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Abstract: Nowadays state-of-the-art time-to-digital converters (TDCs) are commonly implemented in
field-programmable gate array (FPGA) devices using different variations of the wave union method.
To take full advantage of this method many design challenges need to be overcome, one of which is
an efficient data encoding. In this work, we describe in detail an effective algorithm to decode raw
output data from a newly designed multisampling wave union TDC. The algorithm is able to correct
bubble errors and detect any number of transitions, which occur in the wave union TDC output code.
This allows us to reach a mean resolution as high as 0.39 ps and a single shot precision of 2.33 ps in
the Xilinx Kintex-7 FPGA chip. The presented algorithm can be used for any kind of wave union
TDCs and is intended for partial hardware implementation.

Keywords: field programmable gate arrays; time measurements; time-to-digital converter (TDC);
wave union TDC; wave union encoder

1. Introduction

Wave union is one of the most popular methods for implementation of high-resolution
time-to-digital converters (TDCs) in field programmable gate array (FPGA) devices. This
method was first proposed by Wu and Shi in 2008 [1], and since then it has been used
for various applications including nuclear physics [2,3], time interval counters [4], light
detection and ranging (LiDAR) systems [5]. It has also undergone significant improvement
during this time, making it possible to obtain the highest performance of TDCs in the FPGA
technology in terms of the measurement rate, time resolution and precision [6–8]. However,
in order for this to be possible, several design challenges have to be overcome. An efficient
encoding scheme is one of them [6,9].

The idea of the wave union method is to feed a pulse train (a wave union, hence
the name of the method) to the input of a tapped delay line (TDL) whenever the start
hit occurs. Then the stop signal latches the current logic states of the delay line taps in a
related register. The start and stop pulses represent the beginning and end of the measured
time interval, respectively. As a result of the conversion, the register contains alternating
sequences of high and low logic states. Information about the duration of the measured
time interval is included in bit positions where these states change (0-1 and 1-0 transitions).
This process is further hindered by occurrence of the so-called bubble errors. The bubble
error is defined as a missing logic state “1” (or “0”) around the expected transition and
is a common phenomenon in flash analog-to-digital converters (ADC) [10]. Currently,
there can be observed increasing requirements for TDC converters in terms of resolution,
number of channels and measurement rate. These needs significantly increase the amount
of measurement data and therefore an encoder hardware implementation is desirable.

In [9] Wu proposed a 3-input AND gate-based encoder that detects pattern “001”
instead of “01” to solve single bubble errors and convert non-thermometer code to one-out-
of-N code. A similar approach, a folded thermo-to-binary encoder with NAND gate-based
bubble suppression, was used in [11]. A stepped-up tree encoder can be used in a second
stage to get the output data in natural binary code [12]. A ones-counter encoding scheme
was used to effectively decode data from multi-chain merged TDLs [13]. The same idea
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was then adopted into the wave union TDC [14]. All of these designs are in fact similar to
the solutions already used in flash ADCs [10]. With regard to the wave union TDCs, the
mentioned solutions allow to identify only a limited number of transitions (typically 1 or
2). Moreover, some implementations in very high process node FPGA devices (e.g., 20 nm
CMOS) consider only two transitions [15,16]. However, the highest precision converters
often use multiple transitions, e.g., 6 [4] or 8 [8]. A certain solution to this expectation
is the pre-encoder presented in [12]. The encoder is divided into so-called clusters and
each of them is capable to detect 1-0 transitions. The proposed solution is intended to
detect only one transition in a complete code but this idea (clustering) is extendable to
more transitions [8]. A similar approach, multiple six taps windows (clusters) on the
thermometer code value, was proposed in [17]. Clusters can be also used to solve simple
bubble errors (e.g., single and double bubbles as in [4]). However, using most advanced
FPGA devices for TDC implementation it is common to observe bubbles even on eight
subsequent bits [18] and then this method becomes insufficient. The clustering method can
be combined with decomposition [18] (simultaneously proposed by another research group
and called a sub-TDL [19]) to correct bubble errors. It is worth mentioning that all of these
works investigate identification of a determined number of transitions. Even when more
transitions occur, as is often the case for the wave union (WU) TDC with the infinite step
response (a wave union launcher type B [1]), some data (transitions) are lost to facilitate
data encoding [1,12]. As the method applied to encode the result from the TDC affects the
final performance of the conversion, it has to be carefully selected [20].

Recently, we have presented a new TDC architecture that combines the wave union
with multisampling [21]. This converter was capable of reaching subpicosecond resolution
(0.69 ps) but we have encountered significant problems with efficient data encoding. We
have further improved the TDC design and, in this work, we present a new algorithm
used to calculate values of time intervals based on the raw TDC output data. The new
encoding scheme deals effectively with a different number of transitions that can occur
in raw data, which has not yet been investigated in previous papers. The presented
algorithm can be used to efficiently encode raw output data of any type of the WU TDCs,
including converters with finite and infinite step responses (wave union type A and B,
respectively) [1], as well as with multiedge coding in independent coding lines [4] (also
known as the super wave union [16]).

2. Multisampling Wave Union TDC

Figure 1 presents a block diagram of a multisampling wave union (MSWU) TDC.
The circuit consists of a TDL, four registers, and two wave union launchers. Comparing
to [21], in this work two different types of launchers for start and stop signals were used.
In the start signal path we have used a type B wave union launcher (with the infinite step
response). This means that the start pulse initializes continuous generation of pulses that
are fed to the tapped delay line. The stop signal is applied to a type A wave union launcher
(with the finite step response). This launcher always creates 2 pulses (four edges: two rising
and two falling), which are used to latch four TDL samples in the registers. As each edge
of these pulses is shifted in time then the registers contain four different snapshots of a
wave union that propagates along the TDL. The first snapshot is latched in Register 1 and
then passed to Register 3 on the second rising edge of the wave union in the stop signal
path. Similarly, a second snapshot is latched in Register 2 and then passed to Register 4.
Both wave union launchers were built using look-up tables (LUTs) configured as logic
gates presented in Figure 1. The first launcher (WU launcher B) is a NAND gate-based
startable oscillator while the second one (WU launcher A) contains two edge detectors.
Proper timing was ensured by the use of manual placing and routing of these elements
in FPGA. The use of an additional launcher in the stop signal path together with a set of
registers allows increasing the amount of information about the measured time interval,
and thus improving measurement resolution and precision. This is in contrast to super WU
TDCs [4,16] where performance increase is obtained at the expense of an intensive logic
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resource usage. Continuous generation of pulses in the start path leads to a significant
complication of data encoding. So far this problem has been omitted by taking into account
only one or two transitions. Here we will show how to detect all transitions to improve
TDC performance.
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3. Test Setup

Two MSWU TDCs were implemented in a Xilinx Kintex-7 FPGA chip mounted in an
MTC 108 multichannel time interval counter [22]. Each TDL consists of 200 carry chain
multiplexers that ensure the fastest connection paths between subsequent elements in
programmable logic blocks. The TDL is connected to four registers made of 200 flip-flops
each. The MTC 108 counter contains, i.a., a frequency synthesizer configured to multiply the
10 MHz reference clock signal to frequency of 700 MHz. Then, a 700 MHz clock is used in
the FPGA device as a stop signal for the TDCs. Each TDC measures a time interval between
the occurrences of hits, related to rising edges of measured signals, and the nearest rising
edges of the high frequency clock signal. To test newly developed algorithms, described in
detail in the following sections, we have prepared a test setup presented in Figure 2.
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Figure 2. Test setup.

The MTC 108 counter was placed inside a PL-2J climatic chamber from ESPEC. The
chamber provided both a stable temperature (21 ◦C) for a long time and additional pro-
tection against potential external electromagnetic interferences. As the reference clock we
have used the rubidium standard clock FS725 (Stanford Research Systems) that provides
a highly stable 10 MHz signal (one second Allan Variance not worse than 2 × 10−11). A
single signal from the Model 745 time interval generator (Berkeley Nucleonics) was split
into two counter channels using the 4901.01.B power divider (Huber+Suhner). During the
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calibration procedure, the counter performed the statistical code density test (SCDT) [23]
using 100,000 samples from a calibrator circuit. The calibrator is an adjustable square wave
generator that produces an unstable signal with a frequency of around 100 kHz. This signal
is asynchronous with regard to the 700 MHz base clock and meets the requirements for the
SCDT presented in [24]. Raw calibration data (4 × 200 bits for each hit and each TDC) were
sent via the USB interface to the control computer. Dedicated scripts in MATLAB have
been developed that process data using two pre-encoders and one common post-encoder
in order to: (1) accurately identify current transfer functions of the TDCs using a calibra-
tion signal and then, (2) calculate the values of measured time intervals, generated by an
external source (BNC Model 745 and the splitter).

When splitting a single signal into two channels, the jitter of the reference time interval
is virtually removed because the same signal edge is registered in both TDCs. In fact, the
TDCs measure an offset between two channels in this case (cable lengths are approximately
the same). Assuming that this offset is relatively small, also the error due to limited stability
of the clock signal is minimized. Thus, the presented test setup can be regarded as the best
scenario where possibly the highest precision can be achieved. Additionally, we have also
tested MSWU performance by measuring different time intervals generated with the aid of
the BNC Model 745 delay generator.

4. Encoding Algorithms

The encoding problem related to the wave union method is presented in Figure 3. For
simplification, only 40 bits are investigated (imax = 40) instead of all 200. Let us assume that
two pulses (two rising and two falling edges) propagate along the TDL (Figure 3a). Then
the raw data (D) latched in the register can look like a string of zeros and ones presented in
Figure 3b. Logic states marked in red indicate bubble errors, i.e., unexpected logic state
“1” or “0”, which occurs shortly after the signal’s transitions. In [18] Song et al. proposed
a parameter called max bubble depth (MBD) to indicate the maximum number of bits
near the expected transition that can be susceptible to bubble errors. The value of the
MBD depends on a particular design: FPGA technology used, environmental conditions
(process, voltage and temperature—PVT), implementation details (placement and routing),
etc. In our case, we have found it experimentally to be equal to 5 (as it is also presented
in Figure 3). Binary data presented in Figure 3b should contain two transitions 0-1 and
two transitions 1-0, so a maximum number of transitions (tmax) is 4. Figure 3c presents
the data after bubble suppression. The bits with bubble errors were reordered (marked in
grey and underlined), which enables correct identification of the transition positions (R(t),
where t indicates transition number). Each R(t) can be treated as a single measurement, but
combined with others improves TDC performance.
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The use of the type B wave union launcher in the start path causes that depending
on the time interval duration the first register and the second one can contain a different
number of transitions (in the designed TDC from 4 for the shortest time intervals up to
8 for time intervals close to the TDC operation range, i.e., 1.43 ns). We have prepared two
2-stage algorithms in MATLAB software to find optimal encoding scheme that can be easily
implemented in hardware. First, we need to identify each transition position (R(t)) in all
four registers. Then, it is necessary to combine data from all registers into one result. For
the first stage, i.e., for a pre-encoder, we have taken two approaches: (1) counter-based and
(2) decomposition with clustering-based. The first approach is more straightforward to
analyze and easier to implement in software but is not easily transferable to hardware. The
second approach is preferred for hardware implementation but to be sure that it is properly
developed it has been compared with the counter-based encoder. The second stage of
the algorithm, i.e., a post-encoder that combines all R(t) from all registers, is common for
both pre-encoders.

4.1. Pre-Encoder: Counter-Based

Operation principle of the first pre-encoder is presented in Figure 4. To simplify, the
pre-encoder adds the number of logic states “1” or “0” in subranges whose boundaries are
determined by the first identified transition position extended by the MBD value. In detail,
the pre-encoder checks bit-by-bit (i indicates current bit number) for the first transition
0-1 or 1-0 (Step 1). When it is found, the number of “1” (or “0”) is calculated in a range
from bit 1 to bit i + MBD (Step 2). This value corresponds to a partial result R(t). Then, in
Step 3, all data (D) bits in this selected range (bit 1 to bit i + MBD) are set to “0” (or “1”).
All of these three steps are repeated unless all required transitions (tmax) are found or all
bits (imax) are checked.

Electronics 2022, 11, 30 5 of 12 
 

 

The use of the type B wave union launcher in the start path causes that depending on the 
time interval duration the first register and the second one can contain a different number of 
transitions (in the designed TDC from 4 for the shortest time intervals up to 8 for time intervals 
close to the TDC operation range, i.e., 1.43 ns). We have prepared two 2-stage algorithms in 
MATLAB software to find optimal encoding scheme that can be easily implemented in hard-
ware. First, we need to identify each transition position (R(t)) in all four registers. Then, it is 
necessary to combine data from all registers into one result. For the first stage, i.e., for a pre-
encoder, we have taken two approaches: (1) counter-based and (2) decomposition with clus-
tering-based. The first approach is more straightforward to analyze and easier to implement 
in software but is not easily transferable to hardware. The second approach is preferred for 
hardware implementation but to be sure that it is properly developed it has been compared 
with the counter-based encoder. The second stage of the algorithm, i.e., a post-encoder that 
combines all R(t) from all registers, is common for both pre-encoders. 

4.1. Pre-Encoder: Counter-Based 
Operation principle of the first pre-encoder is presented in Figure 4. To simplify, the 

pre-encoder adds the number of logic states “1” or “0” in subranges whose boundaries 
are determined by the first identified transition position extended by the MBD value. In 
detail, the pre-encoder checks bit-by-bit (i indicates current bit number) for the first tran-
sition 0-1 or 1-0 (Step 1). When it is found, the number of “1” (or “0”) is calculated in a 
range from bit 1 to bit i + MBD (Step 2). This value corresponds to a partial result R(t). 
Then, in Step 3, all data (D) bits in this selected range (bit 1 to bit i + MBD) are set to “0” 
(or “1”). All of these three steps are repeated unless all required transitions (tmax) are found 
or all bits (imax) are checked. 

 
Figure 4. Counter-based pre-encoder algorithm: Step 1—finding transitions 0-1 or 1-0; Step 2—
counting the number of logic states “0” or “1” in a selected range; Step 3—modification of the input 
data to search for another transition. 

Figure 4. Counter-based pre-encoder algorithm: Step 1—finding transitions 0-1 or 1-0; Step 2—
counting the number of logic states “0” or “1” in a selected range; Step 3—modification of the input
data to search for another transition.



Electronics 2022, 11, 30 6 of 12

Let us analyze the practical example presented in Figure 3b. The first bit transition
(0-1) is identified in bit 3. Then, we count number of “0s” in a range of data (D) from bit 1
to bit 3 + 5 = 8. There are five “0s” in this range so R(1) = 5. Next, all bits from 1 to 8 are set
to “1” and above steps are repeated for transition 1-0.

This algorithm was first presented in [21] but it did not work properly due to a very
high MBD and too short pulse widths in the wave union. The improved layout design
(including manual placing and routing) allowed us to minimize the MBD to 5, which solved
the problem. The presented algorithm allows for a relatively easy analysis of the obtained
results but its hardware implementation requires many clock cycles to perform Steps 2 to 3
multiple times, depending on tmax. Thus, we propose another approach, better suited for
TDC implementation in FPGA devices.

4.2. Pre-Encoder: Decomposition and Clustering-Based

Bubble errors can happen on the limited number of bits around the expected transition
(defined as MBD). The decomposition method aims to spread these bits into different
sub-sequences (sub-TDLs). Then, analyzing each sub-TDL separately, bubble errors are not
visible anymore. Sub-TDLs are created by taking every k-bin from the binary code latched
in a single register. Value k must be at least equal to the MBD, and in our particular case it
equals 5. The decomposition method principle is presented at the top of Figure 5.
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Figure 5. Pre-encoder with decomposition and clustering. Decomposition divides input data (D) to
several sub-sequences (sub-TDLs) to eliminate bubble errors. Clustering is used to identify transitions
occurrence in small chunks (four bits, c = 4) of the sub-TDLs. An additional (5th) cluster’s input is
used to identify boundary transitions (between clusters). Correction and summation merge results
from all clusters. Correctors correct the result when the given transition was not detected in all
clusters (e.g., value 8 is added to R(4)).

A cluster is a set of LUTs that can detect transitions in a certain number of bits (c).
A cluster size (number of considered bits in a one cluster) is defined in such a way that
there are no more than one transition 1-0 and one transition 0-1 in the analyzed part of the
code. The cluster is able to find the position for each of these transitions. For example, a
4-input cluster transforms code “0110” to the following decimal results: 1 (for 0-1 transition)
and 3 (for 1-0 transition). The clusters are multiplied to cover the sub-TDL range. An
additional cluster’s input is taken from the first input of a neighboring cluster. This allows
finding transitions that occur on the border of the two clusters. Thus, the clusters size in
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an example shown in Figure 5 is in fact 4 (c = 4), though in fact they have 5 inputs. In the
last cluster, the last bit of the code is connected to this additional input. A single cluster
gives results in a range from 0 to c, but the sub-TDL length can be even several times larger.
Thus, non-zero results from clusters must be enlarged by adding a value (p − 1) × c, where
p is a selected cluster number. All these operations are presented on the sample data in the
middle of Figure 5.

Appropriate transition numbers (t) from clusters are added up to get R(t). When the
last transition occurs close to the end of a raw data code (D), then some sub-TDL can miss
this transition. In Figure 5 such a case exists in a sub-TDL2. To obtain the proper output
result, a dedicated corrector is used to find whether a transition occurs in any of the clusters.
If so, then 0 results from clusters are corrected by adding a value that equals to sub-TDLs
size (8 in the example presented in Figure 5). Assuming that at least one transition 0-1 and
one transition 1-0 are always latched, the corrector circuits are applied only for the third
and subsequent transitions.

The pre-encoder based on decomposition and clustering can be implemented relatively
easily in an FPGA device. The decomposition method requires only to reconnect signals
between the TDC and the clusters. The clusters are implemented in the LUTs, a vital part
of FPGA devices. In comparison to the encoder presented in the previous paragraph, this
one can take advantage of parallelism and pipelining, which means that each step can be
executed simultaneously for all bits and partial results can be stored in registers.

4.3. Post-Encoder

The pre-encoder allows detecting the position of each transition in code (R(t)). In the
multisampling WU TDC, there are overall 4 registers and all of them can store multiple
transitions. A post-encoder is used to convert all of this data into a single value.

After completing the measurement, Register 3 contains the first sample of the TDL
state, Register 4 contains the second sample, Register 1 contains the third sample, and
Register 2 the fourth one. Samples 1 and 2 always contain information about the first pulse
in the wave union. When we add all R(t)s from these registers then it turns out that the
higher the result, the longer the measured time interval. In Samples 3 and 4, the first pulse
is not visible because it passed through the TDL before its state was sampled by the second
pulse from the type A wave union launcher. This is shown in the example in Figure 6. Thus,
the sum of R(t)s does not give clear information about the measured time interval. The role
of the post-encoder is to correct results from registers 1 and 2 (Samples 3 and 4, respectively)
according to related data stored in Registers 3 and 4 (Samples 1 and 2, respectively) and
merge all results to a single output code.
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Figure 6. MSWU TDC operation principle. Register 1 (Sample 3) contains different number of
transitions than other registers resulting in lower value of ΣRsamp3(t).

We executed 100,000 measurements of the calibration signal, then performed pre-
encoding and finally add all transition positions for each sample stored in all registers:
ΣRsamp1(t), ΣRsamp2(t), ΣRsamp3(t), ΣRsamp4(t). In terms of both Samples 1 and 2, the
higher the ΣR(t) value, the longer the time interval. Thus, we can add ΣRsamp1(t) to
ΣRsamp2(t) and reorder obtained values from the smallest (shortest time interval) to the
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highest (longest time interval—TDC operation range). Results latched in all registers
for single measurements are strictly related to each other. Thus, we can also reorder
ΣRsamp3(t) and ΣRsamp4(t) according to the sum: ΣRsamp1(t) plus ΣRsamp2(t). The results of
this operation are presented in Figure 7a.
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added to selected ΣRsamp3(t) and ΣRsamp4(t) in order to obtain a monotonic transfer function.

Values ΣRsamp3(t) and ΣRsamp4(t) change non-monotonically with respect to increasing
time interval duration. This is because Samples 3 and 4 can be taken when the beginning of
the wave union (first pulse) already propagates through the TDL. In particular, for a one
time interval there can be 8 transitions in the register, while for a bit longer time interval
we can obtain 7 transitions because one pulse already flushed out from the TDL, while a
new one has not appeared yet (see Figure 6). Hence the non-monotonicity in ΣRsamp3(t)
and ΣRsamp4(t). The post-encoder aims to correct these values using information from
ΣRsamp1(t) plus ΣRsamp2(t), to achieve monotonicity. The post-encoder first finds places of
discontinuity in the sorted data with ΣRsamp3(t) and ΣRsamp4(t), and then adds correction
factors (F) for selected ranges.

Correction factors are defined as differences between maximum and minimum values
of ΣRsamp3(t) (or ΣRsamp4(t) in neighboring continuous ranges (calibration sample num-
bers, marked in grey in Figure 7a). After making corrections values of ΣCRsamp3(t) and
ΣCRsamp4(t), where CR means results corrected by F, they become monotonic (Figure 7b).
Final output codes (OC) for each calibration sample can then be calculated as:

OC = ∑t Rsamp1(t) + ∑t Rsamp2(t) + ∑t CRsamp3(t) + ∑t CRsamp4(t). (1)

5. Measurement Results

In Section 4 we described how to obtain a single, decimal value from the MSWU
TDC. Next, this result has to be translated to time domain. In the designed TDC we tested
three cases. First, we investigated only the first transition in Register 1 (Rsamp1(1)). This
corresponds to the simple and popular digital method known as the flash TDC or the time
coding line (TCL) [23]. In the second case, we investigated results only from Register 3
(sample 1: ΣRsamp1(t)). To some extent, we can regard this as a typical WU TDC (in fact,
we have a different number of transitions depending on the measured time interval). The
last case refers to the results obtained when all samples (results from all four registers)
are taken into account (Equation (1), MSWU TDC). Note that for cases 1 and 2 we used
the described pre-encoding procedure and for the last case we additionally employ the
post-encoding too.

According to the principles of the SCDT, the number of occurrences of each of the
codes during calibration can be divided by the calibration sample size and multiplied by
the TDC operation range to determine the size of a given quantization step. The results of
such calculation for all three mentioned cases are presented in Figure 8. For the MSWU
TDC we obtained overall 3688 possible output codes. Taking into account the 1.43 ns TDC
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operation range, in the configuration presented in Figure 2, the mean resolution equals
0.39 ps. Overall, the mean resolution is improved more than 25 times comparing to the
TCL (from about 10.35 ps to 0.39 ps).

Electronics 2022, 11, 30 9 of 12 
 

 

operation range, in the configuration presented in Figure 2, the mean resolution equals 
0.39 ps. Overall, the mean resolution is improved more than 25 times comparing to the 
TCL (from about 10.35 ps to 0.39 ps). 

 
Figure 8. Quantization bin sizes for different TDCs. 

According to the principles of the SCDT, the number of occurrences of each of the 
codes during calibration can be divided by the calibration sample size and multiplied by 
the TDC operation range to determine the size of a given quantization step. The results of 
such calculation for all three mentioned cases are presented in Figure 8. For the MSWU 
TDC we obtained overall 3688 possible output codes. Taking into account the 1.43 ns TDC 
operation range, in the configuration presented in Figure 2, the mean resolution equals 
0.39 ps. Overall, the mean resolution is improved more than 25 times comparing to the 
TCL (from about 10.35 ps to 0.39 ps). 

Calibration data allow us to (1) construct the TDC transfer function and (2) define 
correction factors (F) as well as continuous ranges of ΣRsamp3(t) and ΣRsamp4(t). The transfer 
function is a cumulative sum of all bin sizes and is presented in Figure 9 for all three 
considered cases. The identified correction factors and continuous ranges are used to cor-
rect raw measurement data obtained in Register 1 and Register 2 (Samples 3 and 4, respec-
tively) during measurements. 

 
Figure 9. Transfer functions of different TDCs. 

After completing the calibration, we executed 2000 measurements (1000 in each chan-
nel) of a constant time interval (approximately 0 s). A time interval between hit and the 
nearest edge of clock signal measured in a single TDC was calculated using equation: ∆𝑡 = ( ) + ∑ 𝑏(𝑗), (2) 

where b(j) is a j-th bin size and OC indicates obtained output code. 
The value of the time interval between the pulses obtained by splitting a single pulse 

into two channels was calculated as the difference Δt measured for the MSWU TDCs start 
and stop (see Figure 2). The obtained results are presented in Figure 10. Note that this time 
interval Δt is in fact the difference between two measurements. Assuming that both im-
plemented TDCs have similar performance we can estimate a single shot precision (SSP) 
as a standard deviation of obtained results divided by a square root of 2. 

Figure 8. Quantization bin sizes for different TDCs.

Calibration data allow us to (1) construct the TDC transfer function and (2) define
correction factors (F) as well as continuous ranges of ΣRsamp3(t) and ΣRsamp4(t). The
transfer function is a cumulative sum of all bin sizes and is presented in Figure 9 for all
three considered cases. The identified correction factors and continuous ranges are used
to correct raw measurement data obtained in Register 1 and Register 2 (Samples 3 and 4,
respectively) during measurements.
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After completing the calibration, we executed 2000 measurements (1000 in each chan-
nel) of a constant time interval (approximately 0 s). A time interval between hit and the
nearest edge of clock signal measured in a single TDC was calculated using equation:

∆t =
b(OC)

2
+ ∑OC−1

j=1 b(j), (2)

where b(j) is a j-th bin size and OC indicates obtained output code.
The value of the time interval between the pulses obtained by splitting a single pulse

into two channels was calculated as the difference ∆t measured for the MSWU TDCs start
and stop (see Figure 2). The obtained results are presented in Figure 10. Note that this
time interval ∆t is in fact the difference between two measurements. Assuming that both
implemented TDCs have similar performance we can estimate a single shot precision (SSP)
as a standard deviation of obtained results divided by a square root of 2.
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Using the simple and popular TCL method we achieved SSP of about 5 ps in the
test setup presented above, however, using the newly designed MSWU TDC improves
the SSP more than twice (to 2.33 ps). When compared to results presented in [21] we
did not observe any outliers. This proves that the presented algorithm works efficiently.
Furthermore, the same results were obtained using both described pre-encoders with one
common post-encoder.

In the last test we have used two outputs of the time interval generator BNC Model 745
to produce different time intervals within the MSWU TDC operation range (1.43 ps).
Obtained results are presented in Figure 11. The presented SSP is slightly worse than the
one presented in Figure 10 due to a timing jitter between start and stop pulses produced by
the source generator. However, the presented algorithm still allows us to maintain better
than 2.9 ps SSP obtained in a mid-range FPGA device (Xilinx Kintex-7).
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6. Discussions

The very high SSP (2.33 ps) in the TDC was obtained in a very specific test setup
in which all potential sources of additional errors were minimized. This confirms both
the proper operation of the developed encoding algorithm and the great measurement
potential of the MSWU TDC. Comparing to other related works, we have shown how to
take advantage of all transitions that can occur in the raw data from the WU TDC, rather
than skipping them. This is vital for the presented MSWU TDC but can also improve the
performance of the WU TDC based on the infinite step response launchers.

So far, all the calculations presented have been performed in MATLAB and require
the transmission of 800-bits of data for each single measurement (4 registers, 200 flip-flops
each). The next step is to move the presented algorithm directly to hardware. For this
purpose, the pre-encoder with decomposition and clustering functions was developed. The
decomposition method changes the order of outputs from the registers. It does not require
any logic elements such as LUTs or flip-flops, only interconnection resources. Clusters are
made as bunches of LUTs connected to clustering stage adders (see Figure 5). A single 4-bit
cluster (c = 4, as in Figure 5) requires three 5-input LUTs (result 0—no transition, results
1-4 –positions of transitions). Thus, implementation of four 200-bits registers requires
4 × 50 × 3 = 600 LUTs. The most time-demanding part of encoding algorithm is that
related to the operation of multibit adders that merge results from the clusters. However, it
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is already proven that using multiple pipeline stages these circuits can operate with very
high throughput, e.g., 277 MSa/s [13]. Optimal cluster size as well as a number of pipeline
stages will be the subject of further considerations during hardware implementation of
the pre-encoder to find trade-off between logic resource utilization and throughput. The
hardware pre-encoder, solving bubble errors and allowing to detect variable number of
transitions, can be directly used in most WU TDCs as well as in the TCL-based TDCs (see
Figures 8–11). The post-encoder can further boost TDC performance in solutions based on
WU type B and MSWU.

In contrast to the pre-encoder, the post encoder is not easily transferable to the hard-
ware. However, for the presented TDC design, the pre-encoder allows minimizing the
amount of data that needs to be transferred more than 18-times, from 4 × 200-bits to
4 × 11-bits (a sum of 8 transition positions where 8 bits are required to store a single po-
sition in a data composed of 200-bits). The computational cost of this part is strongly
related to the number of calibration samples. During our experiment we have applied
100,000 measurement samples to build the transfer function (sorting results from registers
and adding correction factors F). This calculation, performed without any optimization and
after storing all required samples, took several seconds in MATLAB. In addition, described
procedure must be executed only once. Then, during measurements, the post-encoder
operates much faster, only adding correction factors and then reading final time interval
values from the stored transfer function.

7. Conclusions

An efficient hardware encoder is still of interest to researchers working on the WU
TDCs. This is especially important taking into account new emerging architectures such as
the MSWU TDC. The presented 2-step software algorithm, with pre- and post-encoders, is
designed to be at least partially implemented in hardware. Its tests confirm the algorithm’s
proper and error-free operation. The algorithm can be used in any kind of the WU TDCs
that are already applicable in LIDAR systems, measurement instrumentations, or nuclear
physics. The pre-encoder with decomposition and clustering can be directly applied to
WU TDCs based on launchers with finite step response (type A). Combined with the post-
encoder it can enhance also the performance of WU TDCs based on launchers with infinite
step response (type B). This will be achieved by taking into account all valid transitions in
the output code, not just one or two as it was presented in previous works. Additionally,
the algorithm allows us to take full advantage of the newly developed MSWU TDC by
obtaining one of the highest performance in such kind of converters implemented in FPGA
devices (single shot precision better than 2.9 ps, while the resolution as high as 0.39 ps).
Although this paper is exclusively focused on data encoding problem, in future work we
are going to transfer the pre-encoder to hardware and provide a full characterization of the
newly designed MSWU TDC.
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