
����������
�������

Citation: Stratakos, I.; Leon, V.;

Armeniakos, G.; Lentaris, G.;

Soudris, D. Design Space Exploration

on High-Order QAM Demodulation

Circuits: Algorithms, Arithmetic and

Approximation Techniques.

Electronics 2022, 11, 39. https://

doi.org/10.3390/electronics11010039

Academic Editor: Alexander

Barkalov

Received: 10 October 2021

Accepted: 20 December 2021

Published: 23 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

electronics

Article

Design Space Exploration on High-Order QAM
Demodulation Circuits: Algorithms, Arithmetic and
Approximation Techniques †

Ioannis Stratakos * , Vasileios Leon , Giorgos Armeniakos , George Lentaris and Dimitrios Soudris

School of Electrical and Computer Engineering, National Technical University of Athens, 15780 Athens, Greece;
vleon@microlab.ntua.gr (V.L.); armeniakos@microlab.ntua.gr (G.A.); glentaris@microlab.ntua.gr (G.L.);
dsoudris@microlab.ntua.gr (D.S.)
* Correspondence: istratak@microlab.ntua.gr
† This paper is an extended version of our paper published in 10th International Conference Modern Circuit and

Systems Technologies (MOCAST), Thessaloniki, Greece, 5–7 July 2021.

Abstract: Every new generation of wireless communication standard aims to improve the overall
performance and quality of service (QoS), compared to the previous generations. Increased data
rates, numbers and capabilities of connected devices, new applications, and higher data volume
transfers are some of the key parameters that are of interest. To satisfy these increased requirements,
the synergy between wireless technologies and optical transport will dominate the 5G network
topologies. This work focuses on a fundamental digital function in an orthogonal frequency-division
multiplexing (OFDM) baseband transceiver architecture and aims at improving the throughput and
circuit complexity of this function. Specifically, we consider the high-order QAM demodulation and
apply approximation techniques to achieve our goals. We adopt approximate computing as a design
strategy to exploit the error resiliency of the QAM function and deliver significant gains in terms of
critical performance metrics. Particularly, we take into consideration and explore four demodulation
algorithms and develop accurate floating- and fixed-point circuits in VHDL. In addition, we further
explore the effects of introducing approximate arithmetic components. For our test case, we consider
64-QAM demodulators, and the results suggest that the most promising design provides bit error
rates (BER) ranging from 10−1 to 10−4 for SNR 0–14 dB in terms of accuracy. Targeting a Xilinx Zynq
Ultrascale+ ZCU106 (XCZU7EV) FPGA device, the approximate circuits achieve up to 98% reduction
in LUT utilization, compared to the accurate floating-point model of the same algorithm, and up to
a 122% increase in operating frequency. In terms of power consumption, our most efficient circuit
configurations consume 0.6–1.1 W when operating at their maximum clock frequency. Our results
show that if the objective is to achieve high accuracy in terms of BER, the prevailing solution is the
approximate LLR algorithm configured with fixed-point arithmetic and 8-bit truncation, providing
81% decrease in LUTs and 13% increase in frequency and sustains a throughput of 323 Msamples/s.

Keywords: QAM demodulation; approximate computing; approximate arithmetic; FPGA; design
space exploration; log likelihood ratio; maximum likelihood

1. Introduction

Advanced technologies are utilized on every generation of mobile communication
to provide improved network performance and consistent connectivity. Moreover, new
and/or emerging applications, e.g., video streaming and augmented reality, promise to
take advantage of these technologies to offer better and more consistent services to end
users. However, the rapid development of these applications introduces strict bandwidth
constraints to maintain robust quality of service (QoS). In this context, the fifth generation
(5G) technology standard promises high bandwidth and ultra-low latency for data trans-
mission [1]. To tackle these strict constraints imposed on networks infrastructures, efficient
solutions must be provided. One part of the network that handles large volumes of data is

Electronics 2022, 11, 39. https://doi.org/10.3390/electronics11010039 https://www.mdpi.com/journal/electronics

https://doi.org/10.3390/electronics11010039
https://doi.org/10.3390/electronics11010039
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1103-8202
https://orcid.org/0000-0003-0503-8246
https://orcid.org/0000-0001-7184-3740
https://orcid.org/0000-0003-1664-8648
https://orcid.org/0000-0002-6930-6847
https://doi.org/10.3390/electronics11010039
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11010039?type=check_update&version=1

Electronics 2022, 11, 39 2 of 14

the baseband unit (BBU), which is responsible for modulating/demodulating the transmit-
ting/receiving data; in order to meet these demands, processors such as application-specific
integrated circuits (ASICs) and field-programmable gate arrays (FPGAs) [2–4] are consid-
ered for implementing components of the 5G infrastructure. On one hand, when the
objective is to offer high computational efficiency, then ASICs are preferred; on the other
hand, FPGAs are able to provide attractive throughput/power ratio in addition to their
adaptability to new functionalities. In either case, for the research community, providing
optimal circuits for the main computationally intensive tasks of a digital communication
system is of high importance.

The work presented in this paper focuses on a baseband unit implementation, and
specifically introduces efficient QAM demodulation architectures. Our aim is to expand
the design space by exploring solutions generic enough for diverse scenarios (e.g., varying
conditions in the channel) by examining various QAM decoding and approximation tech-
niques. Thus, we employ soft- and hard-decision algorithms relying on the calculation of
the log likelihood ratio (LLR) and the maximum likelihood (ML), respectively, and apply
approximation techniques on both floating-point and fixed-point arithmetic. In summary,
our contributions are as follows:

• The analysis and assessment of the effects of tunable approximation methods on
high-order QAM demodulation, achieving improved hardware efficiency with lim-
ited accuracy loss, which is the first one performed in the literature to the best of
our knowledge.

• The assessment of various trade-offs (i.e., accuracy–hardware, accuracy–throughput,
and accuracy–power) among different demodulation algorithms.

To achieve our goals, we employ VHDL coding to implement four demodulation
algorithms and then apply circuit approximation techniques. The circuits are customized
and validated on an FPGA device, but we refrain from utilizing dedicated high performance
FPGA resources (i.e., DSP blocks, and RAM blocks) so as to be able to target also an ASIC
implementation if needed. We focus on the most demanding part of their computation, i.e.,
the floating-point addition and the multiplication, and decrease the circuit complexity of
the respective arithmetic units. More specifically, we develop approximate floating-point
adders, generic hardware-friendly multipliers based on approximate high-radix encoding
and bit truncations. To verify our approximate QAM demodulation circuits, we also
model them in MATLAB to examine the effects of approximations and tune the circuits.
To summarize, the QAM demodulators are designed to perform their computations in
parallel and in a pipelined fashion. We also carry out extensive design space exploration
(DSE) in terms of algorithm, arithmetic, and approximation levels to determine the most
suitable configuration. According to our experimental results on Zynq Ultrascale+ ZCU106
(XCZU7EV) FPGA, via careful and methodical arithmetic approximations, the 64-QAM
demodulation shows that the bit error rate (BER) lies between 10−1 and 10−4 for signal-
to-noise ratio (SNR) 0–14 dB in all our implementations. For these BER values, our QAM
designs deliver up to 98% reduction in LUT utilization of the FPGA and up to 122% increase
in operating frequency compared to the respective accurate floating-point implementations.

The structure of the paper is as follows: Section 2 briefly presents related works
regarding our target application and approximate circuit design. In Section 3, we present
the circuits design from the algorithmic level down to the implementation level. Next,
in Section 4, the results of the evaluated circuits are given. Finally, Section 5 concludes
this paper.

2. Related Work
2.1. Telecommunication Functions on FPGAs

Communication standards/protocols change with fast pace, and as they evolve, new
requirements arise that need to be integrated in the network infrastructure. One of the
key components of a network infrastructure is the baseband processing unit (BBU). The

Electronics 2022, 11, 39 3 of 14

functionality of a BBU is to implement the low-level DSP function required for transmission
at the physical layer (L1).

The role of the BBU is often undertaken by an FPGA device, due to its adaptability to
new functionalities and/or features. There are a lot of works in the literature that present
OFDM-based telecommunication functions implemented on FPGAs. In [5], an FPGA-
based OFDM transceiver that can support multiple IEEE 802.xx standards is presented.
Dynamic partial reconfiguration is used in [6] to adapt the processing datapath of a non-
continuous OFDM FPGA-based baseband architecture, while, based on the same principle
in [7], an adaptable FFT core is given. Ref. [8] presents an SFO compensation method
for OFDM. Finally, Ref. [9] presents the experimental results of transmitting/receiving
an OFDM 5G NR signal using a real-time FPGA processing pipeline. All of these works
consider a complete OFDM processing pipeline and/or target processing blocks that are
more computationally demanding (e.g., FFT/IFFT, and SFO) while not considering any
optimizations other than computation scheduling, parallel hardware architecture design
and/or pipeline.

2.2. Circuit Approximation Techniques

In the field of approximate circuit design, approximation methods are applied at com-
ponent level, e.g., adders and multipliers [10–19], as well as to bigger accelerators [20–23].
Most of these works focus on logic simplification techniques, namely, aim at reducing
the circuit complexity of the designs by pruning circuit nodes or using inexact building
blocks. In addition to logic simplification, other state-of-the-art approaches involve voltage
over-scaling [24] and over-clocking [25].

Regarding approximate adders and multipliers, which are also the main focus of
our work, the EvoApprox8b library [12] provides numerous inexact designs of different
accuracy and hardware efficiency. It is also worth mentioning that the integer arithmetic
circuits [10,11,13–15,17,18] have received more research attention than their floating-point
counterparts [16,19]. Another significant feature of several state-of-the-art works is the
runtime accuracy/approximation configurability. In this context, the designs of [15,16]
drive the operand bits to AND gates to tune the approximation strength by providing
either the actual bit or ‘0’ to the input of the multiplier. To provide dynamic configurability
to adders, the designs of [17,18] share the addition into several sub-adders.

Regarding approximate accelerators, the main target is the implementation of kernels
from the digital signal processing (DSP) and artificial intelligence (AI) domains. In [20], a
methodology for delivering approximate DSP and AI accelerators is proposed, involving
design space exploration on algorithms, arithmetic, and approximate components. The
authors of [21] propose an approximation framework that integrates approximate multipli-
ers in deep neural networks. Similarly, in [23], the authors develop convolutional neural
network architectures with various approximate fixed- and floating-point arithmetic.

3. Design of Approximate QAM Demodulation Circuits

To accommodate design space exploration, we design parallel M-QAM demodulation
architectures in a modular approach. In this way, we are able to adopt alternative arithmetic
and/or replace the arithmetic units with approximate ones.

We consider M-QAM keying signals (amplitude+phase) and their corresponding
gray-coded constellation map, where each constellation point is represented by a vector b
of N = log2 M bits. Assuming that s is the transmitted symbol, each symbol is expressed as
z = s · Gch + w0, where Gch is the channel frequency response and w0 is the additive white
Gaussian noise (AWGN) of variance σ2

0 . By performing zero-forcing frequency equalization
and phase correction, the received symbol is equal to r = s + w, where w is the AWGN of
variance σ2 = σ2

0 /|Gch|2.
Subsequently, we present the QAM demodulation algorithms, their high-level block

architecture, and implementation details regarding their basic components and the applied
approximations.

Electronics 2022, 11, 39 4 of 14

3.1. Exact LLR Architecture

The exact LLR (ELLR) method predicts each bit of the received symbol based on
probabilities. Assuming equal probabilities P(bi = 0) = P(bi = 1) = 1/2, the LLR for the
i-th bit of the symbol is defined as [26]

LLR(bi) = ln

[
∑s:bi=0 e−

1
σ2 ((rx−sx)2+(ry−sy)2)

∑s:bi=1 e−
1

σ2 ((rx−sx)2+(ry−sy)2)

]
(1)

where (rx, ry) are the in-phase and quadrature coordinates of the received symbol r, and
(sx, sy) are the coordinates of the constellation points s with 0 and 1 in the i-th bit.

In Figure 1, we present our ELLR architecture. As shown, all the LLRs are calculated in
parallel, with the modules retaining the input throughput of 1 data per clock cycle (CC). Our
distribution logic module forwards the square distances for the 0 and 1 constellation points
in the corresponding adder tree to perform the accumulations of Equation (1). The ELLR
method requires the implementation of exponential and natural logarithmic functions;
thus, we adopt two different approaches in VHDL, i.e., the hyperbolic coordinate rotation
digital computer (CORDIC) function and a polynomial approximate function based on the
Remez algorithm [27]. CORDIC is designed in a generic way and is able to function with a
configurable bit-width at compile time by the user in order to explore different resource–
accuracy trade-offs. As for the polynomial function, we examine various polynomial
degrees and evaluate their impact on resources and accuracy. Both functions are designed
to be synchronous and fully pipelined, and impose only a small latency, e.g., for 64-QAM,
the latency is 43 CCs and 14 CCs for the CORDIC and polynomial functions, respectively.

 r

Sq. Distance

c. point 2

Sq. Distance

c. point 1

...

Sq. Distance

c. point M

...

...

1/CC

1/CC

1/CC

1/CC

Exp

Exp

Exp

D
is

tr
ib

u
ti

o
n

 L
o

g
ic

1/CC

1/CC

1/CC

A. Tree

A. Tree
1/CC

M/2

M/2

A. Tree

A. Tree
1/CC

M/2

M/2

A. Tree

A. Tree
1/CC

M/2

M/2

...

Log

Log
1/CC

S
u

b
tr

.
1/CC

Log

Log
1/CC

S
u

b
tr

.

1/CC

Log

Log
1/CC

S
u

b
tr

.

1/CC

...

L
L

R
(b

0
)

1/CC

1/CC

1/CC

L
L

R
(b

1
)

L
L

R
(b

N
-1

)

...

symbol

1/CC

Figure 1. M-QAM demodulation architecture of the exact log likelihood ratio (ELLR) algorithm.

3.2. Approximate LLR Architecture

To avoid the exponent and logarithmic calculations as well as the additions [26],
Equation (1) can be simplified by using only the nearest constellation point with bi = 0 and
the nearest constellation point with bi = 1. The final result is obtained by subtracting the
minimum distances. This algorithmic approximation is called approximate LLR (ALLR)
and is given by (2):

LLR(bi) = −
1
σ2

(
min
s:bi=0

{(rx − sx)
2 + (ry − sy)

2)} − min
s:bi=1

{(rx − sx)
2 + (ry − sy)

2)}
)

(2)

Figure 2 presents the ALLR architecture. The ALLR architecture is fully pipelined and
operates on a continuous stream of data without stalling the processing. The minimum of
the M/2 distances is computed by a fully pipelined comparator tree that is able to perform
the comparison for every two inputs in log2 M/2 steps. The minimum value is stored in
a register, to be used by the output subtractor. For 64-QAM, the latency is 4 CCs, while
for the 256-QAM, two additional clock cycles are required. The extra clock cycles in the
256-QAM are added due to the need of a bigger tree to calculate the minimum distances.

Electronics 2022, 11, 39 5 of 14

 r

Sq. Distance

c. point 2

Sq. Distance

c. point 1

...

Sq. Distance

c. point M

...

...

1/CC

D
is

tr
ib

u
ti

o
n

 L
o

g
ic

1/CC

1/CC

1/CC

1/CC

M/2

M/2

1/CC

M/2

M/2

1/CC

M/2

M/2

...

Min

Min S
u

b
tr

.

1/CC

Min

Min S
u

b
tr

.

1/CC

Min

Min S
u

b
tr

.

1/CC

...

L
L

R
(b

0
)

1/CC

1/CC

1/CC

L
L

R
(b

1
)

L
L

R
(b

N
-1

)

...

symbol

1/CC

Figure 2. M-QAM demodulation architecture of the approximate log likelihood ratio (ALLR) algo-
rithm.

3.3. Piecewise LLR Architecture

The piecewise LLR (PLLR) algorithm approximates Equation (1) by using a linear
function [28]. This method considers k = 1, 2, . . . , N, as well as dx,k and dy,k, which denote
the half distance between the partitions boundaries of bx,k and by,k, respectively. Given that
r is the received symbol with coordinates (rx, ry), the LLR is calculated as

LLR(bx/y,k) = |Gch|2 · Dx/y,k, where Dx/y,k =

{
rx/y k = 1

−|Dx/y,k−1|+ dx/y,k k > 1
(3)

Our PLLR architecture is presented in Figure 3, where N linear functions are calculated
in parallel. The computation of Dx/y,k involves only additions, followed by a multiplication
with |Gch|2, and thus, the circuit complexity is significantly decreased compared to the
previous demodulation methods. Similarly to ALLR, our PLLR design is fully pipelined,
and performs the computations of the linear functions in streaming mode. The latency is
2 CCs and 3 CCs for the 64-QAM and 256-QAM, respectively (256-QAM requires extra
additions).

...

Lin. Function 1

Lin. Function 2

Lin. Function N/2

...

 rx

1/CC

symbol coordinate
LLR(b0)

LLR(b1)

LLR(bN/2-1)
1/CC

1/CC

1/CC

1/CC

...

Lin. Function 1

Lin. Function 2

Lin. Function N/2

...

 ry

1/CC

symbol coordinate
LLR(bN/2)

LLR(bN/2+1)

LLR(bN-1)
1/CC

1/CC

1/CC

1/CC

Figure 3. M-QAM demodulation architecture of the piecewise log likelihood ratio (PLLR)
algorithm.

3.4. Approximate ML Architecture

Typical ML methods use non-linear functions to calculate the demodulation symbol.
To decrease the conventional complexity, the approximate ML (AML) method of [29] uses a
closed function of the estimated channel and received signal to estimate the QAM symbol:

ŝ =
log2
√

M

∑
p=1

cp, where cp =

√
3M

M− 1
2−pejg(r−∑

p−1
m=1 cm) (4)

The proposed AML architecture is presented in Figure 4. Our design pre-calculates and
stores in ROMs the log2

√
M centers cp. Initially, the first center is identified by the quarter

Electronics 2022, 11, 39 6 of 14

in which the input is located. Subsequently, each center is identified by the quarter that is
derived when all the previous centers are subtracted from the input. With this approach, we
avoid storing all the intermediate centers to accumulate them as indicated by Equation (4).
In contrast, the accumulation is performed as ŝ = r − (r − c1 − c2 − · · · − clog2

√
M) =

c1 + c2 + · · ·+ clog2
√

M. The AML architecture has a log2

√
M+1 CCs latency, i.e., 4 CCs

and 5 CCs for 64-QAM and 256-QAM, respectively.

...

M
q1 q2

q3

center 1

Center
Selection

Subtr.

D Q

1/CC

1/CC

q4 r

1/CC

symbol

1/CC

1/CC

D Q
1/CC1/CC

q1 q2

q3

center 2

Center
Selection

Subtr.

D Q

1/CC

1/CC

q4

D Q
1/CC

1/CC

q1 q2

q3

center log2

Center
Selection

Subtr.

D Q

1/CC

1/CC

q4

D Q
1/CC

Subtr.

1/CC

1/CC

ŝ

Figure 4. M-QAM demodulation architecture of approximate maximum likelihood (AML).

3.5. Arithmetic Approximation Techniques

We adopt both the floating-point (FLP) and fixed-point (FXP) arithmetic formats in
our QAM demodulation circuits, and perform approximate arithmetic operations. Next,
we describe the approximate arithmetic units used in our QAM designs.

3.5.1. Floating-Point Approximations

Both the mantissa adder and exponent subtractor are replaced with an approximate
carry look-ahead adder [19] that decreases the circuit complexity of the floating-point (FLP)
addition. By splitting the calculations in two segments and omitting the least-significant
one, an approximation is inserted in the generation of the carry output of the i-th stage. As
a result, the calculation is performed approximately in a window of size W.

c(i+1) =
i

∑
j=i−W+1

Gj

(i−1

∏
m=j+1

Pm
)

(5)

where Pi = Ai ⊕ Bi and Gi = Ai · Bi are the propagate and generate signals of the i-th stage,
respectively.

Figure 5a presents the high-level architecture of the approximate FLP adder, where
the inexact mantissa addition and exponent subtraction are highlighted. The rest of the
components remain the same as in the accurate FLP addition, except that we do not apply
any rounding technique in the mantissa sum. In the right-hand side (Figure 5a), we present
the basic logic block of the approximate carry look-ahead adder, which approximately
calculates the carries according to Equation (5) and stores them in DFFs. The total latency
of the approximate FLP adder is 5 CCs.

Electronics 2022, 11, 39 7 of 14

Mantissa Swap

Mantissa Shift

Mantissa

AdditionmB

mA Mantissa

Normalization

Exponent

SubtractioneB

eA Exponent

Update

Sign Logic
sB

sA
sR

eR

mR

Approximate Adder

c

PG

A
Logic Func. of ×2K-3

Logic Func. of ×2K-2

Logic Func. of ×2K-1

×2K-4

Logic Func. of ×1j

Logic Func. of ×2j

sign

signj
PP[i]j

PP[i]

...

...

(L-K)/2 Accurate

Most-Significant PPs

1 Approximate

Least-Significant PP

A
d

d
e

r
T

re
e

High-Radix Encoding PP Generation PP Accumulation

Encoding
Signals

Partial
Products

B

...

(a) (b)

Figure 5. The approximate arithmetic circuits used in our M-QAM demodulation architectures.
(a) Approximate floating-point (FLP) adder. (b) Approximate fixed-point (FXP) multiplier.

3.5.2. Fixed-Point Approximations

In this work, we target multiplication architectures based on radix encodings, due to
their efficiency compared to other algorithms [30]. To decrease the circuit complexity of
the fixed-point (FXP) multiplication, we perform inexact partial product (PP) generation
based on the hybrid high-radix encoding [14]. This technique tunes the approximation
levels with the configuration parameter K = 2 · l ≥ 4. In particular, the L− K MSBs of one
of the L-bit input operands (e.g., A) are accurately encoded with radix-4, while its K LSBs
are approximately encoded with radix-2K. The approximation is inserted by mapping the
high-radix encoded values to the nearest of the four largest powers of 2 or 0 [14]:

A =
〈

aL−1 . . . a1a0
〉
→ A = AMSB + ALSB =

L/2−1

∑
j=K/2
K≥4

yR4
j 4j + yR2K

0

where
yR4

j = −2a2j+1 + a2j + a2j−1 =⇒ yR4
j ∈ {0,±1,±2} (6)

yR2K

0 = −2K−1aK−1 + 2K−2aK−2 + · · ·+ a0 =⇒ yR2K

0 ∈ {0,±1, . . . ,±(2K−1 − 1),−2K−1}

To decrease the circuit complexity of the yR2K

0 encoding, which is due to values that
are not a power of 2, all these values along with the K–4 smallest powers of 2 are mapped
to the nearest of the four largest powers of 2 or 0, as shown in the approximate encod-
ing table of [14]. As a result, the approximate version of the high-radix encoding uses
ŷR2K

0 ∈ {0, ±2K–4, ±2K–3, ±2K–2, ±2K–1} instead of yR2K

0 , and the encoding circuit is similar
to the classical yR4

j encoder.
The approximate multiplier (Figure 5b) generates (L–K)/2 accurate PPs based on

the radix-4 encoding, i.e., yR4
j , and 1 approximate PP based on the radix-2K encoding,

i.e., ŷR2K

0 , which practically substitutes the K/2 least-significant PPs of the accurate radix-4
multiplier. We implement such multipliers for various K values, following the architecture
illustrated in Figure 5b. The first stage is the approximate hybrid high-radix encoding,
which involves circuits, such as the one implementing×2K–4, i.e., one of the five 1-bit signals
that approximately encode the LSB segment of A. Similar small circuits are implemented
for the accurate classical encoding of the MSB segment. Next, we forward all the encoding
signals along with B in the PP generation module, and finally, we accumulate the PPs in an
accurate adder tree. We note that the units for both encodings and i-th bit PP generators are
fixed and independent of K. The configuration parameter affects only the bit-width of the
approximate PP and the number of accurate PPs, and thus, the number of 1-bit approximate
PP generators and accurate encoders and PP generators, respectively. The total latency of
our multiplication circuit is 5 CCs.

4. Experimental Evaluation
4.1. Experimental Setup

In this section, we present the experimental results for our QAM demodulation archi-
tectures in terms of accuracy, hardware resources and power consumption. We examine

Electronics 2022, 11, 39 8 of 14

various arithmetic and approximation configurations, and we discuss the most interesting
results from our design space exploration. For the evaluation, we assume a transmitter
producing random bits and a convolutional encoder of 1/2 code rate with generator poly-
nomial (133, 171) and constraint length of 7. The QAM modulator considers a normalized
constellation diagram, and the modulated signal is transmitted through an AWGN chan-
nel of variance σ2 = 10−(SNRdB/10). Finally, the outputs of our LLR-based demodulation
architectures are processed by a Viterbi decoder in unquantized mode.

To evaluate the hardware efficiency of the proposed approximate designs, we imple-
ment our QAM architectures on the Xilinx Zynq Ultrascale+ ZCU106 (XCZU7EV) FPGA,
using parametric VHDL and design space exploration. Considering that the proposed
architectures can be deployed on various technologies, e.g., ASICs, flash FPGAs, we assess
the circuits’ complexity and throughput without employing elaborate FPGA primitives,
such as the DSPs. Hence, in a prototyping fashion, we force the Xilinx Vivado 2019.2 tool
to utilize only LUTs and DFFs. Moreover, for the designs without approximate arithmetic
units, i.e., the accurate FLP and FXP designs as well as the FXP designs with bit truncation,
we force the tool to employ the built-in libraries to map the arithmetic operations on the
LUTs. The data bit-width of the FLP designs is 32 bits, while the bit-width of the accurate
FXP design is 16 bits (with 14 fractional bits). Moreover, we present the power consumption,
as reported by Vivado Design Suite, for the maximum achievable frequency. To assess the
accuracy of our approximate demodulation designs, we use two metrics: (i) BER, which
is equal to the number of bit errors divided by the total number of transmitted bits, and
(ii) mean relative error (MRE), i.e., the mean error of LLRs and symbol distances for the
LLR and ML techniques, respectively (versus the “accurate” floating-point model).

We note that we do not present results for the ELLR, as it provides similar accuracy
to ALLR, at the expense of increased resource utilization. For example, for 64-QAM,
the BER scaling of ELLR almost matches the scaling of ALLR (for small SNR, it is the
same). In terms of hardware, when considering the accurate FXP arithmetic, the CORDIC-
based implementation utilizes 2.2× LUTs and 3.8× DFFs, while the polynomial-based
implementation utilizes 2.6× LUTs and 8× DFFs. The resource utilization is increased for
higher-order QAMs, e.g., for 256-QAM, the ELLR does not fit in such a big FPGA device,
even when using approximation techniques.

4.2. Exploration Results

Figure 6 illustrates the BER scaling of our 64-QAM architectures for different SNR
values per QAM symbol transmitted. The ALLR algorithm (Figure 6a) with a fixed-point
arithmetic in conjunction with approximations provides similar BER performance to the
reference FLP implementation. Specifically, the accurate FXP and approximate FXP-T8
and FXP-K6 designs show maximum 1% relative error in BER values compared to FLP.
On the other hand, FXP-T11 shows increased relative errors (1%–150%) as SNR increases
(0–14 dB); however, these BER values are still small. As for the FLP-W4 implementation, its
performance is the worst for all SNR values; thus, it is non-viable for deployment in real-
world scenarios. The results suggest that when using relative small FXP approximations, the
computation error that propagates through the circuit is mitigated, and the final LLR values
are closer to the reference accurate FLP. However, this is not the case for the approximate
FLP-W4 and FXP-T11 circuits.

PLLR (Figure 6b) presents the same BER performance as ALLR, with BER values
ranging from 10−1 to 10−4. The accurate FXP and approximate FXP-T8 implementations
follow closely the BER curve of the reference accurate FLP implementation, and show
∼0.5% to ∼14% relative error in BER values as SNR increases. The performance of FXP-T11
declines significantly compared to the ALLR counterpart, and exhibits ∼2% to ∼630%
relative error in BER values for increased SNR compared to the FLP implementation.
For the FLP-W4 implementation of PLLR, we note that it performs much better than the
FLP-W4 of ALLR, but still not quite enough to be considered for actual deployment on a
system. Again, taking into account the approximation used and the operation performed,
the approximate FXP circuits seem to be more robust.

Electronics 2022, 11, 39 9 of 14

The AML algorithm (Figure 6c) is orders of magnitude worse than the ALLR and PLLR
algorithms for the same input dataset and SNR range (BER of 10−1 to 10−2), regardless of
the arithmetic and approximation used. Considering only the specific algorithm and its
implementations, the FXP and FXP-T8 designs demonstrate the same BER performance as
the reference FLP implementation with relative error in BER values near 0% for FXP and
no more than 3% for FXP-T8 for all SNR values. On the other hand, FXP-T11 is inefficient;
thus, aggressive approximations based on truncation seem unreasonable for AML. As for
the FLP-W4 variant, it follows the same trend as the reference FLP, but presents 0% to 135%
relative error in BER values as the SNR increases. In this algorithm, any significant error that
appears in one stage will lead the comparison performed to select wrong reference centers,
and as a result, larger errors will be introduced in the next stage, leading to increased
accumulated error and, thus, very inefficient performance.

0 2 4 6 8 10 12 14
10−4

10−3

10−2

10−1

100

SNR/Symbol (dB)

B
E
R

FLP
FLP-W4
FXP
FXP-T8
FXP-T11
FXP-K6

(a)

0 2 4 6 8 10 12 14
10−4

10−3

10−2

10−1

100

SNR/Symbol (dB)

B
E
R FLP

FLP-W4
FXP
FXP-T8
FXP-T11

(b)

0 2 4 6 8 10 12 14
10−2

10−1

SNR/Symbol (dB)

B
E
R FLP

FLP-W4
FXP
FXP-T8
FXP-T11

(c)

Figure 6. BER scaling in our 64-QAM circuits. FLP = accurate floating-point, FLP-W4 = floating-
point with approximate addition [19], FXP = accurate fixed-point, FXP-TX = fixed-point with bit
truncation, FXP-K6 = fixed-point with approximate multiplication [14]. (a) Approximate LLR (ALLR).
(b) Piecewise LLR (PLLR). (c) Approximate ML (AML).

In Table 1, we present the implementation (place and route) results of our 64-QAM
circuits on ZCU106. The table also reports the average MRE of LLR values for SNR
0–14 dB. As shown, ALLR is the more demanding one in terms of resource utilization for all
arithmetic and approximations used. Comparing only the reference FLP implementations
for each algorithm, we observe a significant difference in LUT/DFF utilization. Specifically,
PLLR and AML have∼98% less resource utilization than ALLR, while also achieving higher
operating frequency of 16% and 35%, respectively. When also considering the BER scaling,
PLLR is the most efficient demodulator for floating-point arithmetic. Next, we examine
the gains in resource utilization and operating frequency for each employed demodulation
algorithm:

Table 1. Resources of our 64-QAM circuits on Xilinx Zynq Ultrascale + ZCU106 (230 K LUTs, 461 K
DFFs) w/o DSP.

Approximate LLR (ALLR) Piecewise LLR (PLLR) Approximate ML (AML)

FLP FLP-W4 FXP FXP-T8 FXP-T11 FXP-K6 FLP FLP-W4 FXP FXP-T8 FXP-T11 FLP FLP-W4 FXP FXP-T8 FXP-T11

LUT 106,097 104,881 56,278 19,957 10,210 37,653 2060 2020 160 76 59 3848 3504 139 91 44

DFF 42,432 42,432 21,596 10,684 9316 51,572 886 886 215 126 96 1204 1204 44 28 18

MHz 1 286 294 312 323 416 321 333 435 571 645 740 385 416 588 645 769

W 2 5.0 4.9 5.5 3.0 2.5 3.6 0.8 0.8 1.1 1.0 0.9 0.6 0.7 1.0 0.7 0.6

MHz/W 3 114.4 117.6 56.7 107.7 166.4 89.2 416.3 543.8 519.1 645.0 822.2 641.7 594.3 588.0 921.4 1281.7

avg. MRE – 86.00 2.22 20.59 193.14 1.74 – 177.05 1.28 23.35 165.55 – 8.36 0.02 4.65 22.98

1 It is the maximum clock frequency. The throughput of all the circuits is 1 sample per CC, namely, MHz
Msamples/s. 2 It is the power consumption measured at the maximum clock frequency of the circuits. 3 It is the
throughput-per-power ratio, i.e., Msamples/s per W.

Electronics 2022, 11, 39 10 of 14

• ALLR circuits : The FLP-W4 implementation provides a negligible reduction of only
1% in LUTs and only 3% increase in frequency compared to FLP. On the other hand,
the fixed-point ALLR circuits deliver increased gains. The accurate FXP circuit gains
50% in resources and has 9% higher frequency, while FXP-T8 and FXP-T11 have 81%
and 90% reduction in LUTS, 75% and 78% reduction in DFFs, and 13% and 45%
increase in frequency, respectively. FXP-K6 reduces its utilization by 64% in LUTs,
21% in DFFs and operates 12% faster. If we seek BER performance in-line with FLP,
circuits with moderate truncation (FXP-T8) or approximate multipliers (FXP-K6) can
be used. Additionally, considering the MRE metric, FXP-T8 is worse than FXP-K6
(20.59 vs 1.74).

• PLLR circuits: FLP-W4 offers only 2% reduction in LUTs, but gains 30% in frequency
compared to the FLP circuit. Regarding fixed-point circuits, we observe 92%, 96%,
97% reduction in LUTs, 75%, 85%, 89% reduction in DFFs and 71%, 93%, 122% higher
operating frequencies for the accurate FXP, approximate FXP-T8 and FXP-T11 circuits,
respectively. As SNR increases (Figure 6b), the BER performance of FLP-W4 and FXP-
T11 deviates significantly from FLP; thus, a fixed-point architecture with moderate
truncation can be adopted.

• AML circuits: FLP-W4 achieves 9% LUT reduction and 8% frequency increase com-
pared with the accurate FLP circuit. For the fixed-point circuits, we observe 96% LUT
reduction, 98% DFF reduction either we have accurate circuits (FXP) or approximate
ones (FXP-T8, FXP-T11). Regarding frequency, an increase by 53% for the accurate FXP,
68% for the FXP-T8 and almost 100% for the FXP-T11 is seen. However, we note that
AML provides the worst BER performance among all algorithms and arithmetic, and
thus, its deployment on a real-world system may be limited. Incorporating the BER
results (Figure 6c), a fixed-point with moderate truncation (T8) circuit is preferable, as
it follows the BER curve of FLP.

Considering the power consumption (Table 1) of the presented circuits, we observe
that for each algorithm group, there is an increase in the power consumption of the accurate
FXP implementation compared to the FLP implementations, either accurate or approximate.
Moreover, the approximate FXP implementations consume less power than the accurate
FXP, but in the same degree as the FLP ones. This behavior can be justified taking into
account that the target platform for our evaluation is an FPGA device, which has static and
dynamic power factors. For example, considering the PLLR implementations, a significant
reduction in resource utilization is observed moving from the accurate FLP to FXP-T11, thus
the static power of the circuit, which relates to the number of used resources, is reduced.
However, the operating frequency increases, which leads to higher switching activity of the
utilized resources and thus, the dynamic power consumption of the circuits also increases
and “compensates” for the lower static power consumed. Additionally, another factor
that we must take into account is that the synthesis tool, after placement and routing may
spread the utilized resources of a circuit across the FPGA fabric leading to increase usage of
routing resources that also consume power. That power consumption (static and dynamic)
is also included in the one reported by the tool.

When considering higher-order QAMs, i.e., 256-QAM, as explained before, ELLR does
not fit in the FPGA. Regarding ALLR, it is possible to fit only the FXP implementations,
as the 256-QAM ALLR utilizes ∼4× the resources of the 64-QAM demodulator. As a
result, the LUT utilization reaches 97% of the total chip’s resources for the accurate FXP
implementation with datapath of 16 bits. However, when inserting approximations it is
significantly decreased: the designs with bit truncation i.e., FXP-T8 and FXP-T11, utilize
38% and 21% of the LUT resources, while the use of the approximate multiplier (FXP-K6)
reduces the utilization to 62%. Similar scaling is observed for the other two algorithms,
which enable the implementation of even higher QAM orders, e.g., 1024, as they impose
low computational complexity. Regarding the BER performance we have observed that
the approximations introduced perform equally well for higher-order QAM modulation
formats, e.g., 256-QAM. Finally, in real-world scenarios, the FPGA is used to implement

Electronics 2022, 11, 39 11 of 14

additional computational-intensive functions of the baseband processing chain; thus, it is
important not to preserve all the resources for the demodulation. In this direction, as shown,
methodical approximations can provide significant resource gains at the expense of small
accuracy loss. In addition, when considering more platform-specific implementations,
e.g., to exploit the hardwired DSP primitives of the FPGA, we can achieve additional
resource savings as well as increased throughput.

4.3. Pareto Trade-Off Analysis: Hardware Resources vs. Accuracy

Figure 7 shows a comparison of all the circuits considering different metric combina-
tions in a Pareto diagram. Specifically, in Figure 7a–c,g, we consider the BER performance
versus throughput, power, throughput/power ratio and LUT utilization for a fixed SNR
value (8 dB). In these Figures, we do not observe much diversity regarding the circuits
that form the Pareto fronts. Specifically, in all four diagrams the Pareto front consist of
circuits from ALLR and PLLR algorithms. However, in Figure 7b,g there are also circuits
from the AML algorithm that form the Pareto front. However, considering the best trade-
off of the examined metrics, the diagrams show that the optimal circuits belong to the
PLLR algorithm. Next, in Figure 7d–f,h, we consider the average MRE instead of BER
performance, while keeping the other metrics the same. In these test cases, the Pareto
front consist of circuits from all algorithms, but the PLLR algorithm has fewer circuits. The
most optimal circuits that give the best trade-off of the metrics used are from the AML
algorithm; however, one should be cautious when considering the specific algorithm for
deployment because it provides the worst BER performance compared to the others for the
same SNR values.

0 0.2 0.4 0.6
200

400

600

800

BER (SNR/Symbol=8dB)

Th
ro

ug
hp

ut
(M

S/
s)

ALLR
PLLR
AML

1
(a)

0 0.2 0.4 0.6

0

2

4

6

BER (SNR/Symbol=8dB)

Po
we

r(
W

) ALLR
PLLR
AML

1
(b)

0 0.2 0.4 0.6
0

300
600
900

1200
1500

BER (SNR/Symbol=8dB)

Th
ro

ug
hp

ut
/P

ow
er

ALLR
PLLR
AML

1
(c)

0 50 100 150 200
200

400

600

800

Average MRE of LLR

Th
ro

ug
hp

ut
(M

S/
s)

ALLR
PLLR
AML

1
(d)

0 50 100 150 200

0

2

4

6

Average MRE of LLR

Po
we

r(
W

) ALLR
PLLR
AML

1
(e)

0 50 100 150 200
0

300
600
900

1200
1500

Average MRE of LLR

Th
ro

ug
hp

ut
/P

ow
er

ALLR
PLLR
AML

1
(f)

0 0.2 0.4 0.6

0

0.5

1

·105

BER (SNR/Symbol=8dB)

LU
Ts

ALLR
PLLR
AML

1
(g)

0 50 100 150 200

0

0.5

1

·105

Average MRE of LLR

LU
Ts

ALLR
PLLR
AML

1
(h)

Figure 7. Pareto analysis of the proposed 64-QAM circuits in terms of accuracy and hardware
resources. (a) BER–throughput. (b) BER–power. (c) BER–throughput/power. (d) MRE–throughput.
(e) MRE–power. (f) MRE–throughput/power. (g) BER-LUT. (h) MRE-LUT.

Electronics 2022, 11, 39 12 of 14

Solely in terms of resources and throughput, our exploration indicates that, regardless
of algorithm, fixed-point architectures are the most efficient and truncation is the preferable
approximation technique. Taking into account the BER results, the ALLR and PLLR
algorithms have better BER performance than AML, with ALLR being slightly better than
PLLR. So, we consider the most advantageous QAM demodulator circuit to be the ALLR
FXP-T8 implementation.

5. Conclusions

In this paper, we implemented and evaluated multiple hardware QAM demodula-
tion architectures by performing an extensive DSE in terms of demodulation algorithms,
arithmetic, and approximation techniques. The examined algorithms involve soft- and
hard- decision decodings of different complexity, whereas, regarding the approximation
techniques, we employ approximation-configurable adders and multipliers on floating-
and fixed-point arithmetic. Our experimental analysis shows that the proposed approx-
imate 64-QAM demodulators provide BER ranging from 10−1 to 10−4 for SNR 0–14 dB,
while they deliver significant resource gains in the Xilinx ZC106 FPGA. From the DSE
and experimental results, we conclude the following: (i) The high-order QAM circuits for
the Exact LLR algorithm demand an increased amount of resources, even when adopting
fixed-point representation and approximation techniques, while its BER performance is
matched by the approximate LLR algorithm. (ii) By introducing approximations in the
datapath of the approximate LLR algorithm, we significantly reduce the circuit complexity
in exchange for negligible accuracy loss, and thus, it can be implemented on the FPGA
without utilizing all the resources. (iii) The piecewise LLR and approximate maximum like-
lihood algorithms utilize a limited amount of resources and deliver increased throughput;
thus, very high-order QAMs are facilitated. However, the piecewise LLR provides slightly
worse BER compared to approximate LLR algorithm, while the approximate maximum
likelihood gives inefficient BER performance. (iv) A single QAM circuit solution that fits
in all circumstances/systems cannot easily be obtained without considering additional
constraints (e.g., accurate modeling of transmission channel, arithmetic errors from other
DSP functions, and resources required for other digital functions).

Author Contributions: Conceptualization, V.L. and I.S.; investigation, G.A. and I.S.; methodology,
D.S.; implementation, I.S. and G.A.; simulation, G.A.; validation, I.S. and G.A.; visualization, V.L. and
I.S.; writing—original draft, I.S. and V.L.; writing—review and editing, G.L. and D.S.; supervision,
G.L. and D.S. All authors have read and agreed to the published version of the manuscript.

Funding: The work was partially funded by the European Union’s Horizon 2020 research and
innovation program, under project SDK4ED, grant agreement No. 780572.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Andrews, J.G.; Buzzi, S.; Choi, W.; Hanly, S.V.; Lozano, A.; Soong, A.C.K.; Zhang, J.C. What Will 5G Be? IEEE J. Sel. Areas

Commun. 2014, 32, 1065–1082. [CrossRef]
2. Kuon, I.; Tessier, R.; Rose, J. FPGA Architecture: Survey and Challenges; Now Publishers, Hanover: MA, USA, 2008 ; pp. 135–253.

[CrossRef]
3. Lentaris, G.; Maragos, K.; Stratakos, I.; Papadopoulos, L.; Papanikolaou, O.; Soudris, D.; Lourakis, M.; Zabulis, X.; Gonzalez-

Arjona, D.; Furano, G. High-performance embedded computing in space: Evaluation of platforms for vision-based navigation. J.
Aerosp. Inf. Syst. 2018, 15, 178–192. [CrossRef]

4. Leon, V.; Stamoulias, I.; Lentaris, G.; Soudris, D.; Gonzalez-Arjona, D.; Domingo, R.; Codinachs, D.M.; Conway, I. Development
and Testing on the European Space-Grade BRAVE FPGAs: Evaluation of NG-Large Using High-Performance DSP Benchmarks.
IEEE Access 2021, 9, 131877–131892. [CrossRef]

5. Pham, T.H.; Fahmy, S.A.; McLoughlin, I.V. An End-to-End Multi-Standard OFDM Transceiver Architecture Using FPGA Partial
Reconfiguration. IEEE Access 2017, 5, 21002–21015. [CrossRef]

6. Ferreira, M.L.; Ferreira, J.C. Reconfigurable NC-OFDM processor for 5G communications. In Proceedings of the 2015 IEEE 13th
International Conference on Embedded and Ubiquitous Computing, Porto, Portugal, 21–23 October 2015; pp. 199–204.

http://doi.org/10.1109/JSAC.2014.2328098
http://dx.doi.org/10.1561/1000000005.
http://dx.doi.org/10.2514/1.I010555
http://dx.doi.org/10.1109/ACCESS.2021.3114502
http://dx.doi.org/10.1109/ACCESS.2017.2756914

Electronics 2022, 11, 39 13 of 14

7. Ferreira, M.L.; Barahimi, A.; Ferreira, J.C. Reconfigurable FPGA-based FFT processor for cognitive radio applications. In
Proceedings of the International Symposium on Applied Reconfigurable Computing, Mangaratiba, RJ, Brazil, 22–24 March 2016;
Springer: Berlin/Heidelberg, Germany, 2016; pp. 223–232.

8. Deng, R.; He, J.; Chen, M.; Chen, L. SFO compensation by pilot-aided channel estimation for real-time DDO-OFDM system. Opt.
Commun. 2015, 355, 172–176. [CrossRef]

9. Rommel, S.; Grivas, E.; Cimoli, B.; Dodane, D.; Morales, A.; Pikasis, E.; Bourderionnet, J.; Feugnet, G.; Carvalho, J.B.;
Katsikis, M.; et al. Real-time high-bandwidth mm-wave 5G NR signal transmission with analog radio-over-fiber fronthaul
over multi-core fiber. Eurasip J. Wirel. Commun. Netw. 2021, 2021, 43. [CrossRef]

10. Jiang, H.; Han, J.; Qiao, F.; Lombardi, F. Approximate Radix-8 Booth Multipliers for Low-Power and High-Performance Operation.
IEEE Trans. Comput. 2016, 65, 2638–2644. [CrossRef]

11. Liu, W.; Qian, L.; Wang, C.; Jiang, H.; Han, J.; Lombardi, F. Design of Approximate Radix-4 Booth Multipliers for Error-Tolerant
Computing. IEEE Trans. Comput. 2017, 66, 1435–1441. [CrossRef]

12. Mrazek, V.; Hrbacek, R.; Vasicek, Z.; Sekanina, L. EvoApprox8b: Library of Approximate Adders and Multipliers for Circuit
Design and Benchmarking of Approximation Methods. In Proceedings of the Design, Automation and Test in Europe Conference
(DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 258–261. [CrossRef]

13. Leon, V.; Asimakopoulos, K.; Xydis, S.; Soudris, D.; Pekmestzi, K. Cooperative Arithmetic-Aware Approximation Techniques for
Energy-Efficient Multipliers. In Proceedings of the Design Automation Conference (DAC), Las Vegas, NV, USA, 2–6 June 2019;
pp. 160:1–160:6. [CrossRef]

14. Leon, V.; Zervakis, G.; Soudris, D.; Pekmestzi, K. Approximate Hybrid High Radix Encoding for Energy-Efficient Inexact
Multipliers. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2018, 26, 421–430. [CrossRef]

15. Leon, V.; Zervakis, G.; Xydis, S.; Soudris, D.; Pekmestzi, K. Walking through the Energy-Error Pareto Frontier of Approximate
Multipliers. IEEE Micro 2018, 38, 40–49. [CrossRef]

16. Leon, V.; Paparouni, T.; Petrongonas, E.; Soudris, D.; Pekmestzi, K. Improving Power of DSP and CNN Hardware Accelerators
Using Approximate Floating-Point Multipliers. ACM Trans. Embed. Comput. Syst. 2021, 20, 1–21. [CrossRef]

17. Kahng, A.B.; Kang, S. Accuracy-configurable Adder for Approximate Arithmetic Designs. In Proceedings of the Design
Automation Conference (DAC), San Francisco, CA, USA, 3–7 June 2012; pp. 820–825. [CrossRef]

18. Shafique, M.; Ahmad, W.; Hafiz, R.; Henkel, J. A low latency generic accuracy configurable adder. In Proceedings of the Design
Automation Conference (DAC), San Francisco, CA, USA, 7–11 June 2015; pp. 1–6. [CrossRef]

19. Omidi, R.; Sharifzadeh, S. Design of low power approximate floating-point adders. Int. J. Circuit Theory Appl. 2020, 49, 1–11.
[CrossRef]

20. Leon, V.; Pekmestzi, K.; Soudris, D. Exploiting the Potential of Approximate Arithmetic in DSP & AI Hardware Accelerators.
In Proceedings of the International Conference on Field Programmable Logic and Applications (FPL), Dresden, Germany,
30 August–3 September 2021; pp. 1–2. [CrossRef]

21. Mrazek, V.; Hrbacek, R.; Vasicek, Z.; Sekanina, L. ALWANN: Automatic Layer-Wise Approximation of Deep Neural Network Ac-
celerators without Retraining. In Proceedings of the International Conference on Computer-Aided Design (ICCAD), Westminster,
CO, USA, 4–7 November 2019; pp. 1–8. [CrossRef]

22. Leon, V.; Stratakos, I.; Armeniakos, G.; Lentaris, G.; Soudris, D. ApproxQAM: High-Order QAM Demodulation Circuits with
Approximate Arithmetic. In Proceedings of the 2021 10th International Conference on Modern Circuits and Systems Technologies
(MOCAST), Thessaloniki, Greece, 5–7 July 2021; pp. 1–5. [CrossRef]

23. Lentaris, G.; Chatzitsompanis, G.; Leon, V.; Pekmestzi, K.; Soudris, D. Combining Arithmetic Approximation Techniques for
Improved CNN Circuit Design. In Proceedings of the IEEE International Conference on Electronics, Circuits and Systems (ICECS),
Glasgow, UK, 23–25 November 2020; pp. 1–4. [CrossRef]

24. Ragavan, R.; Barrois, B.; Killian, C.; Sentieys, O. Pushing the limits of voltage over-scaling for error-resilient applications. In
Proceedings of the Design, Automation and Test in Europe (DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 476–481.
[CrossRef]

25. Jiao, X.; Jiang, Y.; Rahimi, A.; Gupta, R.K. SLoT: A supervised learning model to predict dynamic timing errors of functional units.
In Proceedings of the Design, Automation and Test in Europe (DATE), Lausanne, Switzerland, 27–31 March 2017; pp. 1183–1188.
[CrossRef]

26. Hamkins, J. Performance of low-density parity-check coded modulation. In Proceedings of the IEEE Aerospace Conference,
Big Sky, MT, USA, 6–13 March 2010; pp. 1–14. [CrossRef]

27. Tasissa, A. Functional Approximation and the Remez Algorithm; Report 2013.Available online: https://sites.tufts.edu/atasissa/files/
2019/09/remez.pdf (accessed on 19 December 2021).

28. Tosato, F.; Bisaglia, P. Simplified soft-output demapper for binary interleaved COFDM with application to HIPERLAN/2. In
Proceedings of the IEEE International Conference on Communications, New York, NY, USA, 28 April–2 May 2002; pp. 664–668.
[CrossRef]

http://dx.doi.org/10.1016/j.optcom.2015.06.046
http://dx.doi.org/10.1186/s13638-021-01914-6
http://dx.doi.org/10.1109/TC.2015.2493547
http://dx.doi.org/10.1109/TC.2017.2672976
http://dx.doi.org/10.23919/DATE.2017.7926993
http://dx.doi.org/10.1145/3316781.3317793
http://dx.doi.org/10.1109/TVLSI.2017.2767858
http://dx.doi.org/10.1109/MM.2018.043191124
http://dx.doi.org/10.1145/3448980
http://dx.doi.org/10.1145/2228360.2228509
http://dx.doi.org/10.1145/2744769.2744778
http://dx.doi.org/10.1002/cta.2831
http://dx.doi.org/10.1109/FPL53798.2021.00049
http://dx.doi.org/10.1109/ICCAD45719.2019.8942068
http://dx.doi.org/10.1109/MOCAST52088.2021.9493421
http://dx.doi.org/10.1109/ICECS49266.2020.9294869
http://dx.doi.org/10.23919/DATE.2017.7927036
http://dx.doi.org/10.23919/DATE.2017.7927168
http://dx.doi.org/10.1109/AERO.2010.5446927
https://sites.tufts.edu/atasissa/files/2019/09/remez.pdf
https://sites.tufts.edu/atasissa/files/2019/09/remez.pdf
http://dx.doi.org/10.1109/ICC.2002.996940

Electronics 2022, 11, 39 14 of 14

29. Yoon, E. Maximum Likelihood Detection with a Closed-Form Solution for the Square QAM Constellation. IEEE Commun. Lett.
2017, 21, 829–832. [CrossRef]

30. Leon, V.; Xydis, S.; Soudris, D.; Pekmestzi, K. Energy-Efficient VLSI Implementation of Multipliers with Double LSB Operands.
IET Circuits Devices Syst. 2019, 13, 816–821. [CrossRef]

http://dx.doi.org/10.1109/LCOMM.2016.2642924
http://dx.doi.org/10.1049/iet-cds.2018.5039

	Introduction
	Related Work
	Telecommunication Functions on FPGAs
	Circuit Approximation Techniques

	Design of Approximate QAM Demodulation Circuits
	Exact LLR Architecture
	Approximate LLR Architecture
	Piecewise LLR Architecture
	Approximate ML Architecture
	Arithmetic Approximation Techniques
	Floating-Point Approximations
	Fixed-Point Approximations

	Experimental Evaluation
	Experimental Setup
	Exploration Results
	Pareto Trade-Off Analysis: Hardware Resources vs. Accuracy

	Conclusions
	References

