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Abstract: Adaptation in time-triggered systems can be motivated by energy efficiency, fault recovery,
and changing environmental conditions. Adaptation in time-triggered systems is achieved by
preserving temporal predictability through metascheduling techniques. Nevertheless, utilising
existing metascheduling schemes for time-triggered network-on-chip architectures poses design time
computation and run-time storage challenges for adaptation using the resulting schedules. In this
work, an algorithm for path reconvergence in a multi-schedule graph, enabled by a reconvergence
horizon, is presented to manage the state-space explosion problem resulting from an increase in
the number of scenarios required for adaptation. A meta-scheduler invokes a genetic algorithm to
solve a new scheduling problem for each adaptation scenario, resulting in a multi-schedule graph.
Finally, repeated nodes of the multi-schedule graph are merged, and further exploration of paths is
terminated. The proposed algorithm is evaluated using various application model sizes and different
horizon configurations. Results show up to 56% reduction of schedules necessary for adaptation
to 10 context events, with the reconvergence horizon set to 50 time units. Furthermore, 10 jobs
with 10 slack events and a horizon of 40 ticks result in a 23% average sleep time for energy savings.
Furthermore, the results demonstrate the reduction in the state-space size while showing the trade-off
between the size of the reconvergence horizon and the number of nodes of the multi-schedule graph.

Keywords: genetic algorithm; metascheduler; network-on-chip; MPSoC; adaptation; time-triggered
systems

1. Introduction

The processing capacity of recent VLSI technology has considerably grown as several
Processing Elements (PEs), tensor cores, memory elements and Intellectual Property (IP)
cores are integrated onto a single chip. As a result, designers have shifted focus from
traditional bus-based architectures where the different chip components are connected
directly via dedicated links (point-to-point) to a Network-on-Chip (NoC)-based architec-
ture where a switch-based network is used to route communication traffic between chip
components. As more resources are added, the bus links become congested, to which
scaling becomes a challenge. On the other hand, a Network-on-Chip indirectly connects
chip components via a network of switches where each component interfaces the network
through a network interface, combining the benefits of busses and point-to-point links.
This architecture enables the NoC to be scaled by adding switches to the network.

Several application domains such as cloud computing, avionics, and multimedia now
use NoC-based multi-core platforms [1]. Fault tolerance at a lower cost than active redun-
dancy, energy efficiency, and adaptation to changing environmental conditions necessitates
adaptation services to accommodate run-time changes. These run-time changes may arise
from an execution slack (slack events), failures in system resources (failure events) or from
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a change in an operational mode requiring different application services [2]. These run
time events are referred to in this work as context events. The adaptation to context events
could be motivated by efforts to increase the reliability of a system through fault recovery.
It could also be motivated by ensuring a system’s energy efficiency by providing an energy
management service.

Current research such as in [3–5] promote time-triggered NoCs to fulfil determinism
and safety requirements in time-triggered systems. However, the NoC-based platform
requires a scheduling strategy for message exchange between connected PEs. Apart from
using dynamic scheduling approaches, which is not suitable for safety-critical applications
due to non-determinism, several scheduling-based approaches such as static scheduling
have addressed run time changes via a hybrid approach. Static scheduling does not cover
run time changes, but multiple potential allocation solutions can be obtained for several
context events at design time. The context of hybrid scheduling discussed in this work
is such that schedule changes are made at run time from multiple pre-computed static
scheduling solutions obtained at design time, henceforth referred to as metascheduling.
Metascheduling is also a solution to optimising pre-computed schedules. The pre-computed
schedules are computed with worst-case execution times and accommodate other scenarios
such as slack events. Therefore, the metascheduling approach provides a safe adaptation
strategy as the run time changes involve transitions to an already verified schedule state.

Prior work has addressed computing a Multi-Schedule Graph (MSG) for time-triggered
systems [6]. However, the increase in context events results in the exponential growth of the
MSG. The MSG is a directed acyclic graph (DAG) of time-triggered schedules which form
the vertices and context events that occupy the edges. The metascheduler pre-computes
the MSG at design time using an application, platform and context model. A significant
concern of the MSG is state-space explosion [2]. The exponential growth of the MSG caused
by the increasing number of context events results in the state-space explosion. In addition,
embedded devices often have limited storage space, which is challenging considering the
memory required to store the generated schedules.

This work contributes the following.

• It introduces a Genetic Algorithm (GA)-based metascheduler for time-triggered NoC-
based architectures.

• It presents a solution to combat the state-space explosion problem in the MSG using a
reconvergence of paths algorithm.

• It implements a reconvergence horizon to maintain schedule generation within config-
ured bounds.

• It further evaluates the reconvergence of paths algorithm using different input model
sizes and configurations for the reconvergence horizon.

The remainder of this paper is organised as follows. Section 2 discusses the related
work and Section 3 describes the input and output models. Section 4 discusses the GA-based
metascheduling approach to manage state-space explosion. Experiments are discussed in
Section 5 and results are presented. Finally, Section 6 concludes this paper.

2. Related Work

Metascheduling exploits the benefit of determinism in static scheduling and the
flexibility of dynamic scheduling to achieve adaptation and efficiency. This scheduling
technique is widely used in research for multi-core embedded systems to achieve reliability,
efficiency, performance, fault tolerance, and lifetime extension.

Several scheduling algorithms have been used to generate task mapping solutions
at design time. In [6], mixed-integer quadratic programming (MIQP) optimisation algo-
rithm is used to generate schedules for time-triggered systems. Individual schedules are
computed for relevant combinations of context events by applying application, platform,
schedule, and context models to a metascheduler. After which, dynamic frequency scaling
of hardware resources is used to optimise schedules for energy efficiency. This work did
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not consider the exponential growth of the schedule state space while finding optimal
schedules with maximum energy efficiency.

In [7], a quantum-inspired evolutionary algorithm is used for static mapping of tasks
to processing elements. The goal is to maximise the throughput of the target application.
This work determined a processor-to-processor mapping, and in the event of failure, the
variation in task mappings for processor sets are used for migration. The generated
schedules are encoded in a mapping table to manage the memory size. The temporal
allocations of tasks are not considered. However, to avoid resource contention without
dynamic arbitration, deadline misses, and race conditions, spatial and temporal allocations
of tasks need to be considered, which is essential for time-triggered NoC. Furthermore, the
size of the state space needed for adaptation to context events was not considered.

There is a linear relationship between the number of hardware resources or tasks and
potential context events which could occur. In turn, computing a schedule for every context
event increases the size of the MSG exponentially. With reconvergence of paths through a
fixed reconvergence horizon, this relationship is polynomial [8].

In [9], an adaptive genetic algorithm is exploited for static scheduling such that
physical process variations are considered for task mapping for a range of chips to generate
schedules. An optimal schedule is then selected and mapped to the physical cores at run
time. However, context events were not considered, such as the failure of these chips or
energy efficiency, which is relevant for safety-critical systems.

A dark silicon/energy-aware core mapping technique is used for core mapping of
application islands [10]. In this approach, mapping pools are combined into clusters and
explored in a Pareto set, balancing energy with reliability. These clusters are then mapped
to tiles on the die. A reliability prediction manager module within each NoC router is used
at run time to toggle protection for reliability and energy efficiency. This work did not
cover failures in hardware resources such as processing elements.

A population-based incremental learning algorithm is used in [11] for task mapping
and scheduling at design time. The algorithm is also used to generate remapping schemas
given failure events at run time. This work focused on the computational time without
considering the size of the schedule state space.

The analysis of throughput and task-migration overhead in a Pareto space in response
to different fault scenarios is used to construct a minimum-cost task mapping problem
in [12]. An integer linear programming algorithm is then used to solve the task mapping
problem. Finally, mappings are encoded in a look-up table and used to migrate tasks on
fault occurrence at run time. In contrast, our work focuses on managing the number of
states generated due to context events.

Most of the work discussed above predominantly solve task mapping problems
without temporal allocation. In this work, a GA-based scheduler is used to compute
schedules for adaptation at run time. It gives temporal, spatial, and contextual mapping
solutions for time-triggered NoC-based multi-core platforms. A job allocation and job order
problem is constructed in which GA is used to solve this problem while minimising the
makespan of the schedule. The GA-metascheduler results in the generation of the MSG.

3. System Model
3.1. Input Models

To describe the scheduling problem of the metascheduler, we define an input model
which consists of an application, platform and context model. The application model is a
DAG, G(V , E), where a vertex, ji ∈ V represents job i, and the edge mik ∈ E is a message
m representing the communication between the jobs ji, jk ∈ V . Figure 1 illustrates an
application model consisting of 10 jobs and 10 messages. The jobs are labelled 0–9 and
messages a–j. A job ji ∈ V has a computational cost which is the worst-case execution time
(wceti), and each message mik ∈ E has a message size msik.
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Figure 1. Illustration of an application model.

The platform model describes the computation and communication resources that are
used to execute the application model. It is an undirected graph P(N ,L) where N is a
set of routers and cores in the NoC topology, and L represents a set of bi-directional links
connecting them. A path through P from a core esi to esk ∈ N , is a sequence 〈ri, . . . , rk, esk〉
of vertices connected by edges lik ∈ L for i = 1, 2, . . . , k as shown in Figure 2. In this figure,
the cores esi ∈ N are indicated with the symbol es and routers with r. Two routers ri,
rk ∈ N are linked by an edge lik ∈ L. The number of hops of a path is the number of
vertices in the path.

Figure 2. Physical structure of a platform model.

The context model is a set of context events C(S ,F ), where S is a set of slack events slj,t
and F , a set of failure events ft. A slack event slj,t ∈ S of ji is the difference between the
worst case execution time wcetj and execution time etj of ji at time t, given by Equation (1).
A failure event ft ∈ F of node esi, ri or link lik is modelled as a permanent fault of a
computation or communication resource. However, context events are constrained to
independent time steps when observed through a calendar of events. Some events are
mutually exclusive and a schedule is computed for each context event.

slj,t = wcetj − etj. (1)
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3.2. Output Model

The metascheduler generates an MSG, which is also a DAG of linked schedules. The
schedule model describes the temporal and spatial allocation of jobs and messages such
that resource restrictions and precedence constraints are observed. The schedules are
non-preemptive static schedules that map the application model to the platform model
(map : G 7→ P), including the allocation of start time stji to job ji. The start time stjk of job
jk with preceding job ji is given by Equation (2). Where t f is the finish time of job ji, which
is equal to the arrival time of message mik at core esk.

stjk(esk) ≥ t f (mik, ji 7→ esi, esk). (2)

The communication cost of message mik is given by Equation (3).

mCost = dmsik/packetsizee ∗ nHops ∗ hoptime. (3)

where nHops is the number of hops between esi and esk, and hoptime is the duration of
one hop.

For every message mik ∈ E , ji ∈ precedence(jk) between ji and jk, a message path
through the platform model P is computed. A message path 〈ri, . . . , rk, esk〉 that includes
ji 7→ esi and jk 7→ esk is described in the schedule, which is the shortest path between esi
and esk. To avoid resource contention, two messages with intersecting paths at a given
time instant is handled via a priority scheme. A lower priority message is delayed for the
transmission of a higher priority message.

4. Proposed Approach

A metascheduler computes an MSG at design time using the input models. The
metascheduler repeatedly invokes a GA to solve a scheduling problem constructed by the
metascheduler and computes the MSG. A detailed description of GA can be seen in [13].
The input to the GA-based scheduler is an application and platform model, from which a
schedule is computed, fulfilling resource restrictions and precedence constraints. Several
decision variables are considered in computing the schedule. These decision variables
include job allocation map : V 7→ P , job start stjk(esk), message paths 〈ri, . . . , rk, esk〉, and
message injection times.

Initially, a base schedule S0 is computed from an initial G and P , assuming no context
event. After which the metascheduler applies the earliest event e ∈ C. This results in
the modification of G ∀ slj,t ∈ S or P ∀ ft ∈ F . In each case, the metascheduler invokes
the GA, obtains a new schedule Si and adds Si to MSG. The context event e that results
in Si is represented as the corresponding edge in the MSG. The MSG computation also
applies to mutually exclusive events. In this case, two slack events slji ,t1 and slji ,t2 are
mutually exclusive as they both cannot occur within a time-triggered hyper period. If slji ,t1
represents 50% slack and slji ,t2 represents 20% slack, when a 50% slack occurs, a 20% slack
event cannot occur for the same job within the same hyper period.

In the following subsection, the adaptation of the GA algorithm to solve time-triggered
scheduling problems and the algorithm for the metascheduler are described.

4.1. Genetic Algorithm

The genetic algorithm (GA) is a search algorithm employing the principles of natural
evolution to optimise a population of genomes. The initial population of genomes Pop1 is
randomly generated from an initial genome prototype, and the size of Pop1 is a non-zero
natural number. A solution to the scheduling problem is represented with a genome,
which consists of the job allocation map : V 7→ P and the priority ordering of the jobs.
Initially, a population of genomes is created, after which the population is evaluated, and
the fittest genomes are selected for crossover and mutation to generate offspring and a
new population.
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Algorithm 1 describes the GA scheduler, adapted for a time-triggered NoC architecture
(TTNoC). The algorithm uses the application model, platform model and a configuration
file for the GA. The configuration file specifies the GA parameters, population size popsz,
number of generation ngen, probability of mutation pmut, and crossover pcross. First, a
prototype genome is constructed using G and P . Next, the prototype genome is encoded
with two sets of genes, job allocations and job weights. After which a population of genomes
of size n is initialised from the prototype, where n = popsz. The Evolve GA function is
then invoked, wherein the population is evaluated to obtain its fitness value, and the best
genomes are retained in the next population. Each new generation is repeatedly evolved
until a stop criterion is reached, after which a schedule from the fittest genome is converted
and given as the optimal schedule.

Algorithm 1: Genetic Algorithm Adaptation for TTNoC Architecture.
Data: GA config = {popsz, ngen, pmut, pcross}, prototype
Input: G(V , E), P(N ,L), GA config
Output: Single optimal schedule Sm

1 Function Evolve GA(){
2 Evaluate Popi;
3 Select parents;
4 Crossover parents, produce o f f spring;
5 Mutate o f f spring;
6 Evaluate o f f spring;
7 Insert o f f spring in Popk
8 if termination criteria then
9 Transform f ittest genome to valid schedule;

10 return valid schedule
11 else
12 Evolve GA
13 end if
14 }
15 begin
16 for ji ∈ V do
17 Add genealloc = es ∈ N to prototype
18 end for
19 for ji ∈ V do
20 Add geneweight = [0, n− 1] to prototype
21 end for
22 Initialise Pop1 = {genome0, genome1, · · ·, genomen}; from prototype
23 Evolve GA
24 end

Schedules are constructed from the genomes in the population using the genes for
job allocation map : V 7→ P and the priority order. The objective score of each genome
is the makespan of the schedule, which is used to compute the fitness value used by
the GA for selection. The objective of the genetic algorithm is then to minimise this
makespan, and the fittest genome at termination is chosen as the optimal solution. For a
genome genomek ∈ Popi, its fitness is determined by Equation (4), where i indicates the
generation number.

Fitgenome = Makespanmax −Makespangenome. (4)

where Makespanmax is the largest makespan of Popi, and Makespangenome is the makespan
of genomek obtained by transforming genomek to a schedule.

Crossover and Mutation are operators employed by the GA to evolve any Popi. These
operators create new genomes from existing genomes. In the case of crossover, two parents
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are selected from Popi and offspring created for Popk by selecting a point in the parents
where genes are swapped, creating the offspring. When selecting a parent from Popi,
genomes with higher Fitgenome have a higher probability of selection. A probability of
crossover is set where two offspring are created from two parents. The probability of
mutation is less than that for crossover. The mutation operator is employed to avoid
convergence of the search space at local minima. Unlike crossover, in applying mutation, a
genome is copied from Popi to Popk, and a random gene is changed in the copied genome.

4.2. Metascheduler with Reconvergence of Paths in MSG

The metascheduler is a tool to compute schedules used by time-triggered NoC-based
systems for adaptation to different context events. In Figure 3, an example of a time-
triggered schedule is shown where its makespan is taken as the hyper-period. The time-
triggered schedule has a makespan of 110-time units for ten jobs on four cores. Jobs J0 − J9
are assigned to cores ES1 − ES4, and arrows between jobs are messages representing job
dependencies. A job allocation to a core is a time slot reserved for the execution of the
job. The metascheduler computes schedules for all possible sequences of context events
(e1, e2, e3) within a hyper-period at design time. The schedules for a time-time triggered
system are established a priori and repeatedly deployed after each hyper-period in a
time-triggered system during runtime.

Figure 3. Example of a time-triggered schedule.

The proposed metascheduler performs adaptation at any particular instant in the
schedule time-step, which is associated with context events e ∈ C. For instance, at a given
time step t, a slack event may exist for a particular job in which a new schedule is computed
to adapt to the slack event while fixing events that have been considered in the past. These
new schedules are computed by the metascheduler, which results in DAG as illustrated
in Figure 4 to cover the occurrence of the given context events. At the deployment and
operation of the time-triggered NoC-based system, the potential switching of schedules
upon the occurrence of a context event is based on the MSG. Potential state traces in the
MSG may differ in each hyper-period according to the occurrence of the context events. As
a result, the number of schedules computed grows exponentially with increasing context
events. It is thus a challenge for time-triggered NoC-based systems to utilise and store
a reasonably sized number of schedules for adaptation at run time. Algorithm 2 is an
algorithm to set a reconvergence horizon and execute the reconvergence of paths to solve
the problem of the exponential growth of MSG.
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Figure 4. An example of a Multischedule Graph with reconverged path.

Algorithm 2: GA-based Metascheduler with reconvergence of paths in MSG.
Data: GA config = {popsz, ngen, pmut, pcross}, prototype
Input: G(V , E), P(N ,L), C(S ,F ), GA config
Output: Multi-Schedule Graph

1 Function metaschedule(G,P , Cal, node){
2 if Cal = {} then
3 return
4 end if
5 Take earliest ei ← Cal;
6 Cal

′
= Remove ei from Cal;

7 metaschedule(G,P , Cal
′
, node);

8 (G ′ ,P ′) = apply_event(ei,G,P);
9 Set horizon((ei, ti), tk);

10 Fix decision variables ∈ prototype;
11 Si = Invoke Genetic Algorithm(G ′ ,P ′);
12 if Si ∈ MSG then
13 Merge node and path
14 return
15 else
16 Add Si to MSG as new_node;
17 Create edge from new_node to Sk;
18 Cal

′′
= update_Cal(ei, Si, Cal

′
);

19 metaschedule(G ′ ,P ′ , Cal
′′
, new_node);

20 end if
21 }
22 begin
23 S0 = Invoke Genetic Algorithm (G, P);
24 Create MSG;
25 Add S0 to MSG as root_node;
26 Cal = create_cal(S0, C);
27 metaschedule(G,P , Cal, root_node);
28 return Multi-Schedule Graph
29 end
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By reconvergence of path, the size of the multi-schedule state-space is reduced by
merging paths that are precisely the same as any path already computed in the MSG. Fur-
thermore, this approach eliminates redundant schedules that appear on different schedule
tree paths by merging the transitions (see Line 13 in Algorithm 2). In setting the reconver-
gence horizon, new schedules computed by the metascheduler may only differ from the
previous schedule within a limited time interval after the consideration of a context event.
Thus, the metascheduler avoids state-space explosion by applying the reconvergence of
paths in the MSG.

An MSG is generated using the metascheduler by invoking the GA repeatedly. The ap-
plication of the GA to a time-triggered scheduling problem is implemented in Algorithm 1.
The metascheduling algorithm repeatedly invokes Algorithm 1. In Algorithm 2, G and P
are initially used to generate a base schedule S0 which is added as the root node of the
MSG. A calendar of events Cal(ei, t) is established from S0 and C, where all events at each
time-step t is defined from S0. Each event ei ∈ Cal is computed such that they are selected
as discrete time steps in the metascheduling process.

The metascheduler implements a recursive function to traverse each time step. In each
recursion of the metascheduler, the earliest context event is selected and removed from the
calendar and used to modify G in the case of slack events slj,t and P for resource failure fes,t.
Algorithm 1 is then invoked to solve the new scheduling problem. The resulting schedule
is added to the MSG, and a path from the current node is defined by event ei. Finally, the
calendar Cal is again updated, and the metaschedule function is recursively invoked.

Metaschedules are generated recursively using G, P , Si and Cal, where ∀ ei ∈ Cal,
a reconvergence horizon is defined. The horizon is a time interval after event ei, t in a
schedule where the metascheduler is permitted to construct a new scheduling problem
by modifying G or P . The decision variables outside the horizon are fixed, enabling the
reconvergence of paths in the MSG. In each case, the event ei is removed from Cal, and the
GA is invoked to solve the new scheduling problem. When a node is generated at each
point in the metascheduler, it is checked against existing nodes in the MSG. In cases where
duplicate schedules known as Deja Vu nodes exist in the MSG, the nodes are merged, and
no further exploration is done. For each path in the MSG, non-mutually exclusive context
events are explored, resulting in a sequence of events leading to multiple state traces. This
approach leads to multiple branching of the MSG as shown in Figure 4.

5. Results and Discussions
5.1. Architectures and Applications

The GA-scheduler is implemented using the GAlib library [14] in C++. It uses the
application and platform models to compute schedules, which are evaluated based on the
makespan to optimise the job priorities and the job allocation. Experiments are conducted
using the OMNI computing cluster of the University of Siegen for 10, 20, 40, 60, 80, and
100 jobs and reconvergence horizons set to 10, 20, 30, 40, and 50-time units. The OMNI
computing cluster has 439 regular compute nodes, operated with Linux. Each regular
node comprises two AMD EPYC 7452 CPU processors, with 32 cores per EPYC CPU and a
2.35–3.35 GHz CPU frequency. Each MSG is computed independently on a regular node,
and results are compared.

The platform model is a 3x3 mesh NoC with homogeneous cores. Job graphs and
platform models are generated using the SNAP library [15]. The Stanford Network Analy-
sis Platform Library (SNAP Library) is a general-purpose, high-performance library that
creates compact graph representations. This library is used to generate application models
used to evaluate the metascheduler. Application models with various sizes were gener-
ated based on a random forest-fire model. The number of nodes, edges, indegrees, and
outdegrees are specified in each case.

A total of six context models were generated with 0, 3, 5, 7, 9, and 10 context events
(slack) and used to generate MSGs with reconvergence of paths. For each context model, a
slack event is generated for a random job in the application model. The objective of further
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experiments is to evaluate the impact of the reconvergence horizon and reconvergence of
paths algorithm on the MSG state-space.

5.2. Selection of Genetic Algorithm Parameters

GA parameters were chosen based on a large population, motivated by high search
space efficiency and a slow convergence rate. Very low probabilities of crossover and
mutation normally prevent a random search by the GA. To find optimised parameters for
the GA, popsz, ngen, pmut, pcross were initialised to 100, 1000, 0.01, and 0.4, respectively. A
parameter tuning approach [16] was used to generate schedules repeatedly, and parameters
resulting in schedules with the shortest average makespan was chosen to configure the GA,
as presented in Table 1. The Application Model used to tune the GA parameters is a DAG
of 100 jobs and 120 messages between the jobs. The platform model is a 3 × 3 mesh NoC
with homogeneous cores. The AM has a maximum of 10 indegrees and outdegrees, with
WCET of jobs ranging from 8 to 19 ticks. It is a challenge to optimise all tuning parameters;
however, most researchers fix pmut to 0.01, and pcross to 0.4 [16]. Such parameter tuning
with fixed mutation and crossover rates was applied to the metascheduler to minimise
computational time while obtaining the least average makespan. The GA is then rigidly
configured and the algorithm run using these parameters.

Table 1. Parameter tuning with fixed Mutation and crossover rates.

Generation Population Computational Time (s) Makespan

1000 100 31 444
1000 100 31 466
1000 100 32 457
1000 100 31 459
1000 100 32 427

1000 500 160 550
1000 500 162 508
1000 500 160 505
1000 500 160 485
1000 500 161 476

3000 100 96 508
3000 100 94 484
3000 100 93 493
3000 100 95 427
3000 100 93 436

3000 500 474 458
3000 500 474 450
3000 500 473 463
3000 500 476 544
3000 500 483 445

5000 100 158 439
5000 100 160 443
5000 100 158 478
5000 100 159 453
5000 100 158 449

5000 200 326 419
5000 200 322 385
5000 200 321 387
5000 200 321 410
5000 200 325 427
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From Table 1, a population of 200 and generation of 5000 results in schedules with
the least makespan with low variations and adequate computational time, compared
with other parameters. The proposed metascheduler computes multiple schedules for
adaptation to context events. Child schedules differ from parent schedules only within
the reconvergence horizon, so the schedules generated would benefit from parents with
minimal makespan and variation. A population size of 100 with 1000 generations has a
similar makespan as a population of 100 with 3000 generations, but computed in less time.
The proposed metascheduler aims first to generate an optimal base schedule then minimise
the computational time for child schedules. Decision variables outside the reconvergence
horizon are fixed from parent to child, and that the child may only differ from the parent
within the horizon. The GA is then initially configured with the number of generations
set to 5000 and the population size set to 200 to obtain the base schedule. The number
of generations for the GA is then set to 1000, and the population size to 100 to compute
child schedules. Finally, the probability of mutation and crossover is fixed to 0.01 and 0.4,
respectively, for the GA.

5.3. Evaluation of State Space Reduction

Figures 5–10 show plots of the MSG size against the number of context events for 100,
80, 60, 40, 20, and 10 jobs, respectively. All six plots show that the MSG size is reduced as the
reconvergence of paths is applied. The reduction in MSG size is attained while maintaining
a valid schedule. The makespan is maintained in each case by fixing the decision variables
before and after the reconvergence horizon. The red plot in all Figures 5–10 is the same plot
that shows the scenario when reconvergence of paths is not applied. It is seen that when
ten context events are considered, a total of 1024 schedules are computed for the MSG. As
the number of context events is increased from 0 to 10, MSG sizes increase exponentially.
Existing metascheduling techniques [2,6] highlights this exponential growth of 2n, where
n is the number of context events considered. In [2], a reconvergence of paths in MSG
is proposed but not evaluated. However, this work extends the earlier work in [2] by
implementing and evaluating the reconvergence of paths algorithm for a metascheduler.
However, the size of the MSG is reduced in all six cases (Figures 5–10) as reconvergence
of paths is applied. This reduction can be seen in the plots attributed to different context
events, which are all the plots other than the red plots in Figures 5–10.
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Figure 5. MSG with reconvergence for 100 jobs.
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Figure 6. MSG with reconvergence for 80 jobs.
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Figure 7. MSG with reconvergence for 60 jobs.
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Figure 8. MSG with reconvergence for 40 jobs.
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Figure 9. MSG with reconvergence for 20 jobs.
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Figure 10. MSG with reconvergence for 10 jobs.

In Figures 7 and 10, the reduction of the MSG is proportional to the reduction of
the horizon in a consistent way across all context models. However, this is not the case
in Figures 5, 6, 8 and 9. In Figure 5, the plot for reconvergence horizon equal to 10 and
20 both present an output MSG size equal to 56 for 10 context events, respectively. The
reconvergence of paths algorithm merges identical nodes when generated and terminates
further exploration of the paths. This process results in cases where an increase in context
events results in MSGs with smaller sizes if more “Deja Vu” nodes exist in the state-space,
as observed by the green curve in Figure 5. In this case, for a horizon of 20, increasing
context events from 9 to 10 results in an MSG of smaller size. Some reversed order in
Figure 6 is also observed for 10 context events and horizon set to 40, which results in an
MSG size of 550 being higher than when the horizon is set to 50 with MSG size equal to 446.

These results are based on the complex interactions that exists between adjusting a hori-
zon that cuts across jobs with varying WCETs and changing scenarios that steer the paths in
the MSG. Therefore, scenarios could exist where horizons with higher value results to lower
MSG sizes than horizons with lower values, if in the computed paths more Deja Vu nodes ex-
ist. This scenarios can also be seen in Figure 8 for the pair ((horizon = 30, number of context
event = 9, MSG size = 198), (horizon = 40, number of context event = 9, MSG size = 154)) and
Figure 9 in pair ((horizon = 30, number of context event = 10, MSG size = 406), (horizon = 40,
number of context event = 10, MSG size = 323)).
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In all plots, Figures 5–10, it can be observed that for 10 events and a set horizon
of 50 time units, there is at least a 22% reduction in MSG size (job size (100)= 24%,
job size (80) = 56%, job size (60) = 50%, job size (40) = 47%, job size (20) = 22%,
job size (10) = 45%).

5.4. State-Space Exploration Time

Algorithm 2 aims to first compute schedules with minimal makespan in the least
computational time. In such computational time, Algorithm 2 generates an MSG for
adaptation to a CM. Equation (5) gives an estimate of the computational time of a schedule
computed for the MSG. The second is to fix past and future scheduling decisions outside
the reconvergence horizon. Jobs in the parent node that start before or after the horizon
have a fixed start time and allocation. Finally, Algorithm 2 manages the state space by
merging identical nodes and paths (Deja Vu) as they are generated and added to the MSG.
Deja Vu nodes are decided by considering future events in the current calendar of events at
the instant such node is generated to those of nodes in the MSG at the same time instant.

Computational time per schedule =
MSG computational time

MSG size
(5)

Table 2 shows the estimated computational time per schedule of Algorithm 2 refer-
enced against the population-based incremental learning (PBIL) optimisation technique [11].
From the table, Algorithm 2 computes schedules in lower computational times than PBIL.
Algorithm 2 minimises the average computational time per schedule by a minimum of 73%.

Table 2. Computational time (s) of existing and proposed metascheduling technique.

Setup
Scenario 1 Scenario 2

PBIL Proposed PBIL Proposed

AM Size 20 20 35 40
NoC Architecture 3 × 3 3 × 3 3 × 3 3 × 3

Processors 9 4 9 4
Computational Time 30 8 110 22

Figure 11 reports the computational times for MSG generation of Algorithm 2 with
design parameters described in Sections 5.2 and 5.3. MSG computational times are directly
proportional to the average schedule generation time and the number of nodes in the MSG.
However, as the number of scenarios increases, there is an exponential increase in the
MSG size [2,6,8,11]. Existing techniques do not solve this exponential growth. Algorithm 2
computes MSGs within sufficient time, even for 100 jobs allocated to 4 homogeneous cores.

5.5. Sleep Time for Energy Saving

Sleep time is a time interval where no job is scheduled on any core. In such case, energy
management techniques and services can be applied for energy savings. An example
would be turning off an entire node. In each application of Algorithm 2, jobs after the
reconvergence horizon are fixed and jobs within the horizon are optimised to finish earlier.
This approach creates a time interval between the maximum finish time within the horizon
and the earliest start time after the horizon as depicted in Figure 12.
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Figure 11. MSG computational time.

Figure 12. Algorithm 2 generation of sleep time.

In Figure 12, an example schedule is shown on the left. A slack event e1 is generated
by J6 from finishing before its allocated slot. Algorithm 2 creates a recongvergence horizon
between e1 and h. J9, J5, J8, J7, J6, and J0 are outside the horizon and so are fixed. J4, J2, J3,
and J1 are within the horizon and so are optimised to finish earlier, creating sleep time as
shown on the right.

Figure 13 shows the average sleep time generation for different application models. In
this figure, the average sleep time is shown as a percentage of the schedule makespan. Slack
events are within 40–66% of the jobs WCET. AM, PM, and CM models are as described in
Section 5.1. Within the horizon, jobs can be started earlier on an available core given the
precedence constraints. It is observed that as the number of jobs is increased, the average
sleep time is reduced. This is due to the higher number of jobs to be optimised within
the horizon given its size. For a scenario of 10 jobs, the average sleep time is 23%. This
corresponds to a 23% energy saving opportunity.

Compared with the conventional metascheduling technique of [2], such energy saving
are comparable to power savings reported but Algorithm 2 achieves such savings using
less number of schedules. Algorithm 2 computes these average sleep times by considering
all combinations of slack events and creating paths in the MSG. The average sleep time is
then the average sleep times for the leaf nodes in the MSG. Algorithm 2 is both scalable
and achieves comparable results while generating smaller MSG sizes within acceptable
computational time.
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Figure 13. Average sleep time generation for 10 slack events.

6. Conclusions

In this paper, a metascheduling algorithm that implements a reconvergence of paths to
manage the multi-schedule state-space problem of metascheduling, is presented. This algo-
rithm repeatedly invokes a genetic algorithm to solve time-triggered NoC-based scheduling
problems associated with different context events. The proposed algorithm establishes a
horizon and merges Deja Vu nodes (schedules) to control the state-space explosion of the
resulting multi-schedule graph for increasing context events. Results show that at least an
MSG reduction of 22% is observed for 10 context events with the horizon set to 50, and
as high as 56%. With the horizon set to 40, the results show a 23% average sleep time
for 10 jobs with 10 slack events. The interaction between jobs and context events when
generating schedules that can be merged on the occurrence of a Deja Vu node and how the
choice of horizon size impacts the MSG size poses interesting future investigations.
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