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Abstract: Today, embedded systems (ES) tend towards miniaturization and the carrying out of
complex tasks in applications such as the Internet of Things, medical systems, telecommunications,
among others. Currently, ES structures based on artificial intelligence using hardware neural net-
works (HNNs) are becoming more common. In the design of HNN, the activation function (AF)
requires special attention due to its impact on the HNN performance. Therefore, implementing
activation functions (AFs) with good performance, low power consumption, and reduced hardware
resources is critical for HNNs. In light of this, this paper presents a hardware-based activation
function-core (AFC) to implement an HNN. In addition, this work shows a design framework for the
AFC that applies a piecewise polynomial approximation (PPA) technique. The designed AFC has a
reconfigurable architecture with a wordlength-efficient decoder, i.e., reduced hardware resources
are used to satisfy the desired accuracy. Experimental results show a better performance of the
proposed AFC in terms of hardware resources and power consumption when it is compared with
state of the art implementations. Finally, two case studies were implemented to corroborate the AFC
performance in widely used ANN applications.

Keywords: artificial neural network; HW design framework; activation function; piecewise
polynomial approximation; wordlength-efficient decoder

1. Introduction

Artificial neural networks (ANNs) are an important area of artificial intelligence
(AI) used to perform several tasks, such as classification [1–4], pattern recognition [5–8],
communications [9,10], control systems [11,12], prediction [13,14], among others. An
ANN models a biological neural network employing a collection of nodes called artificial
neurons, connected by edges to transmit signals like the synapses in a brain; during its
transmission, the signal value changes according to the weight of the edges, adjusted
by a learning process. Each artificial neuron processes the input signals through their
weighted sum and the output through an activation function (AF), which can be non-linear.
The neurons in an ANN are arranged into layers, and the signal travels from the first
layer (input layer) to the last layer (output layer); between these layers, the signal can
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travel through multiple internal layers (hidden layers). However, recent applications
of ANNs, e.g., IoT, medical systems, and telecommunication, require platforms with
high throughput and the capacity to execute the algorithms in real-time. An attractive
solution is the development of hardware neuronal networks (HNN) in Field-Programmable
Gate Arrays (FPGAs) [15–21]. In this regard, the FPGA-based implementation of AFs in
HNN is one of the challenges for embedded system design according to recent studies;
this is because the AF implementations require low hardware resources and low power
consumption [1,2,5,12,22–25]. Currently, the most common non-linear functions for ANNs
are the Sigmoid [11,26–32] ans TanhAFs [22,32,33].

For instance, ref. [4] shows a convolutional neural network (CNN) that uses the Tanh
AF in each layer, and ref. [22] presents a neuroevolution of augmenting topology, which
employs the Tanh and Gaussian AFs in the hidden layer and output layer, respectively.
On the other hand, the exponential linear unit (ELU) and softplus AFs are used for pattern
classification CNNs as shown in [23,34], respectively.

In summary, the main contributions of this paper are:

1. A Sigmoid, hyperbolic tangent (Tanh), Gaussian, sigmoid linear unit (SILU), ELU, and
Softplus AFs in reconfigurable hardware is designed with a piecewise polynomial
approximation technique and a novel segmentation strategy.

2. A wordlength-efficient hardware decoder for an activation function-core (AFC) with
a reduction in power consumption in the order of 13x gains in comparison with
state-of-the-art works.

3. A design framework with the integration of an AFC to develop HNN applications.

The rest of the paper is organized as follows: the design methodologies for approach-
ing AFs via PPA are presented in Section 2. The architecture and parameters for the AF
hardware implementation are shown in Section 3. The hardware performance for the AFC
using the proposed architecture is discussed in Section 4. The proposed AFC performance
employing two case studies are presented in Section 5. Finally, conclusions are drawn in
Section 6.

2. PPA Implementation Methodologies

Piecewise polynomial approximation (PPA) is a computing technique for the function
approximation that offers a good trade-off between latency and memory resources. PPA
splits the abscissa range into K segments, considering the xi samples on an interval [XL, XH ]
and the f (xi) function. In PPA, each one of the K segments is approached by polynomial
approximation as follows:

pk(xi) = anxn
i + · · ·+ a1xi + a0, (1)

where pk(·) are the polynomials corresponding to each segment, k = 1, · · · , K; an represents
the polynomial coefficients, and n stands the polynomial degree. In this sense, with the
aim to evaluate PPA performance, the maximum absolute error (MAE), the mean squared
error (MSE), and the mean absolute error (AAE) are proposed, which are given by

MAE = max(XL≤xi≤XH)| f (xi)− p(xi)|, (2)

MSE =
1
N

N

∑
i=1

( f (xi)− p(xi))
2, (3)

AAE =
1
N

N

∑
i=1
| f (xi)− p(xi)|, (4)

where p(·) is the approximated function via PPA technique, and N is the number of xi
samples. However, the signal to quantization noise ratio (SQNR) is a metric to evaluate the
performance in hardware applications based on fixed-point (FxP) arithmetic. SQNR is the
ratio of the signal power of interest and the quantization noise power defined as follows
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SQNRdB = 10 log10

1
N ∑N

i=1 f (xi)
2

1
N ∑N

i=1( f (xi)− p(xi))2
, (5)

This study employs the PPA technique with a wordlength-efficient decoder (PPA-ED)
methodology described in [35] to design the proposed AFC for HNN implementations. A
comparative analysis is also provided to show the advantages of the proposed methodology
with the minimax approximation [29], the simple canonical piecewise linear (SCPWL) [32],
and the piecewise linear approximation computation (PLAC) [15].

2.1. Minimax Approximation

Minimax approximation minimizes the MAE across an input interval given an n-
degree polynomial. This methodology takes into account the effect of rounding the co-
efficients to a finite wordlength, allowing a significant reduction in the size of the tables
required to store the polynomial coefficients. Larkin et al. in [29] use the minimax technique
to carry out the AF approximation, where a genetic algorithm is employed to obtain the
segmentation, and a first-order approximation is applied:

a1xi + a0, (6)

where a1 and a0 represent the slope and the constant term for a segment, respectively; they
can be computed as presented in [36]. The proposal in [29] implements a reconfigurable
hardware architecture for AF approximation. However, the polynomial indexation requires
the whole input wordlength, which results in an excessive use of memory resources.

2.2. Simple Canonical Piecewise Linear

According to [32], SCPWL methodology has the ability to represent the non-linear
AF behavior with low complexity and high speed. In this study, the AF approximation is
described by

c0 +
K

∑
k=1

ckλk(xi), (7)

where k represents the segment index, c0 is the constant term for all segments, and ck are
the segment coefficients. However, the main disadvantage of SCPWL is that it requires a
parallel execution of multiplications and sums to compute the contribution per segment for
the polynomial evaluation of (7); consequently, the hardware resources are incremented.

2.3. Piecewise Linear Approximation Computation

PLAC is a methodology with an error-flattened segment that uses a linear approxima-
tion to improve the approximation performance under the desired MAE. This proposal
splits the interval [XL, XH ] into discrete points given by

xi ∈ {XL, XL +
1

2iw , XL +
2

2iw , · · · , XH}, (8)

where iw represents the number of fractional bits for xi. The number of discrete points, i.e.,
the number of xi samples is given by N = (XH − XL)/2−iw + 1, where i = 1, · · · , N. The
coefficients for the first-order polynomial approximation, e.g., by using (6) in the segment
[xa, xb], can be computed by

a1 =
f (xb)− f (xa)

xb − xa
, (9)

a0 = f (xa)− a1xa, (10)

where [xa, xb] ∈ xi and xa < xb.
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The open literature presents AF hardware implementations based on PLAC; e.g.,
ref. [15] proposes an architecture that reduces the polynomial indexation. An advantage
of PLAC is that it applies a strategy for reducing the polynomial indexation. However,
disadvantages of PLAC include its use of linear approximations for approaching the AF
segments that increase the segments needed to achieve the desired MAE and the need for a
large amount of memory resources.

2.4. PPA with Wordlength-Efficient Decoder

The PPA-ED [35] optimizes the polynomial indexation and improves previous method-
ologies [15,29,32] for the hardware design of AFs according to the MAE, MSE, AAE, and
SQNR metrics. This study customizes the PPA-ED to design AFCs in HNN implementa-
tions on FPGAs. Figure 1 illustrates the methodology for designing an AFC with reduced
hardware and improved performance for HNN design based on the proposed method.��������	�
��������	��������	�
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Figure 1. Methodology for designing the AFC.

The adaptive segmentation, the polynomial approximation, the quantization, and the
optimization processes of PPA-ED reduce hardware resources used in the design. The
used methodology automatically sets up the PPA segment limits, computed as linear
combinations of power-of-two, using a detection algorithm based on the function slope and
the user-defined parameters in order to achieve the desired performance and optimize the
polynomial indexation [35]. Likewise, PPA-ED computes the n + 1 coefficients of n-degree
for the K segments applying the Vandermonde Matrix [37]. The proposed methodology
also considers a quantization process for hardware implementation that defines the FxP
format required for guaranteeing the desired accuracy in terms of SQNR. All these features
allow for the evaluation of the function with efficient polynomial indexing for the desired
precision; consequently, a hardware architecture for the AFC with a wordlength-efficient
decoder that reduces hardware resource usage is achieved.
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3. AFC Hardware Implementation

The AFC implementation employs a design framework based on the proposed method-
ology [35]. Figure 2 shows the design framework for implementing the AFC in HNN. This
study implements the AFs Sigmoid, Tanh, Gaussian, SILU, ELU, and Softplus, whose
mathematical expressions are shown in Table 1. The framework consists of sequential
processing stages for the AFC custom design on FxP arithmetic and its integration in
HNN implementations. The workflow describes the design steps for a HW design on
FPGA devices. ���������	
�����������
������������
�������������
����������������������

����������
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Figure 2. Design framework for implementing AFC in HNN.

Table 1. Description of non-linear AFs for ANN.

AF Mathematical
Description Symmetry Evaluation Range

1. Sigmoid f (x) = 1
1+e−x f (x) =

{
f (x) x ≥ 0

1− f (|x|) x < 0
(−8, 8)

2. Tanh f (x) = ex−e−x

ex+e−x f (x) =

{
f (x) x ≥ 0

− f (|x|) x < 0
(−8, 8)

3. Gaussian f (x) = e−x2
f (x) =

{
f (x) x ≥ 0

f (|x|) x < 0
(−8, 8)

4. SILU f (x) = x
1+e−x - (−8, 8)

5. ELU f (x) =

{
α(ex − 1) x ≤ 0

x x > 0
- (−4, 4)

6. Softplus f (x) = ln(1 + ex) - (−4, 4)

The first stage of the framework is related to the PPA-ED configuration, e.g., poly-
nomial degree, SQNR target, and FxP wordlength requirements. The second stage is the
PPA segmentation, which calculates the optimum number of segments and the required
coefficients for the function evaluation with the desired accuracy.

In the third stage, the PPA-ED optimizes the AFC in an iterate way. The fourth stage
generates the custom Verilog design of the AFC. The last stage corresponds to the HNN
design, which is obtained by using the designed AFC into a ANN model.

The AFC implementation uses the proposed reconfigurable and wordlength-efficient
hardware architecture shown in Figure 3, where an represents the polynomial coefficients,
x is the input represented on FxP, and f(x) is the output of the evaluated function. Figure 4
depicts the function evaluator block for the proposed architecture, which computes a
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second-order AF evaluation on FxP arithmetic by employing Horner’s rule [36]. The LUT
block contains the coefficients for AF evaluation, and the address decoder unit indexes
the LUT according to the bits_agu frame shown in Figure 5. The LUT address has a width
of L = dlog2(K)e bits, where K represents the number of segments and d·e stands for the
ceil function. The proposed AFC architecture considers and exploits the AF symmetry to
reduce the hardware resources.

Figure 3. Proposed hardware architecture for implementing the AFC.

Figure 4. Function evaluator for the implemented AFC.

QFWQIW

WL bitsWL bits

bits_decoder bits
bits_agu bits

Figure 5. Input data structure, x.

Table 2 shows the FxP format corresponding to the input/output values and the
polynomial coefficients. The FxP signed format Q(WL,QFW,s) considers a wordlength WL
and the fractional bits QFW. In the case of the polynomial coefficients, the FxP signed
format Q(WLC ,QFC,s) considers a WLC wordlength and the fractional bits QFC.

Table 2. FxP format for implementing AFC in HNN.

Activation
Function

Input/Output
FxP Format

Q(WL,QFW,s)

Coefficients
FxP Format

Q(WLC ,QFC,s)

1. Sigmoid (16,10,s) (16,15,s)
2. Tanh (16,10,s) (16,14,s)
3. Gaussian (16,10,s) (16,14,s)
4. SILU (16,11,s) (16,13,s)
5. ELU (16,12,s) (16,15,s)
6. Softplus (16,12,s) (16,15,s)
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4. Experimental Results and Discussion

To verify the proposed reconfigurable architecture for the AFC (see Figure 3), the
selected AFs (see Tables 1 and 2) were approximated employing the proposed methodology
in Section 2.4. Likewise, the implementation for the AFC architecture was according
to the hardware specification and the polynomial coefficients shown in Tables 2–8. As
was mentioned in the hardware design framework, Verilog is the hardware description
language for implementing the AFC, synthesized on a Xilinx Artix-7 xc7a100t-2csg324
FPGA device. Tables 9–14 show the performance comparisons for the PPA-ED-based
AFC implemented. In this sense, Table 9 shows the AFC performance results based
on the methodologies minimax approximation [29] and PPA-ED, for the Sigmoid and
Tanh AFs. The input/output Fxp representations were configured according to [29] for
a fair comparison. As can be seen, for the Sigmoid AF with 4 segments, the proposed
methodology improves [29], reducing the MAE in 55.3% and the AAE in 65.4%. Even
increasing the segments to 6 in [29], PPA-ED reduces the MAE in 8.7% and the AAE in
30.8%. Likewise, for the case of Tanh AF with 4 segments, MAE is reduced in 37.9% and
the AAE in 50%.

Table 3. Floating-point and fixed-point coefficients for implementing Sigmoid AF in HNN.

Segment
Number

Segment
Boundaries Format a2 a1 a0

1 [0 1.5)
? −0.0364 0.2685 0.4981

0xfb55 0x225f 0x3fc2

2 [1.5 3.5) ? −0.03 0.2243 0.551
0xfc29 0x1cb4 0x4687

3 [3.5 4.5) ? −0.0086 0.0873 0.7712
0xfee4 0x0b2b 0x62b8

4 [4.5 8.0) ? −0.0012 0.0174 0.9356
0xffd9 0x023b 0x77c0

? Floating-point. Fixed-point in hexadecimal notation.

Table 4. Floating-point and fixed-point coefficients for implementing Tanh AF in HNN.

Segment
Number

Segment
Boundaries Format a2 a1 a0

1 [0 1)
? −0.3269 1.0968 −0.0055

0xeb14 0x4631 0xffa5

2 [1 2)
? −0.1691 0.7027 0.2318

0xf52d 0x2cf8 0x0ed5

3 [2 3.5) ? −0.0189 0.1242 0.7933
0xfeca 0x07f2 0x32c4

4 [3.5 8) ? −0.0001 0.0019 0.9939
0xfffd 0x001f 0x3f9b

? Floating-point. Fixed-point in hexadecimal notation.
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Table 5. Floating-point and fixed-point coefficients for implementing Gaussian AF in HNN.

Segment
Number

Segment
Boundaries Format a2 a1 a0

1 [0 0.50)
? −0.9458 −0.0065 1.0001

0xc378 0xff96 0x4001

2 [0.50 1.00) ? −0.5053 −0.2634 1.0377
0xdfa9 0xef23 0x426a

3 [1.00 1.25) ? 0.1554 −1.0796 1.2914
0x09f2 0xbae8 0x52a5

4 [1.25 1.75) ? 0.4353 −1.6126 1.5452
0x1bdc 0x98ca 0x62e5

5 [1.75 2.50) ? 0.3366 −1.3284 1.3409
0x158a 0xaafc 0x55d1

6 [2.50 3.75) ? 0.1318 −0.6063 0.7035
0x0870 0xd932 0x2d05

7 [3.75 5.25) ? 0.0157 −0.0895 0.1281
0x0100 0xfa45 0x0833

8 [5.25 8.00) ? 0 −0.0001 0.0002
0x0000 0xffff 0x0002

? Floating-point. Fixed-point in hexadecimal notation.

Table 6. Floating-point and fixed-point coefficients for implementing SILU AF in HNN.

Segment
Number

Segment
Boundaries Format a2 a1 a0

1 [−8 −4.5)
? −0.0045 −0.0686 −0.2641

0xffda 0xfdcd 0xf78c

2 [−4.5 −2) ? −0.0149 −0.174 −0.53002
0xff86 0xfa6e 0xef09

3 [−2 −1) ? 0.0798 0.2053 −0.1453
0x028d 0x0691 0xfb5a

4 [−1 0.5) ? 0.2329 0.4997 0.0015
0x0773 0x0ffd 0x000c

5 [0.5 2) ? 0.115 0.6885 −0.0689
0x03ae 0x1608 0xfdcb

6 [2 3.5) ? −0.0095 1.1447 −0.4912
0xffb1 0x24a1 0xf047

7 [3.5 6) ? −0.0115 1.1431 −0.4611
0xffa1 0x2494 0xf13e

8 [6 8] ? −0.0024 1.039 −0.1635
0xffec 0x213f 0xfac4

? Floating-point. Fixed-point in hexadecimal notation.
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Table 7. Floating-point and fixed-point coefficients for implementing ELU AF in HNN.

Segment
Number

Segment
Boundaries Format a2 a1 a0

1 [−4 −2.5) ? 0.004 0.0345 −0.1227
0x0084 0x046c 0xf04a

2 [−2.5 −1.5) ? 0.0138 0.0831 −0.0621
0x01c4 0x0aa1 0xf80e

3 [−1.5 −0.5) ? 0.0375 0.1507 −0.0133
0x04cd 0x134a 0xfe4d

4 [−0.5 0) ? 0.0783 0.1961 −0.0001
0x0a05 0x191a 0xfffc

? Floating-point. Fixed-point in hexadecimal notation.

Table 8. Floating-point and fixed-point coefficients for implementing Softplus AF in HNN.

Segment
Number

Segment
Boundaries Format a2 a1 a0

1 [−4 −2) ? 0.0238 0.1948 0.4184
0x030c 0x18ef 0x358e

2 [−2 0 ) ? 0.0969 0.472 0.68844
0x0c67 0x3c68 0x581e

3 [0 2) ? 0.0969 0.528 0.68844
0x0c67 0x4397 0x581e

4 [2 4] ? 0.0238 0.8052 0.4184
0x030c 0x6710 0x358e

? Floating-point. Fixed-point in hexadecimal notation.

In order to compare the performance between the PPA-ED-based AFC and SCPWL im-
plementation [32], the proposed methodology was configured with a number of segments
to provide a similar number of polynomial coefficients according to the implementation
results reported in [32]. Likewise, the AFC architectures were configured with the same
FxP requirements. Table 10 shows the AFC performance comparison implemented via
PPA-ED and SCPWL. As the implementation results show, the proposed method reduces
the MAE in 59% and 61%, and the MSE in 48% and 67%, for the Sigmoid and Tanh AFs,
respectively. Likewise, comparison results for architectures designed via PLAC [15] and
PPA-ED methodologies can be observed in Table 11. In this case, the PPA-ED-based AFC
reduces the MAE in 30.79% and 29.54% for Sigmoid and Tanh AFs, respectively.

Table 12 shows the power consumption results of the PPA-ED-based AFC designs
obtained by Xilinx Power Analyzer. These results are outstanding compared with the
other proposals; e.g., Table 13 shows the power comparison results when implementing
the Sigmoid AF via Minimax approximation [29]. As can be seen, the AFC implemented
via PPA-ED improves the average power consumption at least 13x. Finally, Table 14
shows the hardware resources used for implementing PPA-ED-based AFCs according
to the proposed design framework. The AFCs achieve a maximum work frequency of
51.71 MHz, 53.69 MHz, 59.45 MHz, 57.87 MHz, 57.64 MHz, and 57.74 MHz for Sigmoid,
Tanh, Gaussian, ELU, SILU, and Softplus, respectively.

As can be seen in Tables 9–14, experimental results have shown a better performance
of the PPA-ED methodology to implement AFCs in terms of MAE, MSE, AAE, SQNR, and
power consumption, achieving a power reduction of at least 13x for the Sigmoid AF.
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Table 9. Performance comparison for the implemented AFs based on minimax approximation and
PPA-ED methodologies.

x ∈ Q(14,10,s), f(x) ∈ Q(12,10,s)

Function Proposal Segments SQNR [dB] Range MAE AAE

4 NA 4.7 × 10−3 2.4 × 10−3

Larkin * [29] 6 NA 2.3 × 10−3 1.2 × 10−3Sigmoid

PPA-ED ** 4 59.49

(−8, 8)

2.1 × 10−3 8.3 × 10−4

Tanh

Larkin * [29] 4 NA

[0, 8)

9.5 × 10−3 2.4 × 10−3

4 53.40 5.9 × 10−3 1.2 × 10−3

PPA-ED ** 3 50.60 10.7 × 10−3 1.7 × 10−3

* First order polynomial. ** Second order polynomial.

Table 10. Performance comparison for the implemented AFs based on SCPWL and PPA-ED methodologies.

x, f(x) ∈ Q(16,10,s)

Function Proposal Segments SQNR [dB] Range MAE MSE

Hussein * [32] 9 NA 5.2 × 10−3 1.8 × 10−6

Sigmoid
PPA-ED ** 4 56.76 (−8, 8) 2.1 × 10−3 9.2 × 10−7

Hussein * [32] 9 NA 15.4 × 10−3 1.2 × 10−5

Tanh
PPA-ED ** 4 53.55 (−8, 8) 5.9 × 10−3 3.9 × 10−6

Hussein * [32] 9 NA 7.0 × 10−3 1.4 × 10−5

Gaussian PPA-ED ** 8 49.48 (−8, 8) 1.7 × 10−3 8.9 × 10−7

PPA-ED 6 41.96 3.9 × 10−3 5.23 × 10−6

* First order polynomial. ** Second order polynomial.

Table 11. Performance comparison for the implemented AFs based on PLAC and PPA-ED methodologies.

x, f(x) ∈ Q(8,8,ns)

Function Proposal * Segments Range SQNR [dB] MAE

Sigmoid
Dong [15] 2

[0,1)
NA 5.65× 10−3

PPA-ED 2 48.22 3.91× 10−3

Tanh
Dong [15] 4

[0,1)
NA 5.55× 10−3

PPA-ED 4 46.03 3.91× 10−3

* First order polynomial.

Table 12. Hardware performance for the implemented PPA-ED-based AFC.

Function Range SQNR MAE AAE Power Consumption ∗ [mW]

Sigmoid (−8, 8) 56.76 2.1 × 10−3 9.2 × 10−7 0.82

Tanh (−8, 8) 53.55 5.9 × 10−3 3.9 × 10−6 0.88

Gaussian (−8, 8) 53.55 5.9 × 10−3 3.9 × 10−6 0.88

ELU (−4, 4) 78.73 5.6 × 10−4 1.1 × 10−4 0.53

SILU (−8, 8) 60.14 7.9 × 10−3 2.6 × 10−3 0.96

Softplus (−4, 4) 59.50 5.2 × 10−3 1.4 × 10−3 0.66
* Frequency 40 MHz.
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Table 13. Power consumption comparison for Sigmoid AF.

Proposal Segments MAE AAE Frequency
[MHz]

Average Power
[mW]

Larkin [29] 8 1.3× 10−3 0.9× 10−3 40 17

PPA-ED-based 5 1.2× 10−3 3.6× 10−4 40 1.02
AFC 50 1.27

Table 14. Hardware resource usage for the PPA-ED-based AFCs.

HW Resources Consumption by Function Available Utilization
Sigmoid Tanh Gaussian ELU SILU Softplus %

Slice register 1 1 0 16 0 0 Out of 126,800 0%
Slice LUTs 76 78 93 28 54 22 Out of 63,400 0%
IOBs 33 Out of 210 15%
BUFG/
BUFGCTRLs 1 Out of 32 3%
DSP48E1s 2 Out of 240 0%

5. Hardware Neural Networks: Case Studies

Two case studies on ANN applications support the implemented PPA-ED-based AFCs,
which were selected because ANNs are continuously under research and the development
of devices considering reduced hardware has relevance for the applications of embedded
systems based on HNNs [38–43]. The efficiency of the proposed PPA-ED methodology
is demonstrated on an FPGA-based accelerator(AFC), which employs minimal hardware
resources. Here, under the co-simulation paradigm, the validation of the proposed design
was conducted. In this sense, an FxP-based reference ANN (golden model) was developed
using Matlab/Simulink, and the results were compared with a design according to the
proposed design framework for HNNs (see Figure 2).

The first case study is related to the implementation of a digital classification neural
network that uses an ELU AFC. The digit classification neural network identifies digits
between zero and nine. The second case study uses a Tanh AFC to implement a breast
cancer neural network application, the aim of which is to classify the cancers as either
benign or malignant depending on the characteristics of sample biopsies.

5.1. Digit Classification

The digital classification applied the MNIST database of handwritten digits with a
training matrix of 60,000 rows × 785 columns [44]. Each row of the matrix represents one
digit of the database containing a label and image of 28 × 28 pixel grayscale; the digit label
is in the first column, and the remaining 784 columns have the pixel information.

Figure 6 shows the implemented digit classification ANN structure. In this case study,
50 epochs were computed for the training process. The simulation results show that the
PPA-ED-based AFC has an error of 0.01%, identifying 97.2% of the samples, which converge
to the results generated by the FxP-based reference ANN (golden model).����� �� � 	
� �� � 	
� �� � 	
� ������������������� ������������� ����������������� ���������� ���������� ���������� ��
Figure 6. Digit classification ANN structure.
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5.2. Breast Cancer Detection

The case study on breast cancer detection applied the data set provided by Matlab,
with an input matrix with 9 rows × 699 columns [45]. The columns represent the biopsies
with the attributes contained in the rows. The breast cancer detection ANN structure has
ten neurons in one hidden layer and two in the output layer. The hidden layer employs the
Tanh AFC. This ANN computed 27 epochs for the training process.

The performance comparison for the breast cancer ANN is shown in Figure 7, in
which the ANN placed at the top corresponds to the ANN implemented by Simulink
blocks, and the ANN at the bottom side corresponds to the proposed PPA-ED-based design
under co-simulation. Both models achieved an accuracy of 97.80%, which demonstrates
the effectiveness of the proposed model.

Figure 7. Breast cancer detection ANN performance comparison.

6. Conclusions

In this paper, the use of the PPA-ED methodology to implement AFC in HNN was
presented. The proposal is focused on the AFC implementation providing an efficient archi-
tecture and configuration parameters; however, the tune on of the ANN hyperparameters
is offline. In order to reach this aim, a reconfigurable and wordlength-efficient decoder for
the AFC hardware architecture was proposed. This architecture performs a second-order
polynomial function evaluation to approach the selected AFs. In this sense, a hardware
neural network framework was introduced, which allows verifying the proposed PPA-
ED-based design in terms of the MAE, AAE, and SQNR metrics. Likewise, a comparative
analysis was provided to show the advantages of the PPA-ED in contrast to the minimax
approximation, SCPWL, and PLAC methodologies. Additionally, two case studies were
presented to corroborate the AFC in widely used ANN applications. Finally, experimental
results have shown a better performance of the PPA-ED methodology to implement AFCs
in terms of MAE, AAE, SQNR, and power consumption, achieving a power reduction of
at least 13x for the Sigmoid AF. AFC performance analysis on floating-point arithmetic is
considered for further works.
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Abbreviations
The following abbreviations are used in this manuscript:

AAE mean absolute error
AI Artificial intelligent
ANN Artificial neural network
AF Activation function
AFC Activation function-core
CNN Convolutional neural network
dB Decibels
ELU Exponential linear unit
FPGA Field programmable gate arrays
FxP Fixed point
MAE Maximum absolute error
MSE mean squared error
PLAC Piecewise linear approximation computation
PPA Piecewise polynomial approximation
PPA-ED PPA with wordlength-efficient decoder
SILU Sigmoid linear unit
SCPWL Simple canonical piecewise linear
SQNR Signal to quantization noise ratio
Tanh Hyperbolic tangent
HNN Hardware neural network
HW Hardware
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2. Sarić, R.; Jokić, D.; Beganović, N.; Gurbeta, P.; Badnjević, A. FPGA-based real-time epileptic seizure classification using Artificial
Neural Network. Biomed. Signal Process. Control 2020, 62, 102106. [CrossRef]

3. Tong, D.L.; Mintram, R. Genetic Algorithm-Neural Network (GANN): A study of neural network activation functions and depth
of genetic algorithm search applied to feature selection. Int. J. Mach. Learn. Cybern. 2010, 1, 75–87. [CrossRef]

4. Abdelouahab, K.; Pelcat, M.; Berry, F. Why TanH can be a Hardware Friendly Activation Function for CNNs. In Proceedings of
the 11th International Conference on Distributed Smart Cameras, Stanford, CA, USA, 5–7 September 2017.

5. Medus, L.; Iakymchuk, T.; Frances, V.; Bataller, M.; Rosado, M. A Novel Systolic Parallel Hardware Architecture for the FPGA
Acceleration of Feedforward Neural Networks. IEEE Access 2019, 7, 76084–76103. [CrossRef]

6. Zhang, L. Artificial neural network model-based design and fixed-point FPGA implementation of hénon map chaotic system
for brain research. In Proceedings of the 2017 IEEE XXIV International Conference on Electronics, Electrical Engineering and
Computing (INTERCON), Cusco, Peru, 15–18 August 2017.

7. Narvekar, M.; Fargose, P.; Mukhopadhyay, D. Weather Forecasting Using ANN with Error Backpropagation Algorithm, Proceedings of
the International Conference on Data Engineering and Communication Technology; Advances in Intelligent Systems and Computing;
Springer: Singapore, 2017. [CrossRef]

8. Libano, F.; Rech, P.; Tambara, L.; Tonfat, J.; Kastensmidt, F. On the Reliability of Linear Regression and Pattern Recognition
Feedforward Artificial Neural Networks in FPGAs. IEEE Trans. Nucl. Sci. 2018, 65, 288–295. [CrossRef]

9. Mahdi, S.Q.; Gharghan, S.K.; Hasan, M.A. FPGA-Based neural network for accurate distance estimation of elderly falls using
WSN in an indoor environment. Measurement 2021, 167, 108276. [CrossRef]

10. Louliej, A.; Jabrane, Y.; Zhu, W.P. Design and FPGA implementation of a new approximation for PAPR reduction. AEU-Int. J.
Electron. Commun. 2018, 94, 253–261. [CrossRef]

http://doi.org/10.1007/978-81-322-2656-7_19
http://dx.doi.org/10.1016/j.bspc.2020.102106
http://dx.doi.org/10.1007/s13042-010-0004-x
http://dx.doi.org/10.1109/ACCESS.2019.2920885
http://dx.doi.org/10.1007/978-981-10-1675-2_62
http://dx.doi.org/10.1109/TNS.2017.2784367
http://dx.doi.org/10.1016/j.measurement.2020.108276
http://dx.doi.org/10.1016/j.aeue.2018.07.019


Electronics 2022, 11, 14 14 of 15

11. Hartmann, N.B.; Dos-Santos, R.C.; Grilo, A.P.; Vieira, J.C.M. Hardware Implementation and Real-Time Evaluation of an ANN-
Based Algorithm for Anti-Islanding Protection of Distributed Generators. IEEE Trans. Ind. Electron. 2018, 65, 5051–5059.
[CrossRef]

12. Hultmann, A.; Muñoz, D.; Llanos, C.; Dos-Santos, C. Efficient hardware implementation of radial basis function neural network
with customized-precision floating-point operations. Control. Eng. Pract. 2017, 60, 124–132. [CrossRef]

13. Tng, S.S.; Le, N.Q.K.; Yeh, H.Y.; Chua, M.C.H. Improved Prediction Model of Protein Lysine Crotonylation Sites Using Bidirectional
Recurrent Neural Networks. J. Proteome Res. 2021. [CrossRef]

14. Le, N.Q.; Nguyen, B.P. Prediction of FMN Binding Sites in Electron Transport Chains based on 2-D CNN and PSSM Profiles.
IEEE/ACM Trans. Comput. Biol. Bioinform. 2019. [CrossRef] [PubMed]

15. Dong, H. PLAC: Piecewise Linear Approximation Computation for All Nonlinear Unary Functions. IEEE Trans. Very Large Scale
Integr. (VLSI) Syst. 2020, 28, 2014–2027. [CrossRef]

16. Parra, D.; Camargo, C. A Systematic Literature Review of Hardware Neural Networks. In Proceedings of the 2018 IEEE
1st Colombian Conference on Applications in Computational Intelligence (ColCACI), Medellin, Colombia, 16–18 May 2018.
[CrossRef]

17. Raut, G.; Rai, S.; Vishvakarma, S.K.; Kumar, A. A CORDIC Based Configurable Activation Function for ANN Applications.
In Proceedings of the 2020 IEEE Computer Society Annual Symposium on VLSI, Limassol, Cyprus, 6–8 July 2020; pp. 78–83.
[CrossRef]

18. Yang, T. Design Space Exploration of Neural Network Activation Function Circuits. IEEE Trans. Comput.-Aided Des. Integr. Circuits
Syst. 2019, 38, 1974–1978. [CrossRef]

19. Xie, Y.; Joseph RA, N.; Hu, Z.; Huang, S.; Fan, Z.; Joler, M. A Twofold Lookup Table Architecture for Efficient. IEEE Trans. Very
Large Scale Integr. (VLSI) Syst. 2020, 28, 2540–2550. [CrossRef]

20. Cococcioni, M.; Rossi, F.; Ruffaldi, E.; Saponara, S. Fast Approximations of Activation Functions in Deep Neural Networks when
using Posit Arithmetic. Sensors 2020, 20, 1515. [CrossRef] [PubMed]

21. Bouguezzi, S.; Fredj, H.B.; Belabed, T.; Valderrama, C.; Faiedh, H.; Souani, C. An Efficient FPGA-Based Convolutional Neural
Network for Classification: Ad-MobileNet. Electronics 2021, 10, 2272. [CrossRef]

22. Papavasileiou, E.; Jansen, B. The importance of the activation function in NeuroEvolution with FS-NEAT and FD-NEAT. In
Proceedings of the 2017 IEEE Symposium Series on Computational Intelligence (SSCI), Honolulu, HI, USA, 27 November–1
December 2017. [CrossRef]

23. Qian, S.; Liu, H.; Liu Ch Wu, S.; Wong, H. Adaptive activation functions in convolutional neural networks. Neurocomputing 2018,
272, 204–212. [CrossRef]

24. Mitra, S.; Chattopadhyay, P. Challenges in implementation of ANN in embedded system. In Proceedings of the 2016 International
Conference on Electrical, Electronics, and Optimization Techniques (ICEEOT), Chennai, India, 3–5 March 2016; pp. 1794–1798.

25. Kim, J.; Kim, J.; Kim, T.H. AERO: A 1.28 MOP/s/LUT Reconfigurable Inference Processor for Recurrent Neural Networks in a
Resource-Limited FPGA. Electronics 2021, 10, 1249. [CrossRef]

26. Dlugosz, Z.; Dlugosz, R. Nonlinear Activation Functions for Artificial Neural Networks Realized in Hardware. In Proceedings
of the 25th International Conference “Mixed Design of Integrated Circuits and Systems”, Gdynia, Poland, 21–23 June 2018.
[CrossRef]

27. Armato, A.; Fanucci, L.; Scilingo, E.; De Rossi, D. Low-error digital hardware implementation of artificial neuron activation
functions and their derivative. Microprocess. Microsyst. 2011, 35, 557–567. [CrossRef]

28. Tsmots, I.; Skorokhoda, O.; Rabyk, V. Hardware Implementation of Sigmoid Activation Functions using FPGA. In Proceedings
of the 2019 IEEE 15th International Conference on the Experience of Designing and Application of CAD Systems (CADSM),
Polyana, Ukraine, 26 February–2 March 2019; pp. 34–38. [CrossRef]

29. Larkin, D.; Kinane, A.; Muresan, V.; O’Connor, N. An Efficient Hardware Architecture for a Neural Network Activation Function
Generator. Adv. Neural Netw. 2006, 3973, 1319–1327. [CrossRef]

30. Zhang, L. Implementation of Fixed-point Neuron Models with Threshold, Ramp and Sigmoid Activation Functions. IOP Conf.
Ser. Mater. Sci. Eng. 2017, 224, 012054. [CrossRef]

31. Nguyen, V.; Luong, T.; Le Duc, H.; Hoang, V. An Efficient Hardware Implementation of Activation Using Stochastic Computing
for Deep Neural Networks. In Proceedings of the 2018 IEEE 12th International Symposium on Embedded Multicore/Many-core
Systems-on-Chip, Hanoi, Vietnam, 12–14 September 2018; pp. 233–236. [CrossRef]

32. Hussein, M.H.; Al-Rikabi Mohannad, A.M.; Al-Ja’afari Ameer, H.A.; Saif, H.A. Generic model implementation of deep neural
network activation functions using GWO-optimized SCPWL model on FPGA. Microprocess. Microsyst. 2020, 77, 103141. [CrossRef]

33. Zhengbo, C.; Lei, T.; Zuoning, C. Research and design of activation function hardware implementation methods. J. Phys. Conf.
Ser. 2020, 1684, 012111. [CrossRef]

34. Guoxin, W.; Xiuli, L.; Zhanglei, J.; Ruxiang, H. Dongba classical ancient books image classification method based on ReN-Softplus
convolution residual neural network. In Proceedings of the 14th IEEE International Conference on Electronic Measurement &
Instruments (ICEMI), Changsha, China, 1–3 November 2019; pp. 398–404. [CrossRef]

35. González, G.; Longoria, O.; Carrasco, R. An Optimization Methodology for Designing Hardware-Based Function Evaluation
Modules with Reduced Complexity. Circuits Syst. Signal Process. 2021, in press. [CrossRef]

36. Muller, J.-M. Elementary Functions: Algorithms and Implementation, 3rd ed.; Birkhäuser: Boston, MA, USA, 2016.

http://dx.doi.org/10.1109/TIE.2017.2767524
http://dx.doi.org/10.1016/j.conengprac. 2016.12.004
http://dx.doi.org/10.1021/acs.jproteome.1c00848
http://dx.doi.org/10.1109/TCBB.2019.2932416
http://www.ncbi.nlm.nih.gov/pubmed/31380767
http://dx.doi.org/10.1109/TVLSI.2020.3004602
http://dx.doi.org/10.1007/978-3-030-03023-0_7
http://dx.doi.org/10.1109/ISVLSI49217.2020.00024
http://dx.doi.org/10.1109/TCAD.2018.2871198
http://dx.doi.org/10.1109/TVLSI.2020.3015391
http://dx.doi.org/10.3390/s20051515
http://www.ncbi.nlm.nih.gov/pubmed/32164152
http://dx.doi.org/10.3390/electronics10182272
http://dx.doi.org/10.1109/SSCI.2017.8285328
http://dx.doi.org/10.1016/j.neucom.2017.06.070
http://dx.doi.org/10.3390/electronics10111249
http://dx.doi.org/10.23919/MIXDES.2018.8436869
http://dx.doi.org/10.1016/j.micpro.2011.05.007
http://dx.doi.org/10.1109/CADSM.2019.8779253
http://dx.doi.org/10.1007/11760191_192
http://dx.doi.org/10.1088/1757-899X/224/1/012054
http://dx.doi.org/10.1109/MCSoC2018.2018.00045
http://dx.doi.org/10.1016/j.micpro.2020.103141
http://dx.doi.org/10.1088/1742-6596/1684/1/012111
http://dx.doi.org/10.1109/ICEMI46757.2019.9101450
http://dx.doi.org/10.1007/s00034-021-01835-1


Electronics 2022, 11, 14 15 of 15

37. Lancaster, P.; Tismenetsky, M. The Theory of Matrices: With Applications, 2nd ed.; Elsevier: San Diego, CA, USA, 1985. [CrossRef]
38. Ahlawat, S.; Choudhary, A.; Nayyar, A.; Singh, S.; Yoon, B. Improved Handwritten Digit Recognition Using Convolutional

Neural Networks (CNN). Sensors 2020, 20, 3344. [CrossRef]
39. Alwzwazy, H.A.; Albehadili, H.M.; Alwan, Y.S.; Islam, N.E. Handwritten digit recognition using convolutional neural networks.

Int. J. Innov. Res. Comput. Commun. Eng. 2016, 4, 1101–1106.
40. Ali, S.; Shaukat, Z.; Azeem, M. An efficient and improved scheme for handwritten digit recognition based on convolutional

neural network. SN Appl. Sci. 2019, 1, 1125. [CrossRef]
41. Ting, F.F.; Tan, Y.J.; Sim, K.S. Convolutional neural network improvement for breast cancer classification. Expert Syst. Appl. 2019,

120, 103–115. [CrossRef]
42. Alom, M.Z.; Yakopcic, C.; Nasrin, M.S. Breast Cancer Classification from Histopathological Images with Inception Recurrent

Residual Convolutional Neural Network. J. Digit. Imaging 2019, 32, 605–617. [CrossRef] [PubMed]
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