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Abstract: Smart homes assist users by providing convenient services from activity classification with
the help of machine learning (ML) technology. However, most of the conventional high-performance
ML algorithms require relatively high power consumption and memory usage due to their complex
structure. Moreover, previous studies on lightweight ML/DL models for human activity classification
still require relatively high resources for extremely resource-limited embedded systems; thus, they
are inapplicable for smart homes’ embedded system environments. Therefore, in this study, we
propose a low-power, memory-efficient, high-speed ML algorithm for smart home activity data
classification suitable for an extremely resource-constrained environment. We propose a method
for comprehending smart home activity data as image data, hence using the MNIST dataset as a
substitute for real-world activity data. The proposed ML algorithm consists of three parts: data
preprocessing, training, and classification. In data preprocessing, training data of the same label are
grouped into further detailed clusters. The training process generates hyperplanes by accumulating
and thresholding from each cluster of preprocessed data. Finally, the classification process classifies
input data by calculating the similarity between the input data and each hyperplane using the
bitwise-operation-based error function. We verified our algorithm on ‘Raspberry Pi 3’ and ‘STM32
Discovery board’ embedded systems by loading trained hyperplanes and performing classification
on 1000 training data. Compared to a linear support vector machine implemented from Tensorflow
Lite, the proposed algorithm improved memory usage to 15.41%, power consumption to 41.7%,
performance up to 50.4%, and power per accuracy to 39.2%. Moreover, compared to a convolutional
neural network model, the proposed model improved memory usage to 15.41%, power consumption
to 61.17%, performance to 57.6%, and power per accuracy to 55.4%.

Keywords: activity monitoring; machine learning; sensor fusion; SVM; edge-AI computing; energy-
accuracy trade-off

1. Introduction

Today, platforms that provide convenient services using machine learning (ML) meth-
ods are rapidly developing in various fields. Among them, smart devices that provide
appropriate feedback based on received signals are gaining popularity [1]. Various re-
search projects are being conducted to classify human behavior with signals obtained from
these devices. For instance, there have been studies on improving users’ quality of life
by classifying user activity data using signals obtained from wearable devices such as
electrocardiography (ECG) [2,3], global positioning systems (GPS), and accelerometers [4].

Meanwhile, utilizing data collected from various sensors enables a more complex
understanding of the situation. Sensor fusion reduces software complexity by hiding

Electronics 2022, 11, 139. https://doi.org/10.3390/electronics11010139 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0001-7547-8349
https://orcid.org/0000-0002-5560-873X
https://doi.org/10.3390/electronics11010139
https://doi.org/10.3390/electronics11010139
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics11010139
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11010139?type=check_update&version=2


Electronics 2022, 11, 139 2 of 20

physical sensor layers and offers organized, fine quality input data for applications [5].
Therefore, many studies are interested in finding an efficient method for fusing and utilizing
various sensor data. For instance, to determine the state of numerous edge devices, a study
used a QR code generated from power consumption data of edge devices. By handling
complex data as efficient image data, they classified error states with reduced load on edge
devices [6].

Because smart devices are connected to other devices via wireless protocols, it is
possible to provide complex services using various sensor signals [7]. Therefore, based
on Internet of Things (IoT) sensors and ML technologies, smart homes that monitor the
house condition and automatically adjust appliances were made possible [8]. Numerous
studies aim to solve social problems by classifying human behavior from information that
was gathered from many sensors in smart homes. For instance, the smart home is being
discussed as a solution that can socially and medically assist the infirm by monitoring them
through numerous smart devices [9]. Furthermore, various research is being conducted on
how smart home data can be processed and analyzed efficiently [10].

In general, the architecture of many smart home models consists of low-power em-
bedded processors due to their energy consumption [11]. Therefore, the performance of
software installed in smart homes should be optimized to achieve the utmost performance
from limited resources. To enhance the performance in low-power environments, various
software and hardware-accelerated optimization techniques are being developed [12,13].
Memory usage is also a critical issue in low-power embedded environments. Therefore,
many studies are also focusing on developing algorithms to reduce memory usage as a
solution to the limited memory of the low-power embedded processors used in smart
home models [14].

ML has made great advancements in analyzing data collected from a smart home [15].
However, most high-performance ML algorithms were unsuitable for use on edge due to
their size and power consumption; thus, in recent years, there have been significant efforts
to develop ML algorithms and systems for edge devices [16]. As a result, a low-power,
memory-efficient ML algorithm optimized for smart home data should be designed in
order to implement ML in the smart home model efficiently.

2. Related Works

Human activity recognition (HAR) is crucial due to its ability to learn high-level
human activity information from raw sensor data. The HAR problem is equivalent to a
pattern recognition (PR) problem [17]. The PR problem is solved in the order of activity
signal, feature extraction, model training, and activity information, and many studies have
been conducted at each stage. The previous works can be broadly classified into studies
focusing on sensor type and feature extraction/training.

Chavarriaga [18] classified sensor modalities into body-worn, object, and ambient
sensors. Body-worn sensors, which are the most common modality for HAR, are commonly
used based on deep learning [17]. Object sensors are frequently attached to objects to detect
their movement [18]. Ambient sensors such as radar, sound, and temperature sensors
are mostly embedded in the user environment, and they detect signals from humans
interacting with the environment. Several papers have used ambient sensors to detect daily
activities [19]. Hybrid sensors are a combination of different types of sensors for HAR.
However, there are only a few works that combined various sensors for more accurate
HAR [20].

In HAR, traditional PR tactics have achieved remarkable progress [21]. Recently,
however, deep learning research that integrates feature extraction and training processes
have become mainstream. Deep models can be largely divided into Deep Neural Networks
(DNN), Convolutional Neural Networks (CNN), Stacked Autoencoders (SAE), Recurrent
neural networks (RNN), hybrid models, etc.
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For studies that applied DNN for HAR, after extracting hand-engineered features
from the sensors, those features are fed into a DNN model [22]. However, because the
feature extraction is done manually, it may be difficult to utilize the model in general cases.

While using CNN to HAR, there are several factors to consider: input adaptation,
pooling, and weight-sharing. In contrast to images, most HAR sensor data are time-series
data readings. Therefore, we should transform input data, and there are two main types:
model-driven and data-driven. In the data-driven approach, 1D convolution is applied
to each dimension, where the dimensions are used as channels [23]. In a model-driven
approach, the inputs are resized to a virtual 2D image in order to use 2D convolution. This
is frequently used in conjunction with non-trivial input tweaking approaches [24]. CNN
commonly uses the convolution-pooling combination [24]. Moreover, pooling can speed
up the training process on big data sets and reduce overfitting [25]. Weight sharing [26]
is a useful technique for improving the speed of the training. According to a study [27],
partial weight-sharing might enhance CNN’s performance.

Stacked autoencoder (SAE) has the benefit of unsupervised feature extraction for HAR.
However, SAE is very reliant on its layers and activation functions, making it difficult to
find the optimal solutions [28].

Many studies on solving HAR problems by RNN models achieved good performance
in resource-constrained environments [29].

Hybrid models, such as the combination of CNN and RNN, are currently gaining
popularity. There are several studies on combining CNN and RNN for HAR [30].

There are also many studies on the lightweight deep learning model. Preeti and
Mansaf [31] developed a model that even runs even on Raspberry 3Pi by optimizing
parameters by combining RNN and LSTM.

3. Problem Statement
3.1. Smart Home Model

In this work, we assumed a typical smart home architecture as illustrated in Figure 1.
The smart home is equipped with event-driven IoT sensors which are directly connected to
the main edge device. The main edge device is loaded with a pre-trained model used for
human activity classification and is connected to a high-performance server [32].

Trained Model
Server

Activity Data

Edge 
Controller

time

event

t1 t2 t3 t4 t5

e1
e2
e3

Step 2

Step 3, 4

Step 1
Step 5

On!

Activity
Data

Figure 1. Overview of the smart home model.
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In Figure 1, we also illustrated the overall operation method of our smart home model,
which works according to the following steps. Step 1. The high-performance server trains
the human activity classification model and sends the trained model to the main edge
device. Step 2. IoT sensors detect human behaviors and send the detected signals to the
main edge device. Step 3. The main edge device saves the data from various sensors in
a buffer as activity data. Step 4. In the main edge device, the trained model classifies
the activity data to human activity patterns. Step 5. The main edge device makes an
appropriate response according to the classified activity pattern.

3.2. Activity Data

Converting and using time series data to image form is a widely used technique.
When we plot the signals obtained from the multiple sensors according to time, it will
appear as the sensor activity data as shown in Figure 2. We then convert the sensor activity
data to a grayscale image in which its row is sensors and column is time to abstract the
data more efficiently. Each pixel value in the grayscale image is the sensor’s signal level
in the corresponding time and sensor. Therefore, by handling grayscale images, we can
process sensor activity data more conveniently.

time

sensor

s1

s2

s3

level

s1

s2

s3

t1 t2 t3

Abstraction

Sensor Signal Data Grayscale Image

Pixel value is sensor level

Figure 2. Conversion of sensor signal data to a grayscale image.

Although handling a grayscale image is convenient, converting it to a binarized image
is more efficient, especially in low-power, limited-resource applications. To generate a
binarized image, we apply a threshold plane to the sensor signal data as shown in Figure 3.
The corresponding pixel in the binarized image is set to 1 if the sensor’s signal level is above
the threshold or 0 otherwise. As a result, by converting sensor signal data to a binarized
image using a threshold plane, we can reduce data size while minimizing data loss.

Figure 4 is the detailed representation of the sensors’ signals data as a binarized image.
In this paper, for activity data, we use the converted binary image. To handle time data, we
manifest the events’ occurrence by a time range [13]. The activity data AD is defined as the
following Equation (1).

AD(s, ri) =

{
1 if ∃t ∈ ri such that f (s, t) = 1
0 otherwise

s ∈ S, ri ∈ TR (1)

where:
S = Sensors in smart home
f (s, t) = Activation of sensor s in time t (0 not activated, 1 activated)
∆t = Constant time interval between activity data
TR = {(n∆t : (n + 1)∆t) | n ∈ N} Set of time ranges
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time

sensor

s1

s2

s3

level
s1

s2

s3

t1 t2 t3

Abstraction

Sensor Signal Data with Threshold Binarized Image

Threshold Plane

Pixel value is 1 when sensor 
level is above threshold

Figure 3. Conversion of sensor signal data to a binarized image by threshold.

Figure 4. Visualization of activity data.

Each entry in the activity data represents the activation of the sensor in the correspond-
ing time interval. Such binarized images can easily perform high-speed operations such as
boolean products and can be efficiently stored and accessed from memory. Because the
activity data can be comprehended as image data as shown in Figure 4, the classification of
activity data is equivalent to image classification.

We utilize the numeric handwriting image dataset MNIST [33] as the activity data,
considering the characteristics of activity data as an image. Since it was impossible to
utilize real-world activity data as our dataset due to experimental constraints, and the
MNIST dataset and activity data are very similar when converting both data to image
form, we used the MNIST dataset as a substitute for activity data. Figure 5 shows how the
activity data is similar to the MNIST image. If we transform activity data into an image,
it is similar to the MNIST dataset because it has a constant pattern for a particular label.
Therefore, if we binarize the MNIST image to indicate sensor activation, it will take the
form of activity data that this study assumes.
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MNIST ImageActivity Data

Figure 5. Similarity between activity data and MNIST image.

However, it is practically impossible to collect as much activity data as the MNIST
dataset because the activity data is challenging to collect and utilize due to privacy
issues [34]. In other words, only a small amount of activity data is available compared
to the MNIST dataset. Therefore, we use 10% of the MNIST dataset chosen randomly as
activity data.

3.3. Research Objectives

Although there exist some studies on lightweight activity data classification models,
they either require relatively high resources for resource-constrained embedded systems,
or detailed resource measurements such as power consumption were not evaluated on
embedded boards. Additionally, deploying an activity classification model on a resource-
constrained embedded system can bring economic benefits for businesses. Therefore, in this
study, we propose an efficient ML algorithm that can operate in smart homes composed of
resource-limited embedded systems. In order to meet the embedded system environment,
our algorithm should satisfy the following conditions:

• Low power consumption
• Small memory usage
• Fast run time

We chose the linear support vector machine (LSVM) [35] as a baseline project and
aimed to study a lighter, more power-efficient algorithm. LSVM is a widely used ML
algorithm in embedded environments due to its small memory usage, and computation [36].
Because LSVM generates hyperplanes without semantics, we focused on the hyperplane
generation technique that considers the activity data characteristics. Therefore, we aimed to
develop an algorithm with sufficient accuracy with fewer hyperplanes than the established
ML algorithms. We used the MNIST dataset as a substitution for smart home activity data
to evaluate the model accuracy and performance on an embedded board, thus verifying
the model’s suitability in real-world smart homes.

4. Proposed Method

In this work, we propose a high-speed, memory-efficient data preprocessing, training,
and classification method for our smart home model. Figure 6 shows the overall structure
of the proposed algorithms in this study. First, we preprocess the training data by clustering
it into similar groups. Then, the training algorithm generates memory-efficient hyperplanes
from the preprocessed training dataset. In our work, the ‘hyperplane’ refers to the plane
on which the model makes decisions based on calculating the distance between the input
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data and the plane. Finally, the classification process classifies the activity data in an
embedded environment.

 
 

 

  

 

 

 

 
  

Figure 6. Overall strucutre of the proposed algorithm.

4.1. Data Preprocessing

The data preprocessing step is important for generating efficient hyperplanes. In this
study, we summed up and binarized the training dataset to generate hyperplanes (which
will be discussed further in the next section). Simply accumulating and binarizing the
data can reduce data size while maintaining the data’s overall characteristics; however, the
image loses the data’s detailed characteristics. We observed that the detailed characteristics
had a significant impact on classification. We also observed that the images in the same
label of the MNIST dataset had slightly different traits. For example, some handwriting
was in italic, while some were in bold format. To solve this problem, we performed
clustering to the training data of the same label to make our hyperplanes represent the
data’s detailed features.

Figure 7 shows the proposed method for the preprocessing data. Algorithm 1 shows
the pseudo-code of the process. ‘Preprocess’ is a function that returns clustered data from
training data for each label. To group data from the same label, we first grouped training
data according to their label. Then, we applied k-means clustering [37] to the data that
were grouped for each label. Finally, data belonging to the same cluster of the same label
were stored as preprocessed data.

 
 

Figure 7. Overall algorithm of the preprocess.
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Algorithm 1: Pseudo code of data preprocess

1 data_label: labels of dataset
2 KMeans(cluster_num): k-means clustering that forms cluster_num clusters
3 preds: array of clustering result for each entry of input

Input: train_dataset, cluster_num
Output: preprocessed_dataset

4 Function Preprocess(train_dataset, cluster_num):
5 foreach img ∈ train_dataset do
6 img_label = img.data_label
7 grouped_image[img_label].append(img)

8 foreach j ∈ data_label do
9 model = KMeans(cluster_num)

10 model.fit(grouped_image[j])
11 preds = model.labels
12 foreach img ∈ grouped_imagejl] do
13 cluster = preds[img.index]
14 preprocessed_dataset[j][cluster] = img

We implemented the clustering process using the k-means function of scikit-learn [38]
with 5 cluster numbers. The equation for k-means clustering for data of label j is shown in (2).

argminXj

n

∑
i=1

∑
t∈Tj

‖t− µi‖2
(2)

where:
n = Number of clusters
Tj = Training dataset of label j
Xj = {Xj, 1, Xj, 2, ..., Xj, k}; Xj, i is i-th clustered dataset for label j
µi = Mean point in Xj, i

Figure 8 shows the results of clustering. The data in the same row represents sam-
ples of data classified into the same cluster. We can see that k-means clustering clearly
distinguishes data with slightly different characteristics from data within the same label.

Figure 8. Clustering result.
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4.2. Training Algorithm for Hyperplane Generation

We accumulated and binarized the preprocessed data and reshaped them to generate
representative patterns which were equivalent to hyperplanes. Figure 9 shows the proposed
training algorithm for generating hyperplanes. Algorithm 2 is the pseudo-code of the
training process. ‘Train’ is a function that returns the representative patterns for each
cluster in each label. The representative patterns are generated from the preprocessed
dataset and the validation dataset evaluates them.

 

 

 

 

 

Figure 9. Overall algorithm of the training process.

Algorithm 2: Pseudo code of training algorithm

1 preprocessed_dataset[j][k]: preprocessed data of cluster k of label j
2 validation_dataset[j][k]: validation dataset is split into cluster k of label j
3 f latten(img): return img collapsed into one dimension
4 representative_pattern[j][k]: representative pattern for cluster k of label j
5 update(val, error): update val according to error
6 popcount(n): return number of set bits in n

Input: validation_dataset, preprocessed_dataset
Output: representative_pattern

7 Function Train(validation_dataset, preprocessed_dataset):
8 while error > target_error do
9 foreach j ∈ data_label and k ∈ data_cluster do

10 foreach x ∈ preprocessed_dataset[j][k] do
11 R[j][k] = R[j][k] + x

12 foreach pixel ∈ R[j][k] do
13 if pixel > alpha[j][k] then
14 pixel = 1

15 else
16 pixel = 0

17 RP[j][k]←− f latten(R[j][k])
18 foreach td ∈ validation_dataset[j][k] do
19 td←− f latten(td)
20 error+ = popcount(RP[j][k]⊕ td)

21 update(alpha[j][k], error)



Electronics 2022, 11, 139 10 of 20

To generate representative pattern RPj,k for each cluster k of label j , we accumulated
the preprocessed dataset to an image Rj,k. The equation for accumulating preprocessed
dataset is shown in Equation (3).

Rj, k(x, y) = ∑
xj, k∈Xj, k

xj, k(x, y) (3)

where:
Rj, k = Accumulated image of preprocessed dataset for cluster k of label j
Xj, k = Preprocessed dataset for cluster k of label j
(x, y) = Pixel position in image

Simply summing up the preprocessed data produces Rj, k with the same importance
for both the inliers and the outliers. Therefore, we binarized pixel values according to the
threshold αj, k to reduce the outliers’ effect. As a result, we could get Rj, k which represents
the inlier better. The equation for binarizing Rj, k is expressed in Equation (4).

Rj, k(x, y) =

{
1 if Rj, k(x, y) > αj, k

0 otherwise
αj, kis a trainable parameter (4)

We flattened the Rj, k to the representative pattern RPj, k. At the same time, we split
the validation datset of label j to k batches, and applied XOR operation between RPj, k
and tdj, k, where tdj, k is an flattened element of validation dataset for cluster k of label l.
From the XOR value, we determined the error between RPj, k and tdj, k by counting the
number of the set value of the XOR value. The equation for error caluclation is shown in
Equation (5).

error = ∑
tdj, k∈TDj

popcount(RPj, k ⊕ tdj, k) (5)

where:
RPj, k = vec(Rj, k)
TDj, k = {xj, k | xj, k = vec(yj, k), yj, k ∈ Yj, k}
Yj, k = Validation dataset for batch k of label j
popcount(n) = Number of set bits in n

Based on the error, we either updated αj, k or finished the training process when
the error was below the target. We determined αj, k by creating a lookup table for αj, k
and its error. Figure 10 shows the graph between epoch and mean error in the training
and validation dataset, where the mean error is the mean value of the error defined in
Equation (5) of each dataset per epoch. Figure 11 visualizes the hyperplanes we generated.
However, due to the complexity of defining the space of the hyperplane mathematically,
we left the part of the defining hyperplane as a mathematical equation. As can be seen in
the figure, the hyperplanes soundly reflect the characteristics of each label’s cluster.

4.3. Activity Data Classification at Edge

Because the classification process is performed on a low-power edge, it must be
able to function well even with a small amount of resources. In this study, we propose
a high-speed classification algorithm based on bitwise operations, suitable for our edge
environment. Figure 12 shows the proposed classification algorithm. Algorithm 3 shows
the pseudo-code of the process. ‘Classify’ is a function that determines the input activity
data’s label. The classification process is similar to the error calculation in the training
algorithm. First, we calculated the error by applying the XOR and popcount operation
between the representative plane RPj, k and the input activity data AD. On low-power
processors, bitwise operations perform faster than multiplication and addition. Therefore,
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we could reduce the overhead and improve our algorithm’s speed. We then selected the
label of minimum error as shown in Equation (6).

ĵ = argminj(error(RPj, k, AD)) (6)

where:
error(RPj, k, AD) = popcount(RPj, k ⊕ AD)
AD = Input activity data

Figure 10. Mean error of training and validation data over epochs.

Figure 11. Visualization of hyperplanes.

Figure 12. Overall algorithm of the classification process.
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Algorithm 3: Pseudo code of classification algorithm
Input: activity_data
Output: determined_label

1 Function Classify(activity_data):
2 activity_data←− f latten(activity_data)
3 min←− ∞
4 foreach label ∈ data_label and cluster ∈ data_cluster do
5 error[label][cluster] =

popcount(representative_img[label][cluster]⊕ activity_data)
6 if error[label][cluster] < min then
7 min←− error[label][cluster]
8 determined_label = label

5. Experiment & Measurement Results

The proposed model in this paper assumes execution at the edge through the high-
speed, low-power classification process. In this section, we verified whether the proposed
algorithm is suitable for application on edge-embedded systems with the experimental
setup ‘Raspberry Pi 3’ and ‘STM32 Discovery board’ as shown in Figure 13.

Atmel Power debugger

STM32F4 Discovery

Raspberry Pi 3 

5V input

PC

Figure 13. Experimental setup.

The classification edge was implemented at C level to compare with the baseline
project LSVM. The LSVM model was trained using Tensorflow Lite [39], and was imple-
mented at C level as well. We also compared the proposed model with the CNN model,
which is trained using Tensorflow Lite and implemented at C level. The CNN model
is composed of two layers: the first layer is of a four channel convolution layer with
3 ∗ 3 kernel size and ReLU activation function with max-pooling; the second layer is of
eight channels convolution layer with 3 ∗ 3 kernel size and ReLU activation function with
max-pooling. The dropout is set to 0.5 and the total number of parameters was 2346. The
number of clusters was set to five since our model had reasonable accuracy, memory usage,
and power consumption under that cluster number. For a more accurate measurement,
algorithm performance and accuracy were measured using ‘Raspberry Pi 3’, and memory
usage and power consumption were measured on ‘STM32 Discovery board’ and ‘Atmel
Power Dubugger’ to ensure operation in more limited embedded systems. We repeated
the classification process of the proposed model, LSVM model, and the CNN model with a
short time interval between each classification process for 1000 samples of test data.
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5.1. Performance

Since the classification process is executed repeatedly in a short-time period on real-
world smart homes, it needs to be operated in real-time in a resource-limited environment.
As illustrated in Figure 14a, the proposed model took 44 µs on average to perform all the
test benches on the ‘Raspberry Pi 3’ board, while the LSVM model took 82 µs, and the CNN
model took 101 µs, resulting in a 46.3% and 57.6% reduction in execution time. Also, the
proposed model took 50 µs on the ‘STM32 Discovery board’ board, while the LSVM model
took 92 µs, and the CNN model took 118 µs, resulting in a 45.6% and 56.4% reduction in
execution time. This is the result of the proposed model reducing overheads by computing
error with the bitwise operation. Moreover, when limiting the memory usage to simulate
operation in a smaller embedded system, the difference in execution time between the two
models becomes up to 50.4% for the LSVM model and 55.6% for the CNN model on the
‘STM32 Discovery board’, as shown in Figure 14b. This result is done without any CPU
or memory acceleration, and therefore we believe that the proposed algorithm can have a
greater effect when the edge is run on smaller hardware.

                                            

                       

            

 

  

   

   

 
 

              

          

         

                                               

                       

            

 

  

   

   

 
 

              

          

         

57.6%

(a)

(b)

46.3%

50.4% 55.6%
31.9%

45.1%

45.6%
56.4%

Figure 14. (a) Execution time of each algorithm. (b) Execution time of each algorithm with mem-
ory limitation.

5.2. Memory Usage

In an embedded system, memory usage is an important aspect to consider. In par-
ticular, the peak value in memory usage over time is critical because it determines the
overall memory size used in the embedded system. Therefore, we tested the classification
process’s memory usage over the test dataset to compare memory usage over time between
the proposed model and the LSVM and CNN model. We used the Valgrind Massif profiler
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to measure heap and stack memory usage and repeated the classification of 1000 test data
with 0.5 s intervals [40].

As shown in Figure 15, the proposed algorithm’s peak memory usage was 81.94 KB,
while the LSVM and CNN model used 96.39 KB at its peak. We believe that the peak
memory usage of the LSVM and CNN model is of the same value because both models
were implemented using Tensorflow Lite. Thus, the proposed model’s memory usage had
lower volatility over time and reduced peak memory usage by 15.41% than the LSVM and
CNN model.

(a)

(b)

81.94kB

96.39kB

96.39kB
(c)

Figure 15. (a) Memory usage of the proposed model. (b) Memory usage of the LSVM model.
(c) Memory usage of the CNN model.

5.3. Power Consumption

Power consumption is an important consideration when choosing an algorithm to run
in an embedded system [3]. In this experiment, we used the ‘STM32 Discovery’ board to
ensure operation in a smaller embedded system. ‘Atmel Power Debugger’ was used to
measure the power consumed for the operation on this board [41]. To compare the proposed
algorithm with the LSVM and CNN model, the classification operation, which compares
1000 test data samples with 10 hyperplanes, was repeated at regular time intervals. Because
the ‘STM32 Discovery board’ takes too long to run the test bench, we reduced the test
bench’s size while keeping the total computation number the same for the proposed and the
LSVM models. Figure 16 shows the power analysis of the proposed model, LSVM model,
and CNN model on the ’STM32 Discovery board’. As shown in Figure 16, the standby
current and active current of the models are the same. However, there is a difference in
the average current due to each algorithm’s performance. As shown in Section 5.1, the
proposed model has a faster data processing speed compared to the LSVM and CNN
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model. A faster data processing speed means a reduction in chip operating time, which
leads to a reduction in the entire system’s power consumption.

(b)

∆𝑡′1 ∆𝑡′2 ∆𝑡′3 ∆𝑡′4 ∆𝑡′5 ∆𝑡′6

(a)

∆𝑡1 ∆𝑡2 ∆𝑡3 ∆𝑡4 ∆𝑡5 ∆𝑡6 ∆𝑡7

40% reduction
in execution time

(c)
45% difference in speed

∆𝑡′′1 ∆𝑡′′2 ∆𝑡′′3 ∆𝑡′′4 ∆𝑡′′5

Figure 16. (a) Current data of the proposed model. (b) Current data of the LSVM model. (c) Current
data of the CNN model.

Because a constant 5 V voltage drives the ‘STM32 Discovery board’, the total energy
consumption is proportional to the amount of current used. The equations for comparing
the energy consumption of the proposed model, LSVM model, and CNN model are
as follows.

Eproposed =
∫

Pi(t)− Pstandby dt =
k

∑
n=1

(∆t) ∗ Paverage (7)

ELSVM =
∫

Pi(t)− Pstandby dt =
k

∑
n=1

(∆t′) ∗ Paverage (8)

ECNN =
∫

Pi(t)− Pstandby dt =
k

∑
n=1

(∆t′′) ∗ Paverage (9)
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The energy consumed in the classification can be calculated by the Equations (7)–(9),
which is determined by the difference between ∆tn, ∆t′n, and ∆t′′n .

(∆tn) < (∆t′n) < (∆t′′n) (10)

Due to the proposed model’s increased performance, as shown in Equation (10),
∆tn is shorter than ∆t′n and ∆t′′n This shows that the increase in speed due to the bitwise
operation of the proposed model leads to a decrease in the processor’s energy consumption.
Looking at the results measured using the actual ‘STM32 Discovery board’ the LSVM
model uses about 510× 10−6 [J] to perform test bench operation, the CNN model uses
about 765× 10−6 [J], and the proposed model consumes 297× 10−6 [J] of energy. The
proposed model’s lower power consumption results from the shorter running time.

5.4. Model Evaluation Metrics

This section presents our model’s evaluation metrics and compares them with the
LSVM and CNN model. We evaluated our model based on 1000 test data samples. The
confusion matrix for our model is shown in Figure 17. The proposed model’s accuracy,
precision, recall, and f1-score are listed in Table 1 and compared with the LSVM and
CNN models.

Figure 17. Confusion matrix of the proposed model.

Table 1. Evaluation metrics of the proposed, LSVM, CNN model.

Accuracy Precision Recall F1-Score

Proposed 82.2% 82.75% 81.89% 82.32%
LSVM 85.8% 86.19% 85.99% 86.09%
CNN 94.6% 94.69% 94.72% 94.71%
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Since the proposed model has a smaller model size than the LSVM and CNN models,
its slightly lower evaluation metrics are justifiable. Furthermore, considering the model’s
power consumption, we calculated the power consumption per evaluation metrics in
Table 2. As shown in Table 2, the proposed model had much lower power consumption
per evaluation metrics than the LSVM and CNN models.

Table 2. Power consumption per evaluation metric of the proposed, LSVM, CNN model. Lower
value means more power efficient.

Power per Accuracy Power per Precision Power per Recall Power per F1-Score

Proposed 3.61 µJ/% 3.59 µJ/% 3.63 µJ/% 3.61 µJ/%
LSVM 5.94 µJ/% 5.92 µJ/% 5.93 µJ/% 5.92 µJ/%
CNN 8.09 µJ/% 8.08 µJ/% 8.08 µJ/% 8.08 µJ/%

6. Discussion

Our proposed model improved power consumption to 41.7% and memory usage to
15.41%, while the overall accuracy was only 3.6% lower than the LSVM model. Moreover,
for the CNN model, our model improved power consumption to 61.17% and memory usage
to 15.41%, while the accuracy was 12.4% lower. Since most of the existing human activity
recognition models are based on traditional ML/DL such as SVM and CNN, we believe that
our proposed model is very suitable for the smart home model. The activity classification
is executed repeatedly in a resource-constrained device; thus, power consumption is an
essential consideration. Additionally, the model’s memory usage is directly connected with
the cost of the device. Therefore, power consumption and memory usage are as crucial as
model accuracy, and a slight loss in accuracy can be justified by the improvement in power
and memory consumption.

Our former work dealt with a high-speed, memory-efficient ML algorithm by reducing
the size of hyperplanes and utilizing a high-speed string comparison algorithm to measure
similarity between input and each hyperplane [42]. However, in this study, we improved
the accuracy to 5.62% and the running time to 75.02% by adding preprocessing and using
bitwise-operation-based error calculations. Furthermore, we implemented the entire code
in C language without external libraries and verified the algorithm’s performance on
an embedded board. Our improvement taught us how important preprocessing is in a
lightweight ML algorithm. We believe that clustering data in preprocessing optimized the
number and importance of the parameters, thereby resulting in reduced memory usage and
responding accurately to more diverse, noisy data. Additionally, bitwise operation-based
error calculation enabled fewer operations during the runtime.

Although the proposed model had fast execution time and efficient memory and
power usage, the model accuracy and other model evaluation metrics were slightly lower
than conventional ML/DL approaches. Future works are needed to optimize the model
for the real-world activity data to achieve better accuracy. However, it is important to
preserve efficient resource consumption when improving the model accuracy since resource
consumption efficiency is more important than a slight improvement in accuracy.

More research is needed to prove that MNIST data sets represent real-world activities.
Compared to the MNIST data set, activity data in the real world may be more complex or
challenging to distinguish between different labels. Moreover, the model’s high accuracy
obtained from using the MNIST dataset may not be obtained when using real-world activity
data. Therefore, there is a slight chance that the model may not perform as well as expected
on real-world data. However, due to the similarity between MNIST and activity data as an
image and our model’s ability with regard to image data classification, we firmly believe
our model will perform well on real-world activity data classification. It would be best
to use actual smart home activity data, but this might create complex ethical issues and
would require legal consensus. We expect to obtain a large amount of real-world activity
data for training, evaluating, and testing from smart homes in our future work. Based on
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the real-world activity data, we expect to develop a preprocessing algorithm of raw activity
data for the input data of our proposed model.

Additionally, our algorithm’s training process is very efficient in terms of speed and
memory usage. To clarify, the maximum memory usage without the training data set is
5.2 MB, including 6000 training images, and the training time is 584.5 ms on a normal
PC(AMD Ryzen 5800X, 32 GB DDR4 Ram) for 6000 training data. We hope to optimize our
training algorithm to be executed on edge in future work, thereby alleviating concerns about
privacy in sending activity data to the server. We expect that it could be done by simply
implementing the training algorithm suitable for the embedded device. Furthermore, due
to the simple and scalable architecture of our training process, we anticipate our algorithm
to be modified to perform on real-time machine learning problems. We believe it can be
implemented immediately by developing an algorithm that determines the criterion for
generating a new hyperplane by calculating the distance between the existing hyperplane
and the input data. If the input data is relatively close to one of the existing hyperplanes,
the input data will be classified to the corresponding hyperplane. On the other hand, if the
new input data does not correspond to any of the hyperplanes, a new hyperplane will be
created from the new input data. Therefore, we can accomplish real-time machine learning
with little input data by slightly modifying the proposed algorithm.

7. Conclusions

In this study, we proposed an enhanced SVM algorithm for smart home activity
data classification with improved performance and reduced power and memory usage.
We demonstrated how smart home activity data corresponds to image data; therefore,
we utilized the MNIST data set to verify our model’s performance. In our proposed
algorithm, training data for the same label are grouped into further detailed clusters, and
then hyperplanes were generated by accumulating and thresholding each cluster based
on a bitwise operation-based error function. We classified data at high speed and low
power by the bitwise operation-based errors between input data and each hyperplane.
We evaluated our method’s performance on the ‘Raspberry PI 3’ and ‘STM32 Discovery
board’ embedded systems. Compared to the LSVM that Tensorflow Lite implements, while
the proposed algorithm had 82.2% overall accuracy, which is 3.6% lower than the LSVM,
it improved performance by 46.3% and up to 50.4% depending on the system memory
limitation, reduced peak memory usage to 15.41%, power consumption to 41.7%, and
improved power per accuracy to 39.2%. Moreover, for the CNN model implemented by
Tensorflow Lite, our model improved power consumption to 61.17%, memory usage to
15.41%, and performance up to 57.6%, while the accuracy was 12.4% lower. Therefore,
we believe that our model will be suitable for real-world smart homes since the activity
classification model is executed repeatedly in a resource-constrained device. Furthermore,
because the training process was also high speed and memory efficient, it is anticipated
that the proposed algorithm’s training process could be executed on edge and may be
extended to perform real-time machine learning due to its fast run time and simple, scalable
architecture. Meanwhile, more research is needed to prove that the MNIST dataset can be
used as a substitute for real-world activity data.
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