoring-mode
iterative X data

path

Vectoring-mode
iterative Y data

path

MUX

xi yi

 y0 y1 y14 y15
…

136 136

LUT

Rotating-mode
iterative Z data

path

i
 8

150

MUX

z14 z15
…

 zi
150

 z0 z1

MUX

S1
4

s_ln
4

s_exp4

Vectoring-mode
iterative Z data

path

MUX MUX

Rotating-mode
iterative Y data

path

MUX

150 136

136

136

136

4

c_state

Repetitive
iterative X
data path

Repetitive
iterative Y
data path

i == 5 ||
i == 13 ||
i == 41 ||
i == 121 Repetitive

iterative Z
data path

MUX1 0

i8

150

zi+4

MUX1 0

i == 5 ||
i == 13 ||
i == 41 ||
i == 121

yi+4

136

MUX1 0

i == 5 ||
i == 13 ||
i == 41 ||
i == 121

 zi 150 zlut

150

150

i8xi136136

136

136

yi

ytmp1ztmp1

xtmp1

xtmp1

ytmp1

136 xtmp2

ztmp2
ytmp2

ztmp2

Figure 3. Vectoring mode and rotating mode of QH CORDIC.

The actual implementation of the QH module establishes a finite state machine
(FSM), which has twelve states: INIT_LN, ITE_LN, ONE_STEP_1_LN, ONE_STEP_2_LN,
INNER_DEAL_0, INNER_DEAL_1, INNER_DEAL_2, INNER_DEAL_3, INIT_EXP,
ITE_EXP, ONE_STEP_1_EXP, and ONE_STEP_2_EXP.

As for the twelve states, the states INIT_LN, ITE_LN, ONE_STEP_1_LN, and
ONE_STEP_2_LN belong to the logarithmic function calculating part; the states
INIT_EXP, ITE_EXP, ONE_STEP_1_EXP and ONE_STEP_2_EXP belong to the exponen-
tial function calculating part; the state INNER_DEAL_0 performs the post-processing of
logarithmic function; the state INNER_DEAL_1 belongs to multiplication part; the state
INNER_DEAL_2 performs the multiplication in preprocessing of exponential function;
the state INNER_DEAL_3 performs the additions in preprocessing of exponential func-
tion. A detailed state transition diagram of the FSM is presented in Figure 4.

Figure 3. Vectoring mode and rotating mode of QH CORDIC.

In Figure 3, the vectoring mode of the QH CORDIC is for the logarithmic function
lnX, while the rotating mode of the QH CORDIC is for exponential function eYlnX. The
vectoring mode of the QH CORDIC bears a close resemblance to the rotating mode of
the QH CORDIC because they both have three major data paths and seven submodules.
Their differences mainly lie in the signal that determines the rotation direction of the next
iteration (signal s_ln and signal s_exp). As explained in Section 2.2, in order to ensure the
ROC of QH CORDIC, when i = 5, 13, 41, 121, ···, (3i+2 − 1)/2, ··· where i starts from 0,
repeated iterations are needed. Therefore, except for the iterative X/Y/Z data path that
performs the iterative formulae xn+4/yn+4/zn+4, the iterative X/Y/Z data paths when i = 5,
13, 41, 121 are also listed.

The actual implementation of the QH module establishes a finite state machine (FSM),
which has twelve states: INIT_LN, ITE_LN, ONE_STEP_1_LN, ONE_STEP_2_LN, IN-
NER_DEAL_0, INNER_DEAL_1, INNER_DEAL_2, INNER_DEAL_3, INIT_EXP, ITE_EXP,
ONE_STEP_1_EXP, and ONE_STEP_2_EXP.

Electronics 2022, 11, 69 10 of 20

As for the twelve states, the states INIT_LN, ITE_LN, ONE_STE-
P_1_LN, and ONE_STEP_2_LN belong to the logarithmic function calculating part; the
states INIT_EXP, ITE_EXP, ONE_STEP_1_EXP and ONE_STEP_2_EXP belong to the expo-
nential function calculating part; the state INNER_DEAL_0 performs the post-processing
of logarithmic function; the state INNER_DEAL_1 belongs to multiplication part; the state
INNER_DEAL_2 performs the multiplication in preprocessing of exponential function; the
state INNER_DEAL_3 performs the additions in preprocessing of exponential function. A
detailed state transition diagram of the FSM is presented in Figure 4.

Electronics 2022, 10, x FOR PEER REVIEW 11 of 22

INIT_LN ITE_LN

ONE_STEP_1_LN

ONE_STEP_2_LN
INNER_DEAL_0

INIT_EXP

ITE_EXP

ONE_STEP_1_EXP

ONE_STEP_2_EXP

(cnt_next == 5)||
(cnt_next == 41)

(cnt_next == 13)||
(cnt_next == 121)(exception != 0)||

(cnt_next == 129)

(exception_exp != 0)||
(cnt_next == 129)

(cnt_next == 5)||
(cnt_next == 41)

(cnt_next == 13)||
(cnt_next == 121)

INNER_DEAL_2INNER_DEAL_1

INNER_DEAL_3

Figure 4. State transition diagram of the finite state machine.

To some extent, the architectures of the twelve states are parallelly similar. Figure 5
shows the initialization process of the logarithmic function and the exponential function.
In Figure 5a, z_in = {base_m, 35′b0} where base_m is one of the outputs of the preprocessing
module. In Figure 5b, K_inv is a constant and its value is as Equation (12).

∞

∞ −
=

= =
−

∏ 21

1_ 1/ 1/()
1 2 ii

K inv K (12)

Input exp_pre_mantissa is one of the outputs of the state INNER_DEAL. The architec-
ture of the states INNER_DEAL_0, INNER_DEAL_1, INNER_DEAL_2, and IN-
NER_DEAL_3 is shown in Figure 6.

op1_x op2_x

136 136

{8'b0,z_in[147:20]} {8'h0,128'b0}

sum_x

136

op1_y op2_y

136 136

{8'b0,z_in[147:20]} {8'hff,128'b0}

ADD_136

sum_y

136

x_next y_next

finishz_next cnt_next

150

150'b0

8

8'd1

1

1'b0

x y z cnt

ADD_136

c_state = IN
IT_LN

(a)

x_next y_next z_next cnt_next

x y z cnt

136

K_inv

150

exp_pre_mantissa

136

136'b0

8

8'd1 c_state = IN
IT_EX

P

(b)

Figure 5. (a) Architecture of the state INIT_LN; (b) architecture of the state INIT_EXP.

Figure 4. State transition diagram of the finite state machine.

To some extent, the architectures of the twelve states are parallelly similar. Figure 5
shows the initialization process of the logarithmic function and the exponential function.
In Figure 5a, z_in = {base_m, 35′b0} where base_m is one of the outputs of the preprocessing
module. In Figure 5b, K_inv is a constant and its value is as Equation (12).

K_inv = 1/K∞ = 1/(
∞

∏
i=1

1√
1− 2−2i

) (12)

Input exp_pre_mantissa is one of the outputs of the state INNER_DEAL. The ar-
chitecture of the states INNER_DEAL_0, INNER_DEAL_1, INNER_DEAL_2, and IN-
NER_DEAL_3 is shown in Figure 6.

In Figure 6, the external inputs are index_s, index_m, index_e, base_e, ite_z_ln, and a
constant 1/ln2. Among them, index_s, index_m, index_e, and base_e are the outputs of the
preprocessing module, while ite_z_ln is one of the outputs of the module z_pre in the state
ITE_LN.

The state INNER_DEAL_0 in Figure 6 realizes the normalization of the calculated
results base_e and ite_z_ln after the states INIT_LN, ITE_LN, ONE_STEP_1_LN, and
ONE_STEP_2_LN, while the state INNER_DEAL_0 turns the results of logarithmic function
lnX into a normalized 128-bit FP number {ln_sign, ln_e, ln_m}.

INNER_DEAL_1 in Figure 6 computes the multiplication of two 128-bit FP numbers,
lnX and Y. The result of INNER_DEAL_1 is also a normalized 128-bit FP number {rslt_s,
rslt_e, rslt_e}.

The states INNER_DEAL_2 and INNER_DEAL_3 realize predealing of the 128-bit FP
input {rslt_s, rslt_e, rslt_e} of exponential function eYlnX, including exception checking and
ensuring the computational validity problem of the exponential function. Generally, state

Electronics 2022, 11, 69 11 of 20

INNER_DEAL_2 performs the former multiplication operation while state INNER_DEAL_3
performs the later multiplication operation and an addition operation.

Figure 7a,b demonstrate the architectures of state ITE_LN and state ITE_EXP, respec-
tively. The yellow box in Figure 7a corresponds to the yellow box in Figure 3, while the
red box in Figure 7b corresponds to the red box in Figure 3. Module x_pre in Figure 7a,b
is the same, so it is with the module y_pre and the module z_pre. The three important
modules x_pre, y_pre, and z_pre consist of iterative data paths of xn+4, yn+4, and zn+4 in
Equation (2). Furthermore, the signal in the register cnt_next and signal exception determine
the next state after ITE_LN or ITE_EXP.

The architecture of module x_pre is shown in detail in Figure 8. The module x_pre is
performs iterative X data path calculation and involves many multiplications with single
integer constants. Binary decomposition is used to encode single integer constants to
reduce delay. Module x_pre divides the iterative X data path into three layers. Layer1
evaluates 2, 4, 8, 16, and 32 times of the inputs x and y with shift operations. Layer2 uses
the results of layer1 and the binary decomposed results of single integer constants with a
series of compressors and adders to obtain 9, 15, 19, 21, and 35 times the input x, and 3, 5, 7,
9, 11, 13, and 15 times the input y. Layer3 performs shift and compress operations on the
results of layer2 according to Equation (2).

Architecture of the module y_pre is quite similar to module x_pre. Iterative Z data
path calculation is also optimized and its architecture is shown in Figure 9.

The iterations of the Z data path require 16 calculations for the inputs {σn, σn+1, σn+2,
σn+3} from 0000 to 1111 to obtain 16 results. The calculating process of each result is quite
similar. Figure 9 takes {σn, σn+1, σn+2, σn+3} = {0, 0, 0, 0} as an example.

Electronics 2022, 10, x FOR PEER REVIEW 11 of 22

INIT_LN ITE_LN

ONE_STEP_1_LN

ONE_STEP_2_LN
INNER_DEAL_0

INIT_EXP

ITE_EXP

ONE_STEP_1_EXP

ONE_STEP_2_EXP

(cnt_next == 5)||
(cnt_next == 41)

(cnt_next == 13)||
(cnt_next == 121)(exception != 0)||

(cnt_next == 129)

(exception_exp != 0)||
(cnt_next == 129)

(cnt_next == 5)||
(cnt_next == 41)

(cnt_next == 13)||
(cnt_next == 121)

INNER_DEAL_2INNER_DEAL_1

INNER_DEAL_3

Figure 4. State transition diagram of the finite state machine.

To some extent, the architectures of the twelve states are parallelly similar. Figure 5
shows the initialization process of the logarithmic function and the exponential function.
In Figure 5a, z_in = {base_m, 35′b0} where base_m is one of the outputs of the preprocessing
module. In Figure 5b, K_inv is a constant and its value is as Equation (12).

∞

∞ −
=

= =
−

∏ 21

1_ 1/ 1/()
1 2 ii

K inv K (12)

Input exp_pre_mantissa is one of the outputs of the state INNER_DEAL. The architec-
ture of the states INNER_DEAL_0, INNER_DEAL_1, INNER_DEAL_2, and IN-
NER_DEAL_3 is shown in Figure 6.

op1_x op2_x

136 136

{8'b0,z_in[147:20]} {8'h0,128'b0}

sum_x

136

op1_y op2_y

136 136

{8'b0,z_in[147:20]} {8'hff,128'b0}

ADD_136

sum_y

136

x_next y_next

finishz_next cnt_next

150

150'b0

8

8'd1

1

1'b0

x y z cnt

ADD_136

c_state = IN
IT_LN

(a)

x_next y_next z_next cnt_next

x y z cnt

136

K_inv

150

exp_pre_mantissa

136

136'b0

8

8'd1 c_state = IN
IT_EX

P

(b)

Figure 5. (a) Architecture of the state INIT_LN; (b) architecture of the state INIT_EXP. Figure 5. (a) Architecture of the state INIT_LN; (b) architecture of the state INIT_EXP.

Electronics 2022, 11, 69 12 of 20
Electronics 2022, 10, x FOR PEER REVIEW 13 of 22

ln2_mul

ADD

Normalize

16

base_e

163
ln_e_m

1
ln_e_s

150

ite_z_ln

z_inner_deal

1
s_sign

147
s_m

1
ln_sign

16
ln_e

128
ln_m

c_state: INNER_DEAL_0

113

index_m

16

index_e

1

index_s

rslt_e
16

rslt_m
1281

rslt_s

Exception
Judgement

Multiplier

c_state:
INNER_DEAL_1

1/ln2

16

numm 32

Shifter

exception_exp

3 16

Multiplier

num_1150

ADD

exp_pre_mantissa

150

exp_out_tmp

c_state:
INNER_DEAL_2

IN
N

ER_D
EA

L

Multiplier

16

ln2 132

rslt_e

rslt_m

16

128
c_state:

INNER_DEAL_3

Figure 6. Architecture of states INNER_DEAL_0, INNER_DEAL_1, INNER_DEAL_2, and IN-
NER_DEAL_3.

Figure 7a,b demonstrate the architectures of state ITE_LN and state ITE_EXP, respec-
tively. The yellow box in Figure 7a corresponds to the yellow box in Figure 3, while the
red box in Figure 7b corresponds to the red box in Figure 3. Module x_pre in Figure 7a,b
is the same, so it is with the module y_pre and the module z_pre. The three important
modules x_pre, y_pre, and z_pre consist of iterative data paths of xn + 4, yn + 4, and zn + 4 in
Equation (2). Furthermore, the signal in the register cnt_next and signal exception deter-
mine the next state after ITE_LN or ITE_EXP.

Figure 6. Architecture of states INNER_DEAL_0, INNER_DEAL_1, INNER_DEAL_2, and IN-
NER_DEAL_3.

Figure 10a,b demonstrate architectures of the state ONE_STEP_1_LN and state ONE_STE-
P_2_LN, respectively. The two green boxes in Figure 10a,b jointly make up the repetitive
iterative xn+4, yn+4 and zn+4 data path for logarithmic functions. However, when register

Electronics 2022, 11, 69 13 of 20

cnt is 5 or 41, the FSM jumps to state ONE_STEP_1_LN; when register cnt is 13 or 121, the
FSM jumps to state ONE_STEP_2_LN.

Figure 11a,b demonstrate architectures of State ONE_STEP_1_EXP and state ONE_STE-
P_2_EXP, respectively. The two blue boxes in Figure 11a,b jointly make up the repetitive
iterative xn+4, yn+4 and zn+4 data path for exponential functions.

3.3. Postprocessing Module

After the QH module, the outputs x_out, y_out, exp_out, and exception_out are generated.
As Figure 12 shows, the signal exp_pre_exp is just exp_out of the QH module and signal
exception_out_inner is exception_out of the QH module. The postprocessing module mainly
serves to merge a normalized 128-bit FP output of powering function XY.

Electronics 2022, 10, x FOR PEER REVIEW 14 of 22

x_pre

+
y_pre z_pre

ite_x_ln136

x_next

ite_y_ln136

y_next

LUT
148

z_lut1 z_lut2
148

z_lut3
148

z_lut4
148

4 s_ln 150

z_next

ite_z_ln

x y z cnt

8'd4
8

cnt_next

8

c_state = ITE_LN

MUX

3

exception

x y z cnt

4

n_state

c_state

(a)

x_pre

+
y_pre z_pre

ite_x_exp

x_next

ite_y_exp136

y_next

LUT
148

z_lut1 z_lut2
148

z_lut3
148

z_lut4
148

150

z_next

ite_z_exp

x y z cnt

8'd4
8

cnt_next

8

c_state = ITE_EXP

MUX

3

exception

x y z cnt

4

n_state

c_state

s_exp4

(b)

Figure 7. (a) Architecture of the state ITE_LN; (b) architecture of the state ITE_EXP.

The architecture of module x_pre is shown in detail in Figure 8. The module x_pre is
performs iterative X data path calculation and involves many multiplications with single
integer constants. Binary decomposition is used to encode single integer constants to re-
duce delay. Module x_pre divides the iterative X data path into three layers. Layer1 eval-
uates 2, 4, 8, 16, and 32 times of the inputs x and y with shift operations. Layer2 uses the
results of layer1 and the binary decomposed results of single integer constants with a se-
ries of compressors and adders to obtain 9, 15, 19, 21, and 35 times the input x, and 3, 5, 7,
9, 11, 13, and 15 times the input y. Layer3 performs shift and compress operations on the
results of layer2 according to Equation (2).

Figure 7. (a) Architecture of the state ITE_LN; (b) architecture of the state ITE_EXP.

Electronics 2022, 11, 69 14 of 20Electronics 2022, 10, x FOR PEER REVIEW 15 of 22

mul2

mul4

mul8

mul16

x

mul32

mul2

mul4

mul8

mul16

y

COM
32

x
mul2x

mul16x
mul19x

COM
32

x
mul4x

mul16x
mul21x

~x+1

mul16x
mul15x

mul9x
x

mul8x

COM
32

x
mul2x

mul32x
mul35x

mul3y
y

mul2y

mul5y
y

mul4y
~y+1

mul8y
mul7y

y

mul8y
mul9y

~y+1

mul16y
mul15y

COM
32

y
mul2y

mul8y
mul11y

COM
32

y
mul4y

mul8y
mul13y

shifter
4i+6

x

shifter
2i+5

mul35x

shifter
i+3

~mul15y+1

shifter
3i+6

COM
42

COM
32

x

x_result0

shifter
4i+6

~x+1

shifter
2i+5

mul21x

shifter
i+3

shifter
3i+6

~y+1

COM
42

COM
32

x

x_result1

shifter
4i+6

x

shifter
2i+5

mul35x

shifter
i+3

mul15y

shifter
3i+6

mul15y

COM
42

COM
32

x

x_result15

...
~mul15y+1

~mul13y+1

layer1 layer2 layer3

Figure 8. Architecture of the module x_pre.

Architecture of the module y_pre is quite similar to module x_pre. Iterative Z data
path calculation is also optimized and its architecture is shown in Figure 9.

... ...

z1

z2

z3
COM

42
COM

32

z_in

z_result0z4

z1

z2

z3
COM

42
COM

32

z_in

z_result1~z4+1

~z1+1

~z2+1

~z3+1
COM

42
COM

32

z_in

z_result14z4

~z1+1

~z2+1

~z3+1
COM

42
COM

32

z_in

z_result15~z4+1

{σi, σi+1, σi+2, σi+3}={0,0,0,0} {σi, σi+1, σi+2, σi+3}={0,0,0,1}

{σi, σi+1, σi+2, σi+3}={1,1,1,0} {σi, σi+1, σi+2, σi+3}={1,1,1,1}

Figure 9. Architecture of module z_pre.

Figure 8. Architecture of the module x_pre.

Electronics 2022, 10, x FOR PEER REVIEW 15 of 22

mul2

mul4

mul8

mul16

x

mul32

mul2

mul4

mul8

mul16

y

COM
32

x
mul2x

mul16x
mul19x

COM
32

x
mul4x

mul16x
mul21x

~x+1

mul16x
mul15x

mul9x
x

mul8x

COM
32

x
mul2x

mul32x
mul35x

mul3y
y

mul2y

mul5y
y

mul4y
~y+1

mul8y
mul7y

y

mul8y
mul9y

~y+1

mul16y
mul15y

COM
32

y
mul2y

mul8y
mul11y

COM
32

y
mul4y

mul8y
mul13y

shifter
4i+6

x

shifter
2i+5

mul35x

shifter
i+3

~mul15y+1

shifter
3i+6

COM
42

COM
32

x

x_result0

shifter
4i+6

~x+1

shifter
2i+5

mul21x

shifter
i+3

shifter
3i+6

~y+1

COM
42

COM
32

x

x_result1

shifter
4i+6

x

shifter
2i+5

mul35x

shifter
i+3

mul15y

shifter
3i+6

mul15y

COM
42

COM
32

x

x_result15

...
~mul15y+1

~mul13y+1

layer1 layer2 layer3

Figure 8. Architecture of the module x_pre.

Architecture of the module y_pre is quite similar to module x_pre. Iterative Z data
path calculation is also optimized and its architecture is shown in Figure 9.

... ...

z1

z2

z3
COM

42
COM

32

z_in

z_result0z4

z1

z2

z3
COM

42
COM

32

z_in

z_result1~z4+1

~z1+1

~z2+1

~z3+1
COM

42
COM

32

z_in

z_result14z4

~z1+1

~z2+1

~z3+1
COM

42
COM

32

z_in

z_result15~z4+1

{σi, σi+1, σi+2, σi+3}={0,0,0,0} {σi, σi+1, σi+2, σi+3}={0,0,0,1}

{σi, σi+1, σi+2, σi+3}={1,1,1,0} {σi, σi+1, σi+2, σi+3}={1,1,1,1}

Figure 9. Architecture of module z_pre. Figure 9. Architecture of module z_pre.

Electronics 2022, 11, 69 15 of 20

Electronics 2022, 10, x FOR PEER REVIEW 16 of 22

The iterations of the Z data path require 16 calculations for the inputs {σn, σn + 1, σn + 2,
σn + 3} from 0000 to 1111 to obtain 16 results. The calculating process of each result is quite
similar. Figure 9 takes {σn, σn + 1, σn + 2, σn + 3} = {0, 0, 0, 0} as an example.

Figure 10a,b demonstrate architectures of the state ONE_STEP_1_LN and state
ONE_STEP_2_LN, respectively. The two green boxes in Figure 10a,b jointly make up the
repetitive iterative xn + 4, yn + 4 and zn + 4 data path for logarithmic functions. However, when
register cnt is 5 or 41, the FSM jumps to state ONE_STEP_1_LN; when register cnt is 13 or
121, the FSM jumps to state ONE_STEP_2_LN.

c_state = O
N

E_STEP_1_LN

op1_x op2_x

sum_x

136

op1_y

ADD_136

sum_y

136

x_next

y_judge

x

y_next

ADD_136

op2_y

x

>>>cnt - 1 >>>cnt - 1

y

ADD_150

sum_z

op2_z

z

op1_z

{2'b0,z_lut0}

150

0 1
MUX

0 1
MUX

1y_judge[135]

z_next

0 1
MUX

y z

op1_x op2_x

sum_x

136

op1_y

ADD_136

sum_y

136

x_next

y_judge

x

y_next

ADD_136

op2_y

x

>>> cnt >>> cnt

y

ADD_150

sum_z

op2_z

z

op1_z

{2'b0,z_lut1}

150

0 1
MUX

0 1
MUX

1y_judge[135]

z_next

0 1
MUX

y z

c_state = O
N

E_STEP_2_LN

(a) (b)

Figure 10. (a) Architecture of the state ONE_STEP_1_LN; (b) architecture of the state
ONE_STEP_2_LN.

Figure 11a,b demonstrate architectures of State ONE_STEP_1_EXP and state
ONE_STEP_2_EXP, respectively. The two blue boxes in Figure 11a,b jointly make up the
repetitive iterative xn + 4, yn + 4 and zn + 4 data path for exponential functions.

x_next

x

y_next

x y z {2'b0,z_lut0}

z_next

y z

sum_x

136

ADD_136

>>>cnt - 1 >>>cnt - 1

op1_x

136'd1

+
0 1

MUX z[149] = 1

op2_x op1_y op2_y

ADD_136
136

136'd1

+
0 1

MUX

sum_y

z[149] = 1

136'd1

1 0
MUX

+

ADD_150

sum_z

op1_z

150

op2_z

c_state = O
N

E_STEP_1_EX
P

x_next

x

y_next

x y z {2'b0,z_lut1}

z_next

y z

sum_x

136

ADD_136

>>>cnt - 1 >>>cnt - 1

op1_x

136'd1

+
0 1

MUX z[149] = 1

op2_x op1_y op2_y

ADD_136
136

136'd1

+
0 1

MUX

sum_y

z[149] = 1

136'd1

1 0
MUX

+

ADD_150

sum_z

op1_z

150

op2_z

c_state = O
N

E_STEP_2_EX
P

(a) (b)

Figure 11. (a) Architecture of the state ONE_STEP_1_EXP; (b) architecture of the state
ONE_STEP_2_EXP.

3.3. Postprocessing Module

Figure 10. (a) Architecture of the state ONE_STEP_1_LN; (b) architecture of the state
ONE_STEP_2_LN.

Electronics 2022, 10, x FOR PEER REVIEW 16 of 22

The iterations of the Z data path require 16 calculations for the inputs {σn, σn + 1, σn + 2,
σn + 3} from 0000 to 1111 to obtain 16 results. The calculating process of each result is quite
similar. Figure 9 takes {σn, σn + 1, σn + 2, σn + 3} = {0, 0, 0, 0} as an example.

Figure 10a,b demonstrate architectures of the state ONE_STEP_1_LN and state
ONE_STEP_2_LN, respectively. The two green boxes in Figure 10a,b jointly make up the
repetitive iterative xn + 4, yn + 4 and zn + 4 data path for logarithmic functions. However, when
register cnt is 5 or 41, the FSM jumps to state ONE_STEP_1_LN; when register cnt is 13 or
121, the FSM jumps to state ONE_STEP_2_LN.

c_state = O
N

E_STEP_1_LN

op1_x op2_x

sum_x

136

op1_y

ADD_136

sum_y

136

x_next

y_judge

x

y_next

ADD_136

op2_y

x

>>>cnt - 1 >>>cnt - 1

y

ADD_150

sum_z

op2_z

z

op1_z

{2'b0,z_lut0}

150

0 1
MUX

0 1
MUX

1y_judge[135]

z_next

0 1
MUX

y z

op1_x op2_x

sum_x

136

op1_y

ADD_136

sum_y

136

x_next

y_judge

x

y_next

ADD_136

op2_y

x

>>> cnt >>> cnt

y

ADD_150

sum_z

op2_z

z

op1_z

{2'b0,z_lut1}

150

0 1
MUX

0 1
MUX

1y_judge[135]

z_next

0 1
MUX

y z

c_state = O
N

E_STEP_2_LN

(a) (b)

Figure 10. (a) Architecture of the state ONE_STEP_1_LN; (b) architecture of the state
ONE_STEP_2_LN.

Figure 11a,b demonstrate architectures of State ONE_STEP_1_EXP and state
ONE_STEP_2_EXP, respectively. The two blue boxes in Figure 11a,b jointly make up the
repetitive iterative xn + 4, yn + 4 and zn + 4 data path for exponential functions.

x_next

x

y_next

x y z {2'b0,z_lut0}

z_next

y z

sum_x

136

ADD_136

>>>cnt - 1 >>>cnt - 1

op1_x

136'd1

+
0 1

MUX z[149] = 1

op2_x op1_y op2_y

ADD_136
136

136'd1

+
0 1

MUX

sum_y

z[149] = 1

136'd1

1 0
MUX

+

ADD_150

sum_z

op1_z

150

op2_z

c_state = O
N

E_STEP_1_EX
P

x_next

x

y_next

x y z {2'b0,z_lut1}

z_next

y z

sum_x

136

ADD_136

>>>cnt - 1 >>>cnt - 1

op1_x

136'd1

+
0 1

MUX z[149] = 1

op2_x op1_y op2_y

ADD_136
136

136'd1

+
0 1

MUX

sum_y

z[149] = 1

136'd1

1 0
MUX

+

ADD_150

sum_z

op1_z

150

op2_z

c_state = O
N

E_STEP_2_EX
P

(a) (b)

Figure 11. (a) Architecture of the state ONE_STEP_1_EXP; (b) architecture of the state
ONE_STEP_2_EXP.

3.3. Postprocessing Module

Figure 11. (a) Architecture of the state ONE_STEP_1_EXP; (b) architecture of the state
ONE_STEP_2_EXP.

Electronics 2022, 10, x FOR PEER REVIEW 17 of 22

After the QH module, the outputs x_out, y_out, exp_out, and exception_out are gener-
ated. As Figure 12 shows, the signal exp_pre_exp is just exp_out of the QH module and
signal exception_out_inner is exception_out of the QH module. The postprocessing module
mainly serves to merge a normalized 128-bit FP output of powering function XY.

add

136

x_out

136

y_out

136
mantissa

mantissa[13:0]!=0 mantissa[14] mantissa[15]

guard_bit

1

 0
 M

U
X

1'b0

1'b1

round_bit

round_bit

mantissa_judge

+

1

1 0
 MUX

mantissa[126:15]

mantissa_out
112

exp_pre_exp

+

 1 0
 MUX

15'h3fff

1

16

exp_pre_exp[15]=0

exp_out
15

1'b0

1

power_result_tmp

128

 1 0
 MUX

exception_out_inner
3

128

Other set-up values

128

power_result

Figure 12. Architecture of the postprocessing module.

4. Implementation Results and Comparisons
4.1. ASIC Implementation Results of the Proposed Architecture

The proposed architecture was coded in Verilog HDL and synthesized with the
TSMC 65 nm standard cell library, using Synopsys Design Compiler. The proposed archi-
tecture was synthesized with the best achievable timing constraints, with the constraint of
the max-area set to zero and a global operating voltage of 0.9 V. The ASIC implementation
details are shown in Table 3.

Table 3. ASIC Implementation Details @ TSMC 65 nm.

Item -
Period (ns) 3.3

Latency (cycle) 76
Area (μm2) 1417366

Power (mW) 36.2189
Precision (bit) 113

Total time (ns) 1 250.8
ATP (mm2·ns) 2 355.4754

Total energy (fJ) 3 9083.7001
Energy efficiency (fJ/bit) 4 80.3867

Area efficiency (bit/(mm2·ns)) 5 0.3179
1 Total time = latency × period. 2 ATP = area × total time. 3 Total energy = power × total time. 4 Energy
efficiency = total energy/precision. 5 Area efficiency = precision/ATP.

Figure 12. Architecture of the postprocessing module.

Electronics 2022, 11, 69 16 of 20

4. Implementation Results and Comparisons
4.1. ASIC Implementation Results of the Proposed Architecture

The proposed architecture was coded in Verilog HDL and synthesized with the TSMC
65 nm standard cell library, using Synopsys Design Compiler. The proposed architecture
was synthesized with the best achievable timing constraints, with the constraint of the
max-area set to zero and a global operating voltage of 0.9 V. The ASIC implementation
details are shown in Table 3.

Table 3. ASIC Implementation Details @ TSMC 65 nm.

Item -

Period (ns) 3.3
Latency (cycle) 76

Area (µm2) 1417366
Power (mW) 36.2189
Precision (bit) 113

Total time (ns) 1 250.8
ATP (mm2·ns) 2 355.4754

Total energy (fJ) 3 9083.7001
Energy efficiency (fJ/bit) 4 80.3867

Area efficiency (bit/(mm2·ns)) 5 0.3179
1 Total time = latency × period. 2 ATP = area × total time. 3 Total energy = power × total time.
4 Energy efficiency = total energy/precision. 5 Area efficiency = precision/ATP.

ATP and total energy are usually used to properly and roundly evaluate ASIC perfor-
mance. The smaller the ATP and total energy are, the better the ASIC design. In a similar
way, according to the definitions of energy efficiency and area efficiency, the smaller the
energy efficiency is and the larger the area efficiency is, the better the ASIC design.

4.2. Evalutation and Comparative Analysis

In order to reveal the superiority of our approach based on the same conditions, this
paper makes a comparative analysis using different indicators against other state-of-the-art
approaches for computing XY-like functions, including computation correctness, word
length, computation latency, and power consumption.

4.2.1. Computational Correctness

In Python, we verify the computational correctness of the proposed architecture and
other approaches by evaluating their relative errors. The definition of the indicator relative
error (RE) is as Equation (13):

RE =
|VT −VM|
|VT |

(13)

where VT stands for the theoretical value of function XY and VM stands for the measured
value of function XY with the proposed and other approaches. The maximum relative
error is denoted as max(REk) of k test quantities. Another important indicator, the average
relative error (ARE), is defined as Equation (14):

ARE =

k
∑

i=1
|VT −VM|

i
|VT | × k

(14)

where k stands for test quantity of function XY.
Currently, only [12,14] in the state-of-the-art approaches implement both N

√
X and XN

computation. For [12,14], the test quantity k is 40,000. For [14], the number of iterations n is
set to be 10. For [12], 1024 pieces of result data are stored in either LUT1 or LUT2. Software
verification of [12,14] and the proposed architecture for function XY is presented in Table 4.

Electronics 2022, 11, 69 17 of 20

Table 4. Verification of [12,14] and the proposed architecture by Python simulation.

Item
N
√

X XN

[14] [12] Proposed [14] [12] Proposed

X [10−6, 106] [10−6, 106] (2−16382, 216383) [10−2, 102] [10−2, 102] (2−16382, 216383)
N [2, 1002] [2, 1002] (2−16382, 216383) [1, 5] [1, 5] (2−16382, 216383)
k 40,000 40,000 100,000 40,000 40,000 100,000

max(RE) 1.928 × 10–3 1.069 × 10–3 1.688 × 10−34 1.030 × 10–2 5.272 × 10–3 1.610 × 10−34

ARE 5.464 × 10–4 4.160 × 10–4 1.446 × 10−34 2.875 × 10–3 2.095 × 10–3 1.442 × 10−34

From Table 4, in terms of max(RE) and ARE, it is evident that the proposed architecture
for N
√

X computation is superior compared with the state-of-the-art approaches [12,14].
The proposed architecture for XN computation is also superior compared with the state-of-
the-art approaches [12,14].

4.2.2. Word Length

In this subsection, this paper analyzes the word length required for each approach’s
hardware implementation based on the conditions in Section 4.2.1. The longer the word
length is, the better the precision.

The word lengths of each module in [12,14], and the proposed architecture are shown
in Table 5. By contrast, the word length of the proposed architecture is much longer
than the state-of-the-art approaches, which means that the proposed architecture has the
characteristic of high precision. However, the long word length consumes more area and
power, increases the critical path, and lowers the working frequency to some extent.

Table 5. Word length for [12,14] and the proposed architecture.

Function Architecture Type Logarithm Division/Multiplication Exponential

N√X [14]
Module HV CORDIC LV CORDIC HR CORDIC

S + I + F 1 1 + 2 + 45 1 + 10 + 27 1 + 2 + 27
Total Bits 48 38 30

XN [14]
Module BV CORDIC LV CORDIC BR CORDIC
S + I + F 1 + 2 + 32 1 + 5 + 27 1 + 2 + 27
Total Bits 35 33 30

N√X and XN

[12]
Module SM-LUT Multiplier SM-LUT
S + I + F 1 + 0 + 27 1 + 10 + 27 1 + 0 + 27
Total Bits 28 38 28

Proposed
Module

states INIT_LN,
ITE_LN,

ONE_STEP_1_LN,
ONE_STEP_2_LN

states INNER_DEAL_0,
INNER_DEAL_1,
INNER_DEAL_2,
INNER_DEAL_3

states INIT_EXP,
ITE_EXP,

ONE_STEP_1_EXP,
ONE_STEP_2_EXP

S + I + F 1 + 15 + 112 1 + 15 + 112 1 + 15 + 112
Total Bits 128 128 128

1 “S + I + F” stands for “sign bit + exponent bit + fractional bit”.

4.2.3. Timing Analysis and Power Analysis

In this section, this paper first analyzes computation latency of [14,15] and the pro-
posed architecture to calculate N

√
X or XN.

NL refers to latency savings compared with other architectures and it is defined as
Equation (15):

NL = Loth − Lpro (15)

where L is latency. Compared with [14,15], the percentage of NL is as Equation (16):

PNL =
NL
Loth

=
Loth − Lpro

Loth
× 100% (16)

Under the circumstances, we can calculate NL, PNL for [14,15] and the proposed
architecture, as shown in Table 6.

Electronics 2022, 11, 69 18 of 20

Table 6. Timing analysis for [14,15] and the proposed architecture.

Function Architecture Latency
(Cycle) Period (ns) Total Time

(ns) 1 NL (Cycle) PNL (%) Throughput
(bit/ns) 2

N√X [14] 78 0.5 39 2 2.56 0.333
XN [14] 79 0.5 39.5 3 3.79 0.329

N√X and XN [15] 87 1 87 11 12.64 0.437
Proposed 76 3.3 250.8 \ \ 0.451

1 Total time = latency × period. 2 Throughput = precision/total time; the precision of [14,15], and proposed
architecture is 13, 38 and 113 respectively.

From Table 6, for N
√

X computation, the proposed architecture saves 2.56% and 12.64%
latency compared with [14,15], respectively. For XN computation, the proposed architecture
saves 3.79% and 12.64% latency, respectively. The direct comparison of latency in terms of
cycle is not fair, as the periods of [14,15] and the proposed architecture may be different.
Hence, the indicator total time is employed to measure the timing efficiency of the three
architectures. According to Table 6, the total time of the proposed architecture is about
6 times that of [14] and about 2.8 times that of [15]. It should be noticed that the comparison
is done in terms of total time without taking into account the fact that the three architectures
run on different technologies.

For fairness, the indicator throughput was also measured. From Table 6, for N
√

X
computation, the proposed architecture has ≈35.4% and ≈3.2% throughput overhead
over [14] and [15], respectively; for XN computation, the proposed architecture has ≈37.1%
and ≈3.2% throughput overhead over [14,15], respectively. It can be inferred that the
throughput of our proposed architecture is larger, as our precision is much higher. For high-
precision applications, the proposed architecture can achieve better timing performance.

Next, this paper focuses on the power consumption to calculate N
√

X or XN for [14,15]
and the proposed architecture. Similar with Section 4.1, this paper employs energy effi-
ciency to compare with other architectures.

As seen in Table 7, the proposed design for N
√

X computation saves 25.44% and
34.18% energy efficiency when it is compared with [14,15], respectively. For XN com-
putation, our design can save 21.58% and 34.18% energy efficiency compared with [14]
and [15], respectively.

Table 7. Power analysis for [14,15] and the proposed architecture.

Function Architecture Technology Power (mW) Period (ns) Precision (bit) Energy Efficiency
(fJ/bit)

N
√

X [14] 45 nm 35.9 0.5 13 107.7
XN [14] 45 nm 33.7 0.5 13 102.4

N
√

X and XN [15] TSMC 40 nm 53.2978 1 38 122.0
Proposed TSMC 65 nm 36.2189 3.3 113 80.3

5. Conclusions

In this paper, a novel hardware architecture is proposed based on the QH CORDIC
methodology to compute XY-like functions. The computation of function XY is divided
into the computation of function lnX, a multiplication operation, and function ex, of which
function lnx and function ex are calculated using the QH CORDIC.

The QH CORDIC methodology merges four single iterations into a whole parallel
iteration, simultaneously computes a total of 16 possible values of xn+4, yn+4, and zn+4
respectively, and picks up rotation directions of the next iteration according to zn+4 for
rotating mode or yn+4 for vectoring mode. Compared with traditional hyperbolic CORDIC
algorithms, the QH CORDIC only needs 32 clock cycles to achieve 128-bit FP data accuracy,
which greatly reduces the circuit latency.

The proposed architecture solves the problem of limited ROC of CORDIC algorithm
and explains the validity of computing function lnx and ex with the QH CORDIC, ensuring

Electronics 2022, 11, 69 19 of 20

that the domain of inputs for the proposed architecture are high-precision (128 bits) floating-
point numbers.

The ASIC implementation results show that the proposed architecture’s circuit latency,
area, and power consumption are 76 cycles, 1417366 µm2, and 36.2189 mW, respectively,
under a working frequency of 300 MHz and a precision of at least 113 bits. The conspicuous
timing performances of the proposed architecture with high-precision inputs and dramat-
ically accurate outputs are achieved at the cost of area and power consumption. This is
related to the adopted QH CORDIC methodology to a large extent, as the QH CORDIC
follows the parallel computing strategy.

Compared with other architectures, the entire logic path turned out to be minor
error and high accuracy. The proposed architecture is about 30 orders of magnitude
superior to [12,14] in terms of max(RE) and ARE. The proposed architecture was also
proved to be low-latency. For N

√
X computation, the proposed architecture has 2.56% and

12.64% latency overhead over [14,15], respectively. For XN computation, it has 3.79% and
12.64% latency overhead over [14,15], respectively. In addition, the proposed architecture
outmatches [14,15] in terms of indicator energy efficiency and throughput. The word length
of the proposed architecture is 128 bits, three or four times that of [12,14].

Therefore, the proposed architecture is highly favored to perform high-precision
floating-point computing of XY-like functions. However, the long word length may weaken
the advantages in terms of area and power. Our focus in the future will firstly be rigorous
error analysis that cuts down on the word length of xn+4, yn+4, and zn+4 during the QH
CORDIC iterations. Secondly, the word length of the two multipliers Y and lnX can be
shortened with the accuracy of product YlnX maintained. In this way, the computation of
YlnX in eYlnX can be simplified. These improvements will help to reduce the total area and
power of the circuit design.

In addition, the proposed hardware architecture can be modified into a low-latency
and minor-error architecture for XY-like functions whose inputs are configurable in terms of
precision. In line with the precisions of current scientific computing applications, not only
quadruple precision (128 bits), but also half-precision (16 bits), single precision (32 bits),
and double precision (64 bits) are accessible in the configurable architecture.

Author Contributions: Conceptualization, M.L.; methodology, M.L.; software, J.X. and M.L.; vali-
dation, J.X. and M.L.; writing—original draft preparation, W.F.; writing—review and editing, W.F.
and M.L.; funding acquisition, M.L. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by a project of the Educational Commission of Guangdong
Province of China (2019GKQNCX122) and Scientific Research Project in School-level (SZIIT2019KJ026).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pineiro, J.-A.; Ercegovac, M.D.; Bruguera, J.D. High-radix iterative algorithm for powering computation. In Proceedings of the

16th IEEE Symposium on Computer Arithmetic, Santiago de Compostela, Spain, 15−18 June 2003; pp. 204–211.
2. Harris, D. A powering unit for an Open GL lighting engine. In Proceedings of the 35th Asilomar Conference on Signals, Systems

and Computers, Pacific Grove, CA, USA, 4–7 November 2001; pp. 1641–1645.
3. Zuras, D.; Cowlishaw, M.; Aiken, A.; Applegate, M.; Bailey, D.; Bass, S.; Bhandarkar, D.; Bhat, M.; Bindel, D.; Boldo, S.; et al. IEEE

Standard for Floating-Point Arithmetic. IEEE Std. 2008, 754, 1–70.
4. Pineiro, J.-A.; Ercegovac, M.D.; Bruguera, J.D. Algorithm and architecture for logarithm, exponential, and powering computation.

IEEE Trans. Comput. 2004, 53, 1085–1096. [CrossRef]
5. Antelo, E.; Lang, T.; Bruguera, J.D. Very-high radix CORDIC vectoring with scalings and selection by rounding. In Proceedings of

the 14th IEEE Symposium on Computer Arithmetic, Adelaide, SA, Australia, 14−16 April 1999; pp. 204–213.
6. Vazquez, A.; Bruguera, J.D. Iterative algorithm and architecture for exponential, logarithm, powering, and root extraction. IEEE

Trans. Comput. 2013, 62, 1721–1731. [CrossRef]
7. Oberman, S.F. Floating point division and square root algorithms and implementation in the AMD-K7/sup TM/ microprocessor.

In Proceedings of the 14th IEEE Symposium on Computer Arithmetic, Adelaide, SA, Australia, 14−16 April 1999; pp. 106–115.

http://doi.org/10.1109/TC.2004.53
http://doi.org/10.1109/TC.2012.247

Electronics 2022, 11, 69 20 of 20

8. Pineiro, J.-A.; Bruguera, J.D. High-speed double-precision computation of reciprocal, division, square root, and inverse square
root. IEEE Trans. Comput. 2002, 51, 1377–1388. [CrossRef]

9. Langhammer, M.; Pasca, B. Single precision logarithm and exponential architectures for hard floating-point enabled FPGAs. IEEE
Trans. Comput. 2017, 66, 2031–2043. [CrossRef]

10. Muller, J.M. Elementary functions: Algorithms and implementation. Math. Comput. Educ. 1997, 34, 21–52.
11. Schulte, M.J.; Stine, J.E. Approximating elementary functions with symmetric bipartite tables. IEEE Trans. Comput. 1999, 48,

842–847. [CrossRef]
12. Chen, H.; Yang, H.; Song, W.; Lu, Z.; Fu, Y.; Li, L.; Yu, Z. Symmetric-Mapping LUT-Based Method and Architecture for Computing

XY-Like Functions. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 68, 1231–1244. [CrossRef]
13. Luo, Y.; Wang, Y.; Sun, H.; Zha, Y.; Wang, Z.; Pan, H. CORDIC-based architecture for computing Nth root and its implementation.

IEEE Trans. Circuits Syst. I Regul. Pap. 2018, 65, 4183–4195. [CrossRef]
14. Mopuri, S.; Acharyya, A. Low complexity generic VLSI architecture design methodology for Nth root and Nth power computa-

tions. IEEE Trans. Circuits Syst. I Regul. Pap. 2019, 66, 4673–4686. [CrossRef]
15. Wang, Y.; Luo, Y.; Wang, Z.; Shen, Q.; Pan, H. GH CORDIC-based architecture for computing Nth root of single-precision

floating-point number. IEEE Trans. Very Large Scale Integr. Syst. 2020, 28, 864–875. [CrossRef]
16. Combet, M.; van Zonneveld, H.; Verbeek, L. Computation of the base two logarithm of binary numbers. IEEE Trans. Electron.

Comput. 1965, EC-14, 863–867. [CrossRef]
17. Hall, E.L.; Lynch, D.D.; Dwyer, S.J. Generation of products and quotients using approximate binary logarithms for digital filtering

applications. IEEE Trans. Comput. 1970, C-19, 97–105. [CrossRef]
18. Abed, K.H.; Siferd, R.E. CMOS VLSI implementation of a low-power logarithmic converter. IEEE Trans. Comput. 2003, 52,

1421–1433. [CrossRef]
19. Abed, K.H.; Siferd, R.E. VLSI implementation of a low-power antilogarithmic converter. IEEE Trans. Comput. 2003, 52, 1221–1228.

[CrossRef]
20. Paul, S.; Jayakumar, N.; Khatri, S.P. A fast hardware approach for approximate, efficient logarithm and antilogarithm computations.

IEEE Trans. Very Large Scale Integr. Syst. 2009, 17, 269–277. [CrossRef]
21. De Dinechin, F.; Pasca, B. Floating-point exponential functions for DSP-enabled FPGAs. In Proceedings of the IEEE International

Conference on Field-Programmable Technology, Beijing, China, 8−10 December 2010; pp. 110–117.
22. Chen, D.; Han, L.; Ko, S.B. Decimal floating-point antilogarithmic converter based on selection by rounding: Algorithm and

architecture. IET Comput. Digit. Technol. 2012, 6, 277–289. [CrossRef]
23. Chen, D.; Han, L.; Choi, Y.; Ko, S.-B. Improved decimal floating-point logarithmic converter based on selection by rounding. IEEE

Trans. Comput. 2012, 61, 607–621. [CrossRef]
24. Liu, W.; Nannarelli, A. Power efficient division and square root unit. IEEE Trans. Comput. 2012, 61, 1059–1070. [CrossRef]
25. Seth, A.; Gan, W.-S. Fixed-point square roots using L-b truncation. IEEE Signal Process. Mag. 2011, 28, 149–153. [CrossRef]
26. Kabuo, H.; Taniguchi, T.; Miyoshi, A.; Yamashita, H.; Urano, M.; Edamatsu, H.; Kuninobu, S. Accurate rounding scheme for the

Newton-Raphson method using redundant binary representation. IEEE Trans. Comput. 1994, 43, 43–51. [CrossRef]
27. Mack, J.; Bellestri, S.; Llamocca, D. Floating point CORDIC-based architecture for powering computation. In Proceedings of the

2015 International Conference on ReConFigurable Computing and FPGAs (ReConFig), Riviera Maya, Mexico, 7–9 December 2015;
pp. 1–6.

28. Luo, Y.; Wang, Y.; Ha, Y.; Wang, Z.; Chen, S.; Pan, H. Generalized Hyperbolic CORDIC and Its Logarithmic and Exponential
Computation with Arbitrary Fixed Base. IEEE Trans. Very Large Scale Integr. Syst. 2019, 27, 2156–2169. [CrossRef]

29. Duprat, J.; Muller, J.M. The CORDIC algorithm: New results for fast VLSI implementation. IEEE Trans. Comput. 1993, 42, 168–178.
[CrossRef]

30. Phatak, D.S. Double step branching CORDIC: A new algorithm for fast sine and cosine generation. IEEE Trans. Comput. 1998, 47,
587–602. [CrossRef]

31. Fu, W.; Xia, J.; Lin, X.; Liu, M.; Wang, M. Low-Latency Hardware Implementation of High-Precision Hyperbolic Functions Sinhx
and Coshx Based on Improved CORDIC Algorithm. Electronics 2021, 10, 2533. [CrossRef]

32. Llamocca-Obregón, D.R.; Agurto-Ríos, C.P. A fixed-point implementation of the expanded hyperbolic CORDIC algorithm. Lat.
Am. Appl. Res. 2007, 37, 83–91.

33. Hao, L.; Ming-Jiang, W.; Mo-Ran, C.; Ming, L. A VLSI Implementation of Double Precision Floating-Point Logarithmic Function. In
Proceedings of the 2019 IEEE 4th International Conference on Signal and Image Processing (ICSIP), Wuxi, China, 19–21 July 2019;
pp. 345–349.

http://doi.org/10.1109/TC.2002.1146704
http://doi.org/10.1109/TC.2017.2703923
http://doi.org/10.1109/12.795125
http://doi.org/10.1109/TCSI.2020.3046783
http://doi.org/10.1109/TCSI.2018.2835822
http://doi.org/10.1109/TCSI.2019.2939720
http://doi.org/10.1109/TVLSI.2019.2959847
http://doi.org/10.1109/PGEC.1965.264080
http://doi.org/10.1109/T-C.1970.222874
http://doi.org/10.1109/TC.2003.1244940
http://doi.org/10.1109/TC.2003.1228517
http://doi.org/10.1109/TVLSI.2008.2003481
http://doi.org/10.1049/iet-cdt.2011.0089
http://doi.org/10.1109/TC.2011.43
http://doi.org/10.1109/TC.2012.82
http://doi.org/10.1109/MSP.2011.942297
http://doi.org/10.1109/12.250608
http://doi.org/10.1109/TVLSI.2019.2919557
http://doi.org/10.1109/12.204786
http://doi.org/10.1109/12.677251
http://doi.org/10.3390/electronics10202533

	Introduction
	QH CORDIC-Based Methodology of XY-Like Functions
	Iterative Formulae of QH CORDIC Methodology
	Range of Convergence of QH CORDIC Methodology
	Validity of Computation for Logarithmic Function and Exponential Function with QH CORDIC

	Hardware Modeling of XY-Like Functions with QH CORDIC
	Preprocessing Module
	QH Module
	Postprocessing Module

	Implementation Results and Comparisons
	ASIC Implementation Results of the Proposed Architecture
	Evalutation and Comparative Analysis
	Computational Correctness
	Word Length
	Timing Analysis and Power Analysis

	Conclusions
	References

