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Abstract: As an important part of the nervous system, the human visual system can provide visual
perception for humans. The research on it is of great significance to improve our understanding
of biological vision and the human brain. Orientation detection, in which visual cortex neurons
respond only to linear stimuli in specific orientations, is an important driving force in computer
vision and biological vision. However, the principle of orientation detection is still unknown. This
paper proposes an orientation detection mechanism based on dendrite calculation of local orientation
detection neurons. We hypothesized the existence of orientation detection neurons that only respond
to specific orientations and designed eight neurons that can detect local orientation information.
These neurons interact with each other based on the nonlinearity of dendrite generation. Then, local
orientation detection neurons are used to extract local orientation information, and global orientation
information is deduced from local orientation information. The effectiveness of the mechanism is
verified by computer simulation, which shows that the machine can perform orientation detection
well in all experiments, regardless of the size, shape, and position of objects. This is consistent with
most known physiological experiments.

Keywords: artificial visual system; orientation detection; dendritic neuron model; convolutional
neural network; noise resistance

1. Introduction

The study of orientation detection mechanism and visual nervous system provides
a strong clue for us to further understand the functional mechanism of the human brain.
David Hubel and Torsten Wiesel discovered directed selection cells in the primary visual
cortex (V1) in 1981 and presented a simple but powerful model of how such directed
selection arises from non-selective thalamic cortical inputs [1,2]. The model has become
a central frame of reference for understanding cortical computing and its underlying
mechanisms [3]. Hubel and Wiese won the Nobel Prize for Medicine for their landmark
discovery of orientational preference and other related work. In this period, they conducted
a series of studies and experiments about cortex cells on rabbits and monkeys and observed
some biological phenomena: (1) The visual cortex cells especially respond to rectangular
light spot and slit; (2) there is a simple type of cortical cells in the visual cortex that only
respond to specific angle stimulation in the receptive field [4,5]. The properties of these
neurons are called orientation selectivity. These neurons can simply be fired to a specific
orientation but with no or little response to other orientations. Orientation detection is one
of the basic functions of the visual system and helps us recognize the environment around
us and make judgments and choices.

However, questions remain unanswered as to how the computations performed in
V1 represent computations performed in many areas of the cerebral cortex, and whether
V1 contains highly specific and unique mechanisms for computing orientation from reti-
nal images [6–8]. Recent studies provide strong, indirect support that dendrites play
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important and possibly crucial roles in visually computing invertebrates [9–18]. The non-
linear interaction of dendrite trees is to use Boolean logic and representation (together),
or (separation), rather than (negation), or soft minimum, even for multiplication, and soft
maximum [19–22]. Experiments also show that a single neocortex pyramidal neuron of
dendrites can categorize linear, inseparable inputs, the calculation of which is traditionally
believed to need a multilayer network [23–25].

Almost 60 years ago, Hubel and Wiesel indeed observed that individual cortical cells
have directional selectivity, that is, individual neurons respond selectively to certain ori-
entations of the bar or grating and not to others. However, the details of these individual
neurons are still unknown [26]. How, to what extent, and by what mechanism does cortical
processing affect orientation choice remain unclear. In this paper, we propose a new quanti-
tative mechanism to explain how a circuit model based on V1 cortical anatomy produces
directional selectivity. We first hypothesized the presence of locally directed detection
neurons in the visual nervous system. Each local orientation detection neuron receives
its photoreceptor input, selectively takes adjacent photoreceptor input, and computes to
respond only to the orientation of the selected adjacent photoreceptor input. Based on the
dendrite neuron model, the local orientation detection neuron is realized and extended to a
multiorientation detection neuron. To demonstrate the effectiveness of our mechanism, we
conducted a series of experiments on a total dataset of 252,000 images of different shapes,
sizes, and positions, moving in different orientations of motion. Computer simulation
shows that the machine can detect the motion orientation well in all experiments.

In “Section 2. Mechanism”, local and global orientation detection mechanisms are
discussed by establishing the dendritic neuron model, and the artificial visual system (AVS)
is proposed. In “Section 3. Experiment”, its validity is verified and compared with CNN.

2. Mechanism
2.1. Dendritic Neuron Model

Artificial neural network (ANN) has been a research hotspot in the field of artificial
intelligence since the 1980s [27,28]. By stimulating brain synaptic connection structure
and information technology processing mechanisms through mathematical learning mod-
els, neural networks play important roles in various fields, such as medical diagnosis,
stock index prediction, and autonomous driving, in which they have shown excellent
performance [29–31].

All of these networks use the traditional McCulloch–Pitts neuron model as their basic
computing unit [32]. However, the McCulloch–Pitts model did not take into account the
nonlinear mechanism of dendrites [33]. At the same time, recent research on dendrites
in neurons plays a key role in the overall calculation, which provides strong support to
future research [34–41]. Koch, Poggio, and Torre proposed that, in the dendrites of retinal
ganglion cells, if activated inhibitory synapses are closer to the cell body than excitatory
synapses, excitatory synapses will be intercepted [42,43]. Thus, the interaction between
synapses on the dendritic branch can be regarded as a logical AND operation. The branch
node can sum up the current coming from the branch, which can be simulated as a logical
OR operation. The outputs of branch nodes are directed to the cell body (soma). When the
signal exceeds the threshold, the cell will be fired and send a signal through its axon to
other neurons. Figure 1a shows an ideal δ cell model. Here, if the inhibition interaction is
described as a NOT gate, the output of the δ cell model can be expressed as follows:

Output = X1X2 + X3X4 + X5X6X2 (1)

where X1, X2, X4, and X6 denote excitatory inputs, whereas X3 and X5 denote inhibitory
inputs. Each input can be simulated as a logical 0 or 1 signal. Therefore, the cell body
(soma) signal will generate a logical 1 signal only in the following three cases: (i) X1 = 1 and
X2 = 1; (ii) X3 = 0 and X4 = 1; (iii) X5 = 0, X6 = 1 and X2 = 1. In addition, the γ cell receives
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signals from the excitatory and inhibitory synapses, which is presented in Figure 1b. The
output of the γ cell model can be described as follows:

Output = X1X2X3 (2)
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Figure 1. Structure of the dendritic neuron model with inhibitory inputs (�) and excitatory inputs
(•): (a) δ cell and (b) γ cell.

2.2. Local Orientation Detection Neuron

In this section, we describe in detail the structure of the neuron and how it detects
orientation. We hypothesized that simple ganglion neurons can provide orientation infor-
mation by detecting light signals in themselves and around them.

For the sake of simplicity, we set the receptive field as a two-dimensional MXN region;
each region corresponds to the smallest visible region [44]. When light hits a receptive
region, the electrical signal is transmitted through its photoreceptors to ganglion cells,
which process various visual information. The input signal can be represented as Xij, where
i and j represent the positions of the two-dimensional receptive field. For the input signal
Xij, we used the current neuron and the eight surrounding regions, and the local orientation
information can be obtained, as presented in Figure 2.
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In this study, the receptive field was set to a 3 × 3 matrix. Thus, the active states of
eight neurons corresponding to four orientation information can be obtained, where 135◦

and 315◦ are 135◦ inclines, 90◦ and 270◦ are vertical, 45◦ and 225◦ are 45◦ inclines, and 0◦

and 180◦ are horizontal. In addition, more orientation information can be achieved with
the increasing size of the receptive field.

2.3. Global Orientation Detection

As mentioned above, locally directed detection neurons interact by performing the
effects of light falling on their receiving fields. Here, we hypothesized that the local
information can be used to determine the global orientation. Therefore, we can measure
the activity intensity of all local orientations of the detected neurons in the receptive
field and make orientation judgments by summarizing the output of neurons in different
orientations.

To measure the activity intensity of local orientational detection neurons in the two-
dimensional receptive field (MXN), we have four possible solutions as follows: (1) One
neuron scheme—it is assumed that there is only one local orientation detection of retinal
ganglion neuron, the neuron scans eight orientations for each location; (2) multiple neuron
scheme—it is assumed that eight different neurons scan eight adjacent positions in differ-
ent orientations to provide local orientation information; (3) neuron array scheme—it is
assumed that a number of non-overlapping neurons slide on the receptive field to provide
orientation information; (4) all-neuron scheme—we assumed that each photoreceptor corre-
sponds to a 3 × 3 receptive field, which has its local orientation in eight positions. Therefore,
in each receptive field, local orientation detection neurons can extract basic orientation
information. Then, the global orientation can be judged by local orientation information.
To understand the mechanism by which the system performs orientational detection, we
used a simple two-dimensional (5 × 5) image with a target angle of 45 degrees, which is
shown in Figure 3. Without losing generality, we used the first solution. Local detection of
retinal ganglion neurons scan each position from (1,1) to (5,5) on the receptive field and
generate local orientation information. As shown in Figure 3, the activation level of 45◦

neurons is the highest, which is consistent with the target.
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2.4. Artificial Visual System (AVS)

The visual system consists of the sensory organs (the eyes), pathways connecting the
visual cortex, and other parts of the central nervous system. In the visual system, local
visual feature detection neurons can extract local orientation information and other basic
local visual features. These features are then combined by subsequent layers to detect
higher-order features. Based on this mechanism, we developed an artificial vision system
(AVS), as shown in Figure 4. Layer 1 neurons (also known as the layer of local feature
detector neurons (LFDNs) correspond to neurons in the V1 region of the cortex, such
as local orientation detection neurons, which extract basic local visual features. These
features are then sent to a subsequent layer (also known as the global feature-detecting
neuron layer) corresponding to the middle temporal (MT) region of the primate brain to
detect higher-order features, for example, the global orientation of an object. Neurons
in this layer can be the sum of the output of neurons in the simple layer 1, such as the
neurons for orientation detection, motion direction detection, motion speed detection, and
binocular vision perception; this can be a one-layer, a two-layer corresponding to V4 and
V6, or a three-layer corresponding to V2, V3, and V5, and even a multilayer network,
for example, for pattern recognition. It is worth noting that AVS is a feedforward neural
network, and any feedforward neural network can be trained by error backpropagation.
The difference between AVS and traditional multilayer neural networks and convolutional
neural networks is that LFDNs of AVS layer 1 can be designed in advance according to
prior knowledge, so in most cases, they do not need to learn. Even if learning is required,
AVS learning can start from a good starting point, which can greatly improve the efficiency
and speed of learning. In addition, the hardware implementation of AVS is simpler and
more efficient than CNN, requiring only simple logical calculations for most applications.
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Figure 4. Artificial visual system (AVS).

3. Experiment

To prove the validity of our proposed mechanism and mechanism-based AVS, we
randomly generated a large number of different 32 × 32 pixel images for testing. We
scanned every pixel of a two-dimensional image through a 3 × 3 window, extracted
the local location information of every pixel of the two-dimensional image, with eight
orientation detection neurons, and judged the global location information according to the
local location information. In the dataset, we generated 10 groups of graphs with random
widths and positions in 4 orientations. In all experiments, the acceptance field was set to
3 × 3, and the step size was set to 1. Experimental parameters shown in Table 1.
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Table 1. Experimental parameters.

Image Pixel Scan Window
Extracted

Orientation
Information

Output
Orientation
Information

Scanning Step

32 × 32 3 × 3 8 4 1

As shown in Figures 5 and 6, the objects with different sizes are both at 135◦ angle.
Figures 7 and 8 are horizontal and vertical, respectively. All activation orientations were
counted, and the orientation with the strongest signal—namely, the activation orientation
with the largest number, was taken as the output result. The experimental results are shown
in Figures 5–8.
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Finally, we proved the universality of this mechanism by detecting the orientation of
objects within different sizes, shapes, and positions in thousands of images, among which
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were six irregular objects, seen in Figure 9, and the bar chart represented in Figure 10,
where the X axis denotes distinct items, and the Y axis represents the activation rates of
four neurons. By testing two irregular objects in different positions and four arrows of
different sizes and shapes, it was found that our proposed mechanism can accurately detect
the orientations of objects with different shapes, positions, length–width ratios, and sizes.
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Furthermore, we also evaluated the performance of the single-layer perceptron AVS for
global orientation detection with a larger image dataset in which objects were sized 2 pixels,
3 pixels, 4 pixels, 8 pixels, 12 pixels, 16 pixels, 32 pixels, and more than 48 pixels, and placed
at different positions with different angles. We repeated each experiment 30 times and
obtained the average as the testing result. The testing result is shown in Table 2. The result
indicates that, regardless of the size and position of the object, its orientation angle can be
accurately recognized by our single-layer perceptron orientation detection system.
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Table 2. Accuracy analysis of orientation detective system.

Object Type
Orientation Angle

0◦ 45◦ 90◦ 135◦

2 pixels

No. of samples 928 841 928 841

Correct numbers 928 841 928 841

Accuracy 100% 100% 100% 100%

3 pixels

No. of samples 960 900 960 900

Correct numbers 960 900 960 900

Accuracy 100% 100% 100% 100%

4 pixels

No. of samples 992 961 992 961

Correct numbers 992 961 992 961

Accuracy 100% 100% 100% 100%

8 pixels

No. of samples 1699 2249 1699 2249

Correct numbers 1699 2249 1699 2249

Accuracy 100% 100% 100% 100%

12 pixels

No. of samples 2379 3411 2379 3411

Correct numbers 2379 3411 2379 3411

Accuracy 100% 100% 100% 100%

16 pixels

No. of samples 1319 1489 1319 1489

Correct numbers 1319 1489 1319 1489

Accuracy 100% 100% 100% 100%

32 pixels

No. of samples 1284 1645 1284 1645

Correct numbers 1284 1645 1284 1645

Accuracy 100% 100% 100% 100%

≥48 pixels

No. of samples 2515 1275 2515 1275

Correct numbers 2515 1275 2515 1275

Accuracy 100% 100% 100% 100%

To compare the global directional detection performance of single-layer perceptron
AVS with other methods, CNN was selected because they have achieved great success
in the detection, segmentation, and recognition of objects in images. The convolutional
neural network used in the experiments is one of the most typical CNN architecture for
handwritten character recognition [45]. It comprises 7 layers: (1) a convolutional layer
with 30 filters with a size of 3 × 3 to produce 30 feature maps with a size of 32 × 32; (2) a
pooling layer with a 2 × 2 maximum pooling; (3) an affine layer with a full net from 8192
(30 × 16 × 16) to hidden layer 100 and then to output layer 4. As the input was a 32 × 32
pixel image, there were a total of 1024 (32 × 32) inputs to the CNN. The convolution layer
produced 30 feature maps of 32 × 32. After a 2 × 2 maximum pooling, 8192 (30 × 16 × 16)
inputs were applied to a fully connected network from 8192 to hidden layer 100 and
then to layer 4. The single-layer perceptron AVS has only two layers: (1) a perceptron
layer with 4 types, and a total of 4096 (4 × 32 × 32) local orientation detective neurons,
which produce 4 local orientation feature maps of 32 × 32; (2) a pooling layer summing
the four local orientation feature maps to four outputs. Compared with CNN, which has
820,004 parameters, the single-layer perceptron AVS has only 12 (4 × 3) parameters for local
orientation detective neurons and saves a large portion of parameters and computation
cost.
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We trained the CNN in global orientation detection. The data used to train and test
the systems were 15,000 and 5000, respectively. The sizes of objects were from 2 pixels
to 256 pixels; the shapes of objects were all different, and objects were placed randomly.
Learning was performed with back-propagation under Adam optimizer. Figure 11 shows
the learning results of the loss and accuracy of the CNN. From the learning curves in
Figure 11, we can see that CNN learned the orientation detection well and reached only
99.997% identification accuracy; that is to say, CNN performed very well, compared with
the single-layer perceptron AVS’s 100% accuracy without training. Although for most
applications, the single-layer perceptron AVS does not need learning, the single-layer
perceptron system is a learnable network and has absolute advantages over CNN in the
following aspects: (1) The parameters that need to be trained are much fewer than CNN,
which is becoming deeper and deeper, and millions of parameters are calculated and
optimized by a machine; (2) the AVS model can learn from a very good initial values, which
can be obtained from our prior knowledge to the systems and tasks, for example, how many
neurons and what kind of neurons are needed, while CNN can only start from completely
random initial values; (3) the single-layer perceptron AVS is guaranteed to converge within
an upper bound on the number of times [45], while CNN usually has considerable costs
of learning time and is very easy to fall into the local minimum; (4) more importantly,
learning of the single-layer perceptron AVS is controllable, and its learning results are
understandable and explainable, while learning of CNN is performed completely in a black
box, and its learning results are not explainable and not transparent, and their predictions
are not traceable by humans.
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In addition, since CNN requires hundreds of layers per turn, whereas single-layer
perceptron AVS requires only two layers, the hardware implementation of single-perceptron
AVS is obviously much simpler and more efficient than CNN. The comparisons of CNN
and the single-layer perceptron AVS are summarized in Table 3.

Table 3. Comparison between CNN and the single-layer perceptron AVS.

Layers Parameters Learning Cost Reasoning Bio-Soundness Noise
Resistance

CNN >7 820,004 High Black Box Low Low

AVS 2 12 No Reasonable High High

Finally, in order to compare the noise resistance of both CNN and the single-layer
perceptron AVS, we added noises to both systems and observed their noise resistance.
Table 4 summarizes the noise resistance of both CNN and the single-layer perceptron
AVS. From the table, we can see that if a 5% noise was added, CNN’s identification
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accuracy dropped to 90%, and AVS dropped to 96%. Additionally, as the number of noises
increased to 30%, CNN’s identification accuracy would drop dramatically even to 35%. On
the contrary, the single-layer perceptron system could keep 43% identification accuracy,
showing superior noise resistance.

Table 4. Comparison of noise resistance of both CNN and the single-layer perceptron AVS.

NOISES 0% 5% 10% 15% 20% 25% 30%

CNN 99.887% 90.783% 74.441% 59.108% 47.547% 39.866% 35.343%

AVS 100% 96.571% 85.562% 71.490% 59.716% 49.924% 43.452%

This paper introduced an orientation detection mechanism that can be divided into
two aspects—local orientation detection neuron and global orientation detection. In the
local receptive field, local orientation detection neurons can extract basic orientation infor-
mation. The proposed mechanism has many desirable characteristics. It can be used in any
orientation detection system and appears to be part of the human orientation detection
system. This mechanism may be used as a framework for understanding many other
fundamental phenomena in visual perception, such as orientational perception, motion
speed perception, and binocular visual perception, as shown in Table 5.

Table 5. Table for notations.
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Although the mechanism is based on a highly simplified model and ignores some
details about the visual system and our brain function, it indeed provides a mechanism
to quantitatively explain many known features in the neurobiology of visual phenomena,
which may lead to explaining aspects of neuroanatomy and neurophysiology, to review
their observations and find the corresponding structure and function. Conversely, advances
in the biological sciences may also lead to improved and elaborate mechanisms.

4. Conclusions

In this paper, we proposed a mechanism for global orientation detection by introducing
local localization detection neurons to calculate local localization and introduced a new
orientation detection mechanism based on a single perceptron AVS. Given that neurons can
only perform simple neural calculations, we assumed that some neurons can only locally
detect specific directions of objects. We introduced the idea of local acceptance fields into our
mechanism, where each local information is collected by a single local localization detection
neuron. According to the number of activated directional detection neurons, the overall
positioning angle of the object was determined by the most activated directional detection
neurons. We used a single-layer perceptron to implement the global directional detection
system, and the effectiveness of the system was proved by many computer experiments.
Experimental results showed that it has good recognition accuracy regardless of the size,
position, and direction of the object. This mechanism and mechanism-based artificial
AVS have many desirable properties that can be used in any artificial visual perception
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system. They seem to be important parts of the human visual system. The proposed
mechanism and mechanism-based AVS can serve as frameworks for understanding many
other fundamental phenomena in visual perception, including orientation perception,
motion direction perception, and perceptual motion speed, as well as the perception of
binocular vision. In addition, the proposed mechanism and mechanism-based AVS provide
functional frameworks for visual computing in the primary visual cortex, understanding
how visual inputs are segmented and reassembled at different stages of the visual system,
and how functions are divided between different elements of the visual circuit. The
mechanism by which the primary visual cortex acts as a sensory system could also help us
understand how other sensory systems such as smell, taste, and touch are encoded at the
level of cortical circuits. Although the proposed mechanism and mechanism-based AVS rely
on a highly simplified model, ignoring some of the known functions of the visual system
with lack of detailed information, it provides a mechanism for quantitative interpretation
of many known neurobiological visual phenomena and experiments, and also may help to
explain neuroanatomy and neurophysiology, by reviewing their observations or performing
some new experiments to find the corresponding structure and function. Conversely, future
advances in biological science could also help us further modify its mechanisms and
mechanism-based AVS. Finally, to prove the superiority of single-layer perceptron AVS, we
compared the single-layer perceptron AVS with traditional convolution neural network
(CNN) in terms of the performance of directional detection task and found that the single-
layer perceptron AVS entirely surpass CNN in recognition accuracy, noise immunity, and
computation and learning cost, hardware implementation and reasoning, and biological
reliability. Therefore, we believe that ASV is likely to replace CNN shortly. Subsequent
research will focus on improving the application field while keeping the model simple, and
adding color recognition and gray recognition, further simulating binoculars for 3D image
recognition, to provide a mechanism to quantitatively explain many known neurobiological
visual phenomena and experiments.
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