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Abstract: To solve the problems of high computational complexity and unstable image quality
inherent in the compressive sensing (CS) method, we propose a complex-valued fully convolutional
neural network (CVFCNN)-based method for near-field enhanced millimeter-wave (MMW) three-
dimensional (3-D) imaging. A generalized form of the complex parametric rectified linear unit
(CPReLU) activation function with independent and learnable parameters is presented to improve
the performance of CVFCNN. The CVFCNN structure is designed, and the formulas of the complex-
valued back-propagation algorithm are derived in detail, in response to the lack of a machine
learning library for a complex-valued neural network (CVNN). Compared with a real-valued fully
convolutional neural network (RVFCNN), the proposed CVFCNN offers better performance while
needing fewer parameters. In addition, it outperforms the CVFCNN that was used in radar imaging
with different activation functions. Numerical simulations and experiments are provided to verify the
efficacy of the proposed network, in comparison with state-of-the-art networks and the CS method
for enhanced MMW imaging.

Keywords: millimeter-wave imaging; compressive sensing; complex-valued fully convolutional
neural network (CVFCNN); complex parametric rectified linear unit (CPReLU) activation function;
real-valued fully convolutional neural network (RVFCNN)

1. Introduction

Millimeter-wave (MMW) imaging is widely applied in remote sensing [1,2], indoor
target tracking [3], concealed weapons detection [4,5], and so on. It offers high spatial
resolutions of the target under test, even behind some kind of barrier. In the past few
decades, the regularized iterative methods, especially compressive sensing (CS)-based
methods [6–8], have been widely employed to improve the image quality. In most cases,
solving such ill-posed inverse problems leads to high computational complexity and
unstable recovered results. Thus, the parameters of the CS method need to be carefully
selected.

In recent years, deep learning methods have received much attention in many fields,
such as radar monitoring [9,10], hand-gesture recognition [11,12], and radar imaging [13,14].
The network parameters were optimized in the training stage, which was time-consuming.
However, when it comes to the testing stage, the processing of the network is usually fast
and efficient.

In [13,14], a convolutional neural network (CNN) was employed for enhanced radar
imaging. It can achieve better image quality than those achieved using Fourier meth-
ods. The undersampling scenario was approached using CNN in [15–17], where the
initial radar imaging results were enhanced by CNN. A trained CNN-based method was
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proposed in [18] to realize moving-target refocusing and residual clutter elimination for
ground moving-target imaging with synthetic aperture radar (SAR). The authors of [19]
proposed a novel shuffle-generative adversarial network (GAN) using the autoencoder
separation method to separate moving and stationary targets in SAR imagery. In [20], a
three-stage approach was presented for ground moving-target indications (GMTI) in video
SAR based on machine learning algorithms. In order to achieve super-resolution with a
small amount of data, the image was restored through U-net and the resolution was further
improved by a CS algorithm [21]. The authors of [22] proposed a deep learning method
for three-dimensional (3-D) reconstruction and imaging via MMW radar. It generates
two-dimensional (2-D) depth maps from the original data, and then generates a 3-D point
cloud from the depth maps. In [23], the authors introduced a system for MMW-enhanced
imaging through fog, which recovers high-resolution 2-D depth maps of cars from raw
low-resolution MMW 3-D images with a GAN architecture. Most deep learning methods
are based on the real-valued neural network (RVNN), since it is easy to construct a network
using the popular real-valued machine-learning library. They do not follow the calculation
rules of complex numbers and the phase of reconstruction results is usually not preserved.
However, millimeter-wave imaging is related to the processing of complex-valued signals.
The phase information is useful in high-precision image reconstruction and has a potential
research value in target classification [24–26].

The concept of a complex-valued neural network (CVNN) was first proposed in [27].
Compared with RVNN, the basic rules of complex operations in CVNNs can reduce the
number of parameters of the neural network, so as to weaken the ill-posed characteristics
of the problem and improve stability [28]. Although the CVNN has attractive properties
and potentials, research progress is slow due to the lack of a machine learning library for
designing such models [29]. Even though research into CVNNs is difficult, in recent years
there have been good results for the research of radar imaging. A CVNN was used for 2-D
inverse SAR imaging to achieve efficient image enhancement in [30,31]. For undersampling
SAR imaging, an algorithm with motion-compensation through a CVNN was proposed
in [32] to eliminate the effect of motion errors on imaging results. To isolate moving targets
from stationary clutter and refocus the target images, a novel CVNN-based method was
proposed in [33] for GMTI, using a multichannel SAR system. With regard to the structure
of neural networks, studies have shown that the use of a fully convolutional network can
reduce the complexity of the model and avoid the limitations of image size [15,31,34]. In this
paper, we propose a complex-valued fully convolutional neural network (CVFCNN) with a
generalized form of complex parametric rectified linear unit (CPReLU) activation function
for MMW 3-D imaging. The complex-valued back-propagation algorithm is derived. The
presented CPReLU activation function has independent and learnable parameters for real
and imaginary parts. It can adjust parameters adaptively, avoid situations where neurons
are not activated, and improve the performance of a CVFCNN.

The rest of this paper is organized as follows. Section 2 introduces the concept and
framework of a CVFCNN. A CVFCNN with a generalized CPReLU activation function is
proposed for near-field-enhanced MMW 3-D imaging. The results of numerical simulations
and measured data are shown in Section 3. Finally, the conclusions are summarized in
Section 4.

2. Enhanced MMW 3-D Imaging Using CVFCNN
2.1. Framework of Enhanced MMW Imaging via CVFCNN

The framework of enhanced MMW 3-D imaging via a CVFCNN is shown in
Figure 1. This framework is similar to the enhanced radar imaging via neural network
used in [14–16,30,31], while the initial imaging method and the structure of a CVFCNN
are different. The algorithm is divided into the training stage and the testing stage. In the
training stage, the dataset is generated according to the MMW imaging model. The initial
MMW images and the corresponding quality-enhanced ones are treated as the inputs and
outputs of the CVFCNN model, respectively. While in the testing stage, the echo data is
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firstly processed with a conventional 3-D imaging algorithm to obtain the input images of
the trained CVFCNN. Then, the enhanced images can be produced through the outputs of
the CVFCNN.
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Figure 1. Framework of enhanced MMW 3-D imaging via the CVFCNN.

The structure of the proposed CVFCNN is shown in Figure 2. The operations of
complex convolution and multichannel summation with a bias of the convolution layer are
expressed by:

zl
p =

D
∑

d=1

[
Re(kl

d,p)⊗ Re(xl
d)− Im(kl

d,p)⊗ Im(xl
d)
]
+ Re(bl

p)

+i
D
∑

d=1

[
Re(kl

d,p)⊗ Im(xl
d) + Im(kl

d,p)⊗ Re(xl
d)
]
+ iIm(bl

p)
(1)

where p = 1, . . . , P, l = 1, . . . , lo. For the layer, l, the numbers of input and output channels
are D and P, respectively. Here, xl

d ∈ CH×W represents the input feature map with a size
of H ×W, kl

d,p ∈ Ch×w denotes the convolution kernel, and bl
p ∈ C is a bias. The symbol

“⊗” indicates a valid convolution, and zl
p ∈ CH′×W ′ denotes the result of a multichannel

summation with bias, where H′ = H− h + 1 and W ′ = W −w + 1. “Re” and “Im” indicate
calculations of the real and imaginary parts of the complex variables, respectively. If we
assume that the feature map size of each layer remains the same, the input xl

d should be
zero-padded.
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Differently from the complex rectified linear unit (CReLU) used in [29,30], we present
a complex parametric rectified linear unit (CPReLU) activation function, which extends
the parametric rectified linear unit (PReLU) of RVNN to CVNN. A CPReLU with constant
parameters, shared by real and imaginary parts, was proposed in [31]. Conversely, our
proposed CPReLU has independent and learnable parameters for real and imaginary
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parts, respectively, which can be treated as a generalized form of CPReLU. It can adjust
parameters adaptively to improve the performance of the neural network.

The output feature map yl
p ∈ CH′×W ′ of layer l can be achieved by:

yl
p = f (zl

p)

= max
[
0, Re(zl

p)
]
+ aR

l
pmin

[
0, Re(zl

p)
]

+i
[
max

[
0, Im(zl

p)
]
+ aI

l
pmin

[
0, Im(zl

p)
]] (2)

where the nonlinear activation function f (·) is referred to as the CPReLU, and aR
l
p ∈ R and

aI
l
p ∈ R are parameters of the generalized CPReLU. Then, yl

p will serve as the input feature
map xl+1

p for the next layer.
The output image of the output layer lo is given by:

ylo
1 = zlo

1 (3)

Clearly, there is no activation function in the output layer lo, thus avoiding the limita-
tion and influence on the value range of the output image.

To further demonstrate the superiority of the proposed CPReLU, we employ the analysis
method outlined in [29] to analyze the activation region of the proposed CPReLU in the
complex domain, as shown in Figure 3. For the CReLU, the negative values of the real and
imaginary parts are directly set to zero, so the information of these parts is lost. For CPReLU,
as established in [31], since the parameter µ is a fixed value it cannot be adjusted adaptively
and needs to be set manually, which is not flexible. In contrast, the parameters aR

l
p and aI

l
p

for the real and imaginary parts of the proposed CPReLU are self-adaptive in the training
stage of the network, so there is no need to adjust the parameters manually, which also
makes the neural network more flexible in the operation of amplitude and phase.
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2.2. Training Process

Given the initial image and the ground-truth image, the parameters of CVFCNN are
learned end-to-end by minimizing the cost function of training data. The cost function is
the sum of the squared errors (SSE), which is defined as:

E =
1
2

H

∑
i=1

W

∑
j=1


[
Re

[
ylo

1 (i, j)
]
− Re[t(i, j)]

]2

+
[
Im

[
ylo

1 (i, j)
]
− Im[t(i, j)]

]2

 (4)

where t(i, j) represents the ground-truth image, and ylo
1 (i, j) denotes the output image.

Note that this form will retain the phase of the image, which is essential for high-precision
image reconstruction. The application of the image phase in target classification is also the
subject of much interest [24–26].

The cost function in (4) is minimized by the complex-valued back propagation algo-
rithm that calculates the derivatives of the cost function with respect to the parameters,
according to the complex chain rule. The parameters are updated along the direction of
negative gradient.

In the following section, we provide the formulas for calculating the gradient. Firstly,
the intermediate variables, i.e., the error terms of the output layer, lo, and the hidden layer,
l, are calculated, respectively, by:

δlo = ∂E
∂Re(zlo

1 )
+ i ∂E

∂Im(zlo
1 )

=
[
Re(ylo

1 )− Re(t)
]
+ i

[
Im(ylo

1 )− Im(t)
] (5)

δl
p = ∂E

∂Re(zl
p)
+ i ∂E

∂Im(zl
p)

=
∂Re(yl

p)
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 −rot180◦
[
Im(kl+1
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]
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q )

+rot180◦
[
Re(kl+1

p,q )
]
⊗̃Im(δl+1

q )


(6)

where “⊗̃” is called the same convolution operation, which leads to H′ = H and W ′ = W
when the input and output sizes of convolution are H ×W and H′ ×W ′, respectively. The
variable “rot180◦” denotes a 180-degree rotation.

After we obtain the error terms, the derivatives of the cost function with respect to
kl

d,p and bl
p, respectively, are given by:

∂E
∂kl

d,p
= δl

p ⊗ rot180◦(xl
d)
∗

(7)

∂E
∂bl

p
=

H

∑
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W

∑
j=1

δl
p(i, j) (8)

where “*” denotes conjugation. The derivatives with respect to aR
l
p and aI

l
p are expressed as:
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l
p
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[
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 (9)
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where p = 1, . . . , P, and P and Q denote the numbers of input and output channels for
layer l + 1, respectively.

After obtaining the derivatives of the above parameters, we employ the method of
momentum stochastic gradient descent with weight decay [35] to update the parameters.
In each update, the stochastic gradient descent method only selects a subset of training
data to estimate the derivatives [36].

2.3. Parameter Initialization

To make the signal not be greatly amplified or weakened after passing through the
multi-layer network, we need to initialize the network parameters reasonably, which
contributes to ensuring the stability of the training process. For complex Gaussian random
variables, when their real and imaginary parts are independent Gaussian distributions with
zero mean and the same variance, their amplitude and phase obey the Rayleigh distribution
and the uniform distribution, respectively [29]. For CVFCNN with CPReLU, the variance
of weights is given by:

Var(wl
i) = 2σ2 = 2/[(1 + a2)nl−1] (10)

where i = 1, 2, . . . nl−1 and the Rayleigh distribution parameter σ is:

σ = 1/[(1 + a2)nl−1]1/2 (11)

where wl
i is the weight of neuron in layer l, which is chosen as kl

d,p in our experiments, nl−1

is the number of neurons in the layer l − 1 corresponding to wl
i , and a denotes the initial

value of aR
l
p and aI

l
p. Here, we choose a = 0.25. The phase of wl

i can be initialized using
the uniform distribution U(0, 2π), and bl

p can be initialized as zero.

3. Results
3.1. Numerical Simulations

The structures of several enhanced imaging approaches, based on CNN and CS, are
shown in Figure 4. The phase shift migration (PSM) algorithm is used for the initial
imaging, also known as the range stacking technique [37–40]. The variables CConv and
Conv represent the complex and real convolutions, respectively. In the CS method, we
employ the PSM operator-based CS algorithm given in [37] with the constraints of l1-norm
and TV-norm. Next, we will provide comparisons of these methods through simulations
and experiments.

The parameters for generating the simulated dataset are shown in Table 1. The data
generation method is similar to that used in [30], but we generate the initial images using
the PSM algorithm. In addition, both the initial images and the ground-truth images
contain phases. For different sampling rates, 2048 groups of simulated data are generated
respectively, including pairs of initial images and ground-truth images. Among them,
1920 groups of data are used as the training set, and the remaining 128 groups are treated
as the testing dataset. The above neural networks are trained using the same initialization
parameters. RVFCNN is initialized by the real and imaginary parts of CVFCNN. The
method of momentum stochastic gradient descent with weight decay is used to update
the network parameters. The momentum factor is set to be 0.5 for all parameters. For the
parameters of convolution kernels and biases, the weight decay coefficient is 0.001 and the
learning rate is 6 × 10−6. The parameters of CPReLU and PReLU are initialized to be 0.25
without weight decay, and the learning rate is 6 × 10−4. We trained for 8 epochs with a
batch size of 16. The networks were programmed based on MATLAB, implemented on a
computer platform with an Intel Xeon E5-2687W v4 CPU.
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Figure 4. Structures of enhanced MMW 3-D imaging: (a) the proposed CVFCNN (CPReLU);
(b) RVFCNN (PReLU); (c) CVFCNN (CReLU); (d) operator-based CS.

Table 1. Parameters for generating simulated data.

Parameter Value

Frequency (GHz) 34.5
Aperture size (m) 0.25 × 0.25

Sampling interval (mm) 5
Imaging range (m) 0.25 m~0.45 m

Beam width of antenna element (◦) 55
Original resolution (mm) 5

Enhanced imaging resolution (mm) 2.5
Image pixels 256 × 256

The networks are randomly initialized 5 times during training, Table 2 shows the
average for the sum of the squared errors between the imaging results and the ground-truth
images on the testing dataset. CPReLU1 represents the CPReLU demonstrated in [31] with
constant parameters, and the parameters are set as the initial value, i.e., 0.25. CPReLU2
refers to the proposed adaptive CPReLU, with independent real and imaginary parameters.
Note that the neural network methods outperform both the traditional PSM method and
the CS method with respect to different data ratios. The proposed CVFCNN (CPReLU2)
possesses the minimum number of errors among the neural network methods. We also note
that the parameters of RVFCNN are twice those of CVFCNN [28]. Specifically, CVFCNN
(CPReLU1) and CVFCNN (CPReLU2) contain 38,032 real numbers, CVFCNN (CReLU)
contains 37,936 real numbers, and RVFCNN (PReLU) contains 75,968 real numbers in this
example. However, RVFCNN does not perform better. The CVFCNN (CPReLU1) has
relatively poor performance, which means it is unreliable to directly set a constant value as
the parameter of CPReLU1. Similarly, the performance of CReLU is also inferior to that of
CPReLU2, due to being without adaptive parameter adjustments.
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Table 2. Average SSE between imaging results and ground-truth images on the testing dataset.

Methods 25% Data 50% Data 75% Data 100% Data

PSM 1214.51 653.47 392.01 261.44
PSM-CS 142.37 62.65 56.93 55.84

RVFCNN (PReLU) 83.57 58.54 47.82 39.68
CVFCNN (CReLU) 83.82 59.14 48.02 39.93

CVFCNN (CPReLU1) 84.87 61.39 50.47 42.67
CVFCNN (CPReLU2) 82.74 58.21 47.18 39.19

The training time for different network architectures is shown in Table 3. We note that
CVFCNN (CReLU) has the fastest training speed since the CReLU contains operations in-
cluding zero. RVFCNN (PReLU) contains more channels, so the training speed is slow. The
proposed CVFCNN (CPReLU2) is slightly slower than CVFCNN (CReLU) and CVFCNN
(CPReLU1) because the parameters of the CPReLU2 activation function need to be updated
adaptively during the training stage. However, in general, people pay more attention to
the processing time of the testing stage, as shown in Table 4.

Table 3. Training-time comparison on the training dataset.

Methods CPU(h)

RVFCNN (PReLU) 22.6
CVFCNN (CReLU) 13.3

CVFCNN (CPReLU1) 15.2
CVFCNN (CPReLU2) 15.4

Table 4. Processing-time comparison on the testing dataset.

Methods CPU(s) GPU(s)

PSM 0.12 /
PSM-CS 22.82 /

RVFCNN (PReLU) 1.18 0.10
CVFCNN (CReLU) 0.71 0.08

CVFCNN (CPReLU1) 0.72 0.08
CVFCNN (CPReLU2) 0.72 0.08

Table 4 indicates the average processing time for a single image, where GPU time
means the time spent when we input the image obtained by the PSM algorithm into the
neural network and evaluate the processing time on the GPU. The NVIDIA TITAN Xp card
is utilized to record the GPU time. Note that the neural network methods run much faster
than the CS method, due to being without iterations. In addition, in terms of CS methods,
we need to readjust the parameters for different types of targets, while CNN-based methods
can obtain results very rapidly after training the parameters of the network. The processing
time of the proposed CVFCNN (CPReLU2) on the CPU is slightly longer than that of
CVFCNN (CReLU) but with a lower SSE, as shown in Table 2. Usually, in order to obtain a
better-quality image, the cost of a little processing time could be ignored. In addition, when
processed by the GPU, the processing time difference between CVFCNN (CPReLU2) and
CVFCNN (CReLU) in this simulation experiment is very small, being less than 0.01 s.

3.2. Results of the Measured Data

Here, we present experiments on the real measured data by a Ka band system operat-
ing at 32~37 GHz, as shown in Figure 5. The wide-band linear array forms a 2-D aperture
through mechanical scanning. The parameters for the measured data are provided in
Table 5. The measured targets are located at different distances from the antenna array, as
shown in Figure 6a. The 2-D images are obtained through the maximum value projection
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of the 3-D results. Figure 6b demonstrates the imaging result of the PSM, using only 50%
of the full data. Figure 6c illustrates the result of the CS method after repeated artificial
parameter optimization. It can be seen that in order to suppress the aliasing artifacts and
sidelobes of the image, the amplitudes of the targets are weakened; the parameters of the
CS algorithm need to be adjusted according to the states of the scenes and the objects.
Figure 6d–g shows the results of the CNN methods. Note that the CNN methods can
achieve better results than the traditional PSM algorithm and perform competitively with
the CS method or are even better, especially for the amplitude maintenance of the image.
More importantly, CNN methods have strong robustness in terms of different objects and
scenes in the testing stage. In regard to the CNN methods, as indicated by the green arrows,
the amplitudes of the knife blade of CPReLU1 (Figure 6f) and CPReLU2 (Figure 6g) are
more uniform than those of PReLU (Figure 6d) and CReLU (Figure 6e). Note from the
detailed subfigures that the result of the proposed CPReLU2 in Figure 6g exhibits lower
sidelobes than the results in Figure 6d–f, respectively, wherein the sidelobes are indicated
by red arrows. The experimental results show that the proposed CPReLU2 performs best
of the tested methods.
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Table 5. Parameters for Measured Data.

Parameter Value

Center frequency (GHz) 34.5
Bandwidth (GHz) 5

Sampling interval (mm) ∆x = 4, ∆y = 5
Beam width of antenna element (◦) 55

Imaging range (m) 0.3 m~0.42 m
Imaging range interval (mm) 5

Imaging range slices 25
Image pixels 768 × 768

Table 6 shows the processing time of each algorithm for the measured data, which
is similar to the results on the simulated testing dataset in Table 4. In the processing of
measured data, the CNN-based methods are much faster than the CS method. In addition,
the CNN method exhibits stronger robustness in the testing stage, and the CS method needs
to readjust the algorithm parameters for different objects and scenes. The processing time
of the proposed CVFCNN (CPReLU2) is slightly longer than that of CVFCNN (CReLU)
but yielded better imaging results, as shown in Figure 6. Usually, in order to obtain a
better-quality image, the cost of a little processing time could be ignored.

Table 6. Processing-time comparison of measured data.

Methods CPU(s) GPU(s)

PSM 4.5 /
PSM-CS 647.2 /

RVFCNN (PReLU) 240.2 16.4
CVFCNN (CReLU) 143.6 11.9

CVFCNN (CPReLU1) 145.3 12.2
CVFCNN (CPReLU2) 145.3 12.2

4. Conclusions

In this paper, we proposed a complex-valued fully convolutional neural network
(CVFCNN) with a generalized CPReLU activation function for undersampled near-field
MMW 3-D imaging. A complex-valued back-propagation algorithm was derived. Com-
pared with the methods used in [30,31], the proposed activation function has independent
parameters for the real and imaginary parts of the complex-valued data and possesses
the ability of self-adaptive adjustment, which improves the performance of CVFCNN in
enhanced MMW 3-D imaging. Numerical simulations and experimental results verified the
effectiveness of the proposed method. The method in this paper can be applied to the fields
related to radar imaging. Compared with the classical ReLU-based activation function, the
proposed CPReLU activation function preserves phase information that is useful for radar
signal processing. Future work will apply the proposed method to more valuable research
and application scenarios.
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