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Abstract: Due to the outbreak of lung infections caused by the coronavirus disease (COVID-19),
humans have to face an unprecedented and devastating global health crisis. Since chest computed
tomography (CT) images of COVID-19 patients contain abundant pathological features closely related
to this disease, rapid detection and diagnosis based on CT images is of great significance for the
treatment of patients and blocking the spread of the disease. In particular, the segmentation of the
COVID-19 CT lung-infected area can quantify and evaluate the severity of the disease. However,
due to the blurred boundaries and low contrast between the infected and the non-infected areas in
COVID-19 CT images, the manual segmentation of the COVID-19 lesion is laborious and places high
demands on the operator. Quick and accurate segmentation of COVID-19 lesions from CT images
based on deep learning has drawn increasing attention. To effectively improve the segmentation effect
of COVID-19 lung infection, a modified UNet network that combines the squeeze-and-attention (SA)
and dense atrous spatial pyramid pooling (Dense ASPP) modules) (SD-UNet) is proposed, fusing
global context and multi-scale information. Specifically, the SA module is introduced to strengthen
the attention of pixel grouping and fully exploit the global context information, allowing the network
to better mine the differences and connections between pixels. The Dense ASPP module is utilized
to capture multi-scale information of COVID-19 lesions. Moreover, to eliminate the interference
of background noise outside the lungs and highlight the texture features of the lung lesion area,
we extract in advance the lung area from the CT images in the pre-processing stage. Finally, we
evaluate our method using the binary-class and multi-class COVID-19 lung infection segmentation
datasets. The experimental results show that the metrics of Sensitivity, Dice Similarity Coefficient,
Accuracy, Specificity, and Jaccard Similarity are 0.8988 (0.6169), 0.8696 (0.5936), 0.9906 (0.9821), 0.9932
(0.9907), and 0.7702 (0.4788), respectively, for the binary-class (multi-class) segmentation task in the
proposed SD-UNet. The result of the COVID-19 lung infection area segmented by SD-UNet is closer
to the ground truth compared to several existing models such as CE-Net, DeepLab v3+, UNet++,
and other models, which further proves that a more accurate segmentation effect can be achieved by
our method. It has the potential to assist doctors in making more accurate and rapid diagnosis and
quantitative assessment of COVID-19.

Keywords: COVID-19 lung infection; CT images; segmentation; global context information;
multi-scale information

1. Introduction

At the beginning of 2020, the pulmonary infection pandemic caused by the new
coronavirus disease (COVID-19) broke out and spread rapidly around the world. This
disease poses a huge threat to human health and life safety, making humanity face an
unprecedented and devastating global health crisis [1–5]. COVID-19 is mainly manifested
in the lungs, causing respiratory infections. It can also lead to intestinal infections, causing
digestive symptoms including nausea, vomiting, and diarrhea [6]. As of 6 August 2021,
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according to world health organization (WHO) statistics, the cumulative number of con-
firmed cases of new coronary pneumonia in the world has exceeded 200 million, reaching
200,174,883, which means there has been about one COVID-19 patient per 39 people in the
world, and the number of deaths has exceed 4.25 million. COVID-19 is highly contagious,
and early screening of COVID-19 patients can help stop the spread of the disease. Therefore,
the rapid and accurate diagnosis of COVID-19 is very important for the prevention and
control of the pandemic. Polymerase chain reaction (PCR) testing is considered to be the
gold standard for COVID-19 testing. It can only qualitatively detect COVID-19 using
nasal swabs, sputum, and nasopharyngeal aspirates. In addition, PCR testing requires
a large number of doctors to perform it manually. At the same time, the progression of
COVID-19 can be quantitatively analyzed based on computed tomography (CT). CT images
can be used to detect the relevant pathological features of COVID-19 [7]. A lot of clinical
experience shows that CT imaging plays an irreplaceable role in the evaluation [8] and
diagnosis [9] of COVID-19 lung diseases. In comparison to chest X-rays, chest CT scans
have the advantage of not being affected by other chest tissues and have good recognition
ability of lung diseases. Therefore, chest CT scans are recommended by radiologists as the
main lung clinical diagnostic tool. Some studies [10,11] found that typical chest CT slices of
COVID-19 showed radioactive features such as ground-glass opacity (GGO) in the early
stage and pulmonary consolidation in the advanced stage. Medical image segmentation
plays a key role in the analysis of pathological characteristics of medical images. It can
help clinicians perform image-guided medical interventions and radiotherapy. Given that
doctors’ manual segmentation of lesions is time-consuming and is greatly affected by their
own subjective experience, it is of great significance to study and find an automatic and
effective medical image segmentation algorithm to assist clinicians to make accurate and
rapid diagnosis and treatment plans [12].

In recent years, with the rapid development of deep learning, semantic segmentation
algorithms based on deep learning have made remarkable achievements in medical image
segmentation tasks. In particular, the automatic segmentation of the COVID-19 lung
infection area based on deep learning is very important for further diagnosis of the disease
because it can assist radiologists in quantitative evaluation of the disease quickly [8]. Some
researchers used deep learning [13–19] to screen for COVID-19. Wang et al. [13] used a
segmentation method based on deep learning to extract the lesion features of COVID-
19. Some frameworks widely used in medical image segmentation were also utilized for
COVID-19 segmentation, such as U-Net, V-Net, and U-Net++ [14–16]. Wang et al. [17]
designed a segmentation framework to learn distinguishing features from noisy labels,
which alleviated the impact of COVID-19 image label quality on segmentation performance
and captured the scale and morphological information of COVID-19 lung CT images.
Wu et al. [18] proposed a two-stage COVID-19 segmentation strategy: U-Net was first used
to roughly locate the lesion area and then to finely segment the lesion area on the basis of
the rough positioning information. Fan et al. [19] introduced a semi-supervised COVID-19
segmentation method, which can effectively alleviate the impact of the lack of labeled data.

As a particularly effective and robust segmentation model, U-Net is widely used in the
field of medical image segmentation, but in this model, each channel of the output feature
is given the same weight. It lacks the ability to deal with different types of features and does
not take into account the difference of the contribution of each convolution channel to the
feature extraction of the network. Compared with the fully-connected layer, convolution
adopts a local connection mode, and the weight sharing operation greatly reduces the
calculation parameters. Convolution kernel has the characteristic of local perception and is
good at capturing the information around pixels. This characteristic makes it difficult to
learn the correlation between pixels far away in the image. Because of the local receptive
field feature of the convolution kernel, it does not make full use of the global context
information of the image. In fact, a lot of previous works focused on the improvement of
pixel level segmentation performance, basically ignoring the importance of pixel-grouping
in semantic segmentation [20]. In our SD-UNet, a squeeze-and-attention (SA) module was
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introduced to overcome these challenges by using a not fully-squeezed attention channel
mechanism to generate non-local spatial attention to the image and make full use of the
global context information to selectively re-weight the channel features. It can also be
considered a kind of spatial attention to pixel grouping. Each pixel on the input feature
map was scanned by generating attention convolution, and pixels with different spatial
positions but belonging to the same class were divided into a group.

Apart from the above-mentioned lack of global context information, the ability of a
convolutional neural network (CNN) to perceive information is largely dependent on the
size of its convolution kernel, making it difficult to capture long-distance and multi-scale
lesion information. It is worth emphasizing that the detection of COVID-19 usually uses
advanced computed tomography technology, which generates high-resolution CT images,
but labeling lesions still requires experienced doctors. Due to the lack of medical personnel
and efficient medical instruments, the diagnosis of COVID-19 is usually subjective and
time-consuming. At the same time, for COVID-19 CT images, computer-aided diagnosis
will face great challenges and limitations due to the diversity of object locations and shapes
of lesions as well as the blurred boundaries between infected and non-infected areas. In
view of this situation, the dense atrous spatial pyramid pooling (Dense ASPP) module was
embedded into our COVID-19 lung lesion segmentation network SD-UNet to help explore
multi-scale contextual features [21], locate lesion boundaries, and refine semantic labels,
which facilitates the capture of the size and location information of different lesion targets.

Our contributions are listed in the following three aspects:

1. We propose a novel framework SD-UNet for segmentation of COVID-19 lesions,
which combines the advantages of SA and Dense ASPP modules. The SA module is
introduced to strengthen the attention of pixel grouping and fully exploit the global
context information, making the network better mine the differences and connections
between pixels. Therefore, we added a new path from the output of convolution to
learn the weight information and explicitly model the dependency between channels
by re-weighting local and global features. This mechanism can better adapt to the
task of semantic segmentation. The Dense ASPP module is utilized at the bottleneck
of the encoder and decoder of SD-UNet to better capture long-distance and multi-
scale lesion information and to avoid the loss of semantic information caused by the
down-sampling operation in the encoding process. In summary, the global context
and multi-scale information of COVID-19 lesions can be better mined by the fusion of
these two modules, so that a more accurate segmentation effect can be achieved.

2. To eliminate the interference of background noise outside the lungs and highlight
the texture features of the lung lesion area, we extracted the lung area from the CT
images in the pre-processing stage. Specifically, the raw image and infection mask
were pre-processed through extraction of the lung contour and removal of the black
background around the lung followed by resizing.

3. We compared the framework with several existing segmentation methods. The
experimental results based on the binary-class and multi-class lesion segmentation
datasets demonstrated that SD-UNet is more robust and effective for the COVID-
19 lung infection segmentation task. Further, an ablation study was implemented
to verify the efficiency of the Dense ASPP and SA components, and 5-fold cross-
validation was used to objectively and accurately evaluate the performance of our
segmentation model.

The rest of this paper is organized as follows: In Section 2, several research works
related to the segmentation of COVID-19 pulmonary infection are discussed. In Section 3,
the architecture and key components of the proposed network are illustrated in detail. In
Section 4, some of the details of the experiment are described. The performance evaluation
results of our segmentation network are presented in Section 5, and the conclusion is drawn
in Section 6.
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2. Related Work

In this section, we present several works that are relevant to our research in several
aspects, including medical image semantic segmentation, attention mechanism, and multi-
scale contextual information.

Based on the data-driven deep learning method, the high-level abstract thinking ability
similar to the human brain is approximately simulated by building an end-to-end deep
feature extraction network. One of the advanced and effective models is a convolutional
neural network (CNN) [22]. Long et al. [23] designed an end-to-end, pixel-to-pixel fully
convolutional neural network (FCN), which was more efficient than traditional CNN-
based segmentation networks, but the segmentation result was unsatisfactory because it
ignored the global context information of the image and was not sensitive enough to the
details of the image. Ronneberger et al. [24] proposed a U-shaped symmetric network
(U-Net) that was good at segmentation of cell images and liver CT images by using a jump
connection method that greatly improved the segmentation accuracy and the robustness.
Zhou et al. [25] designed a U-Net++ segmentation network. By modifying the jump
connections in U-Net to nested dense jump connections, this can facilitate the integration
of different levels of image features. Zhao et al. [26] designed a novel dilated dual attention
network based on U-Net (D2A U-Net) for COVID-19 infection area segmentation in CT
images. Xie et al. [27] constructed a double U-shaped dilated attention network (DUDA-
Net), which effectively improved the segmentation ability of subtle lesions of COVID-19.

In recent years, the attention mechanism has been widely used in various fields of
deep learning. We can easily find the attention mechanism in various tasks such as nat-
ural language processing, speech recognition or image processing, and it can be used to
emphasize important feature information and suppress irrelevant information [28]. The
attention mechanism can also enhance the interpretability of the network. Hu et al. [29]
proposed a lightweight channel attention module, “Squeeze-and-Excitation” (SE), which
can adaptively learn the interdependence between channels to readjust the characteristic
response of the network. Woo et al. [30] designed an attention module convolutional block
attention module (CBAM), which combined channel attention and spatial attention mech-
anisms, so that the network can simultaneously pay attention to the details of the image
from both the channel and space. Fan et al. [18] proposed an edge attention mechanism
for the segmentation of COVID-19 lung CT images, which provided useful constraints on
the edge information of the generated feature maps and explicitly improved the feature
representation of the boundary area of the object. Han et al. [31] exploited a self-attention
mechanism in generative adversarial networks (GANs) for unsupervised anomaly detec-
tion in MRI, helping the network to model the global and long-range dependencies for
MRI slices. Schlemper et al. [32] designed an attention gate (AG) model, which can make
the model pay more attention to learn features related to the segmentation target. Yeung
et al. [33] proposed a dual attention (spatial and channel attention) gated CNN for polyp
segmentation during colonoscopies, which encouraged the network to selectively mine
polyp features and suppress background features, thus effectively deal with the image
segmentation task of category imbalance.

Some previous studies [34–38] showed that multi-scale context information was ben-
eficial for semantic segmentation of image pixels. Farabet et al. [34] used the Laplacian
pyramid to transform the image at multiple scales, inputting each scale into the network
and merging the feature maps of different scales. Lin et al. [35] simply adjusted the input
image at several different scales and then aggregated the output feature maps of all these
scales. The disadvantage of this method was its very high number of parameters from
extracting multi-scale features [34,35]. Considering the performance of GPU, it is not suit-
able for larger and deeper networks. Chen et al. [36] introduced atrous spatial pyramid
pooling (ASPP), which captured the multi-scale context with parallel dilated convolution
at multiple dilated rates for a given input, greatly increasing the receptive field at the cost
of increasing the number of parameters. This captured the long-distance and multi-scale
information of the image as well. Huang et al. [37] designed a jump connection structure
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that can extract full-scale information from each convolutional layer of the encoder and
decoder and can capture the context information of the image from multiple scale ranges for
more precise segmentation. To solve the problem of multiple lesion shapes and positions of
COVID-19 pneumonia, Pei et al. [38] designed a network with multi-scale feature extraction
capabilities, which used multiple sizes of receptive fields to obtain multiple-scale lesion
features so as to strengthen the ability of segmenting COVID-19-infected regions with
different sizes.

3. Proposed Method for COVID-19 Infection Segmentation
3.1. The Architecture of SD-UNet

In this section, we elaborate on the network structure of SD-UNet and how the key
component SD module is embedded in our network. As shown in Figure 1, the proposed SD-
UNet has a U-shaped symmetrical structure, which mainly includes encoder and decoder
parts. The upper part of the structure framework diagram of the SD-UNet segmentation
network is the encoder, which is called the “down-sampling stages”. DenseASPP is in the
middle of the SD-UNet, which is a module for extracting multi-scale features of images.
The lower part is the decoder, which is the “up-sampling stages”. The red arrows in the
middle are the jump connection operation, concatenating the shallow features with the
deep features. In the encoder part, feature extraction is performed on the network, and
the image is decomposed into a combination of smaller feature maps at different levels to
capture image context information, including four down-sampling encoding stages. Each
stage includes an SA block followed by a 2 times of down-sampling called Down-conv
operation, halving the sizes of the feature maps and doubling the number of channels of
the feature maps. Down-conv operation is achieved by concatenating the features after the
maximum pooling operation and the average pooling operation, which can extract the most
representative feature and retain the global information of the feature maps to the greatest
extent. The feature extraction of the encoder is followed by a Dense ASPP module closely,
so that our model can capture a larger receptive field to better deal with multi-scale lesion
areas. In the decoder part, up-sampling operation is conducted to restore the feature maps,
and the SA block is added to mine deeper semantic features related to lesions, including
four up-sampling encoding stages. Each stage includes a 2 times of up-sampling called
Up-conv operation and an SA block. In particular, for the Up-conv operation, a bilinear
interpolation is used to double the sizes of feature maps, followed by a 1 × 1 convolution
to halve the number of channels of feature vectors for concatenation operation. After
decoding, a 3 × 3 convolution is used to integrate the number of channels of the feature
vectors and output the semantic segmentation map. Additionally, the jump connection
operation merges the deep abstract semantic features from the decoding part and the
low-level semantic features of different scales from the encoding part, which preserves
more spatial details for better image segmentation. In our paper, each convolution layer is
followed by an activation function using the Leaky ReLU and Group Normalization [39]
layer with Groups = 32.

In the SD-UNet network, it is worth mentioning two key components: SA and Dense
ASPP. In the SA component, two 3× 3 convolutions of U-Net are modified by adding an SA
block. The SA module is an improvement of the Squeeze-and-Excitation (SE) module [28],
and this module integrates the advantages of ResNet and U-Net and effectively solves
the problem of information loss caused by convolution operations. Classical convolution
is mainly aimed at spatial local feature coding, while SE establishes the interdependence
among feature mapping channels, adaptively learns the weights of feature mapping of
different channels, and allocates more important resources to important tasks. The SE
module was originally designed to improve classification performance. However, image
segmentation is not exactly equivalent to image classification. Inspired by SE, a newer
channel attention mechanism, SA, is introduced, which is specifically used for semantic
segmentation tasks and aims to improve the segmentation results. The global and local
information representation of the image is very important for semantic segmentation.
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Because the convolutional layer generates a feature map based on the local information,
only the local information within the receptive field is considered; the global information
of the image is ignored. The global context feature can clarify which areas belong to the
same category and can provide a broader view. Global context information is very useful
for improving the accuracy of semantic segmentation. The global context feature is utilized
to encode these regions as a whole, instead of individually re-weighting each part of the
image. The SA module can selectively learn more representative features, which is useful
for segmentation by re-weighting both local and global information.

Figure 1. Architecture of the proposed SD-UNet.

For the Dense ASPP component, it is added between the encoder and decoder of the
model. The currently used convolution usually leads to a reduction in the size of the feature
map, and the receptive field of the convolution operation in U-Net is often dependent on
the size of the convolution kernel. In this paper, atrous or dilated convolution is used to
overcome this limitation. This method uses a filter with holes to increase the receptive
field without changing the size of the feature map. In COVID-19 lung CT images, there are
lesions with large-scale changes and complex textures. ASPP uses dilated convolution with
different dilated rates to aggregate features of different scales in parallel. To a certain extent,
it can alleviate multi-scale problems. However, the resolution of the features on the scale
axis is not sufficient to accurately extract the lesion features of lung CT images without
enough receptive field information. Additionally, ASPP aggregates dilated convolutions
of different dilated rates to obtain more scale information of the image, but when the
dilated rate is too high, only a small number of feature points will be selected for each
calculation, and the sampling points are not dense, resulting in the loss of a large amount of
the key information. With the different sizes of the diseased object taken into account, the
accuracy of the semantic segmentation of the object based on a deep neural network can
be improved, and more dense sampling can retain more feature information. Dense ASPP
encourages the use of dilated convolution layers with different dilated rates in a densely
connected way to better capture lesion features from different scales. Without significantly
increasing the computation burden of the model, Dense ASPP has denser receptive field
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information in contrast to ASPP and can extract more semantic features from multiple
scales to retain more spatial context information to handle multi-scale image features and
improve segmentation accuracy. The descriptions of SA and Dense ASPP will be illustrated
in detail in the following section.

3.2. Squeeze-and-Attention Module

In many previous works, the attention mechanism was used to guide the network to
learn more useful information adaptively and to enhance the feature representation ability
of the network. However, most of the work mainly focused on the pixel-level attention
mechanism while ignoring the importance of pixel grouping. Specifically, pixel-level
attention solves the problem of pixel-by-pixel prediction, and pixel grouping emphasizes
the relation between pixels of the same type. For segmentation tasks, in addition to the
dense prediction of a single pixel, it is necessary to capture the differences and relations
among pixels. In other words, segmentation should focus on grouping pixels of the same
category. In this paper, we introduce a novel SA module into SD-UNet, which is specifically
responsible for the channel attention mechanism of pixel grouping. The SA module
introduces “attention” convolution to the traditional convolution channel, to a large extent
explicitly constructs the interdependence between the feature channels, and reduces the
local constraints of the convolution kernel. The SA module uses the down-sampling channel
generated by the average pooling to fuse multi-scale feature maps and generate non-local
spatial attention. In general, our SA module not only considers the pixel-level prediction,
but also takes into account the attention to the pixel group. Unlike the SE module, the SA
module avoids the use of very large multiples of up-sampling and so reduces the model
parameters. Down-sampling is not fully-squeezed, which makes the network more flexible.
Moreover, unlike the ordinary residual module, the SA module can adaptively recalibrate
the channel weights, which effectively enhances the local feature representation ability of
the residual module. Figure 2 shows the architecture of the SA module. We introduce an
additional path from the output of the convolution to learn the weight information and
explicitly model the relationship among the channels by re-weighting the local and global
features. This mechanism can better adapt to semantic segmentation tasks. Through this
re-weighting mechanism, the original feature channel weights are adjusted, allowing the
network to use global information to adaptively determine which parts of the image need to
be activated, thereby emphasizing important features and suppressing irrelevant features.

Figure 2. Architecture of the squeeze-and-attention module.
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The formula of the SA module can be simply expressed as:

Xout = Xattn × Xres + Xattn (1)

where Xattn = Up
(

X̃attn

)
denotes the up-sampling operation on X̃attn to match the out-

put feature map Xres on the main convolution path. Moreover, Xres = ε(Xin; Θ, Ω), ε(·)
represents the residual feature extraction operation of Xin on the main convolution path,
Θ and Ω represent the two “CONV” convolution layers for feature extraction separately,
which are used to parameterize ε(·); “×” and “+” represent the element multiplication and
addition operations of the two tensors, respectively.

X̃attn can be expressed as in Equation (2):

X̃attn = εattn(APool(Xin); Θattn, Ωattn) (2)

where X̃attn represents the output of the attention convolution channel εattn(·), which is
parameterized by Θattn and Ωattn. APool(·) is the average pooling operation and the not
fully-squeezed of the input feature map Xin; Θattn and Ωattn represent the convolution
operations on two “ACONV” attention channels responsible for calibrating the output
feature map channel.

3.3. Dense ASPP

CNNs are widely used in the field of computer vision to perform deep-level abstract
feature extraction tasks. However, in CNN, simple convolution operations may be too weak
to solve some complex tasks. For example, if the image is resized, rotated, or deformed,
it is difficult for CNN to accurately identify the original image. Usually, 3 × 3 or 5 × 5
convolution is used to extract the local information of the image. In the feature extraction
process, the pooling operation is often utilized to reduce the size of the feature map.
While the pooling operation reduces the resolution of the image, it will also cause such
problems as loss of spatial position information and loss of small object information, which
are not good for improving the segmentation results. Therefore, in this paper, dilated
convolution was designed to avoid the loss of semantic information caused by down-
sampling operation, better capture the position information of the image, and improve the
segmentation accuracy of infected tissue. Dilated convolution can increase the receptive
field by injecting dilation into different convolutions. The ASPP proposed in Deeplab v3+
contains the following five parallel feature extraction operations: three dilated convolution
layers whose dilated rates are 6, 12, and 18, a 1 × 1 convolution, and an average pooling
down-sampling layer. The obtained five features are concatenated in the channel dimension,
and finally, the channel is compressed to the desired value through a 1 × 1 convolution
to obtain a larger range of information. As shown in Figure 3, based on ASPP, we build a
denser connected Dense ASPP module, which can effectively extract targets of different
scales and more effectively segment high-resolution lung images with complex textures.
Dense ASPP cascades the dilated convolutions of different dilated rates in a densely
connected way. The input of each dilated convolutional layer is derived from all of its
previous layers, so that a denser receptive field can be achieved.
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Figure 3. Architecture of the Dense ASPP module.

The specific calculation formula of one-dimensional dilated convolution is:

Y(i) =
N

∑
n=1

(X[i + r× n]×W(n)) (3)

where X represents the input feature map, W represents the convolution kernel, N repre-
sents the size of the filter, and r is the dilated rate of the convolution with holes. Dilated
convolution can be utilized to expand the receptive field of feature map by injecting dilation
into different convolutions while maintaining the resolution of feature map; thus, it can
capture a wider range of spatial context information.

Dense ASPP is similar to ASPP, including three layers of dilated convolution, a 1 × 1
convolution, and a lower sampling average pooling layer. The concatenation calculation of
the 5-feature extraction operations is shown in (4):

Y = concat
(

Ipool(X), C(X), Y0, Y1, Y2

)
(4)

where Concat(·) refers to the channel-dimensional splicing of the five output feature maps,
Ipool(·) represents the average pooling operation, and C(·) represents the convolution
operation with the convolution kernel size of 1 × 1. The output Yi expression of a dilated
convolution in each layer is:

Y0 = H6,3(X)
Y1 = H12,3(Concat(X, Y0))
Y2 = H18,3(Concat(X, Y0, Y1))

(5)

where Hr,n(·) represents the dilated convolution with dilated rate r and convolution kernel
size n.

4. Experiments
4.1. Dataset Descriptions

Data acquisition: For the purpose of evaluating our proposed method, we performed
two-class and multi-class lung lesion tissue segmentations separately on different datasets,
all of which are publicly available. The dataset for the binary-class segmentation experiment
is a combination of two different lung CT segmentation datasets (Dataset-B1, Dataset-B2),
with a total of 1963 lung CT slices, including 100 from dataset-B1 and 1863 from dataset-B2.
Specifically, Dataset-B1 in the experiment was collected from more than 40 patients with
COVID-19 by the Italian Society of medical and interactive radiology [40], including 100
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axial CT images with lung infection labels segmented by radiologists, and the size of each
CT slice is 520 × 520. Dataset-B2 [41] consists of 1863 COVID-19 and 1637 non-COVID-19
CT samples from 20 labeled COVID-19 CT scans (with two sizes of images, 520 × 520
and 630 × 630) and has been labeled with left lung, right lung, and affected region by
experienced radiologists. We excluded lung CT slices without lesions and only retained
1863 COVID-19 cases containing infected areas for training. Dataset-M [40] was selected
for the multi-class segmentation task in this paper; it was from nine CT scans segmented
by radiologists. This dataset has 829 lung CT slices and masks, including 456 negative and
373 positive samples, and the image size is 630 × 630. We selected 373 slices of positive
COVID-19 cases as our training samples. The pixel sizes of all training data of binary-class
and multi-class segmentation experiments were resized 288 × 288 CT images with mask
labels. In particular, each multi-class label included three categories, namely, consolidation,
GGO, and background.

In order to eliminate the interference of background regions that are unrelated to
pneumonia segmentation in COVID-19 samples, we chose to extract the lung regions
of all CT slices in the pre-processing stage. First, as can be seen in Figure 4, the raw
image and infection mask were pre-processed through extraction of the lung contour,
removal of the black background around the lung (the OpenCV toolkit was used to remove
the black background), and resizing (the resized image of each CT slice was 288 × 288).
Then, the processed data (lung contour) were sent to the network for training. Finally,
supervised learning was performed on the prediction mask and ground truth to optimize
the segmentation results. Since the pixel level standard for image masks is time-consuming
and laborious, we only collected 1863 CT slices with lung masks from dataset-B2 and
373 CT slices with lung masks from dataset-M. For dataset-B1, lung masks were difficult
to identify because they were not marked by experts, so only the operations of removing
the black background around the lung and adjusting the image size to 288 × 288 were
performed. By using lung masks to extract the lung region related to infection from lung
CT slices, we can effectively filter out the interference of the background noise outside
the lung and highlight the texture features of the lung lesion region, which can make the
network put more focus on the segmentation of the COVID-19 lesion region. It is worth
mentioning that we classified non-COVID-19 lesions into a semantic category (background
category).

Figure 4. Example of lung region segmentation from COVID-19 CT images.
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4.2. Evaluation Metrics

We quantitatively evaluated the model using the COVID-19 dataset and selected five
evaluation indices to measure the performance of network segmentation: Sen (Sensitivity),
DSC (Dice Similarity Coefficient), Acc (Accuracy), Spe (Specificity), and JS (Jaccard Similar-
ity). The DSC and JS indicators were used to measure the similarity between the predicted
results and the real results. It is worth noting that the DSC and JS indicators are widely
used in the field of medical image segmentation. The formula is defined as follows:

DSC(S1, S2) = 2 |S1∩S2|
|S1|+|S2|

JS(S1, S2) =
|S1∩S2|
|S1∪S2|

(6)

where S1 and S2 denote the ground truth and masks predicted by the network, respectively,
and their value ranges are [0, 1]. The closer the value is to 1, the closer the segmentation
result predicted by the network is to the ground truth.

Sen, Acc, and Spe are also often used to evaluate the quality of semantic segmentation
results, which are defined as follows:

Sen = TP
TP+FN

Acc = TP+TN
TP+TN+FP+FN

Spe = TN
TN+FP

(7)

TP, FP, FN, and TN indicate that the lesion area is correctly segmented as a lesion, the
background area is incorrectly segmented as a lesion, the lesion area is incorrectly seg-
mented as background, and the background area is correctly segmented as background,
respectively. We used the above indicators to comprehensively evaluate the segmentation
results of COVID-19 lung infection. In addition, the COVID-19 lung infection dataset
provided ground truth as labels, and the performance evaluation results can be seen in
Section 5.

4.3. Combo Loss Function

Recent works [42,43] have proved that the compound loss function, especially the
dice-related compound loss function, is a better choice to improve the segmentation effect
compared with a single loss function, so we deployed a combo loss function for segmenta-
tion supervision. The combo loss function in this paper consists of two parts: BCE (Binary
Cross Entropy) loss and DSC (Dice Similarity Coefficient) loss. BCE loss is widely used
in image semantic segmentation tasks. Each pixel of the image is evaluated one by one,
ignoring the neighborhood label and weighting the segmented pixels and background
pixels, which can contribute to the convergence of the network. Since the BCE loss can
back-propagate the gradient values corresponding to different categories very stably, using
it for network optimization can effectively alleviate the problem of gradient disappearance.
However, for medical image segmentation, the phenomenon of class imbalance often oc-
curs, which leads to the fact that network training mainly tends to segment categories with
dense pixel distribution, and it is difficult for the network to learn the characteristics of
small objects, so as to reduce the reliability of the network. The formula is as follows:

LBCE = − 1
N

N

∑
i=1

(gi ln(pi) + (1− gi)× ln(1− pi)) (8)

where gi is the segmentation result marked by radiologist for pixel i, and pi is the segmen-
tation result predicted by network for pixel i.

The introduction of DSC loss is aimed to alleviate the impact of category imbalance
and make the predicted result closer to the real result. However, if the predicted result
does not completely coincide with the labeled real result pixels, the DSC loss will have
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a negative impact on the back propagation, which will make the training process very
difficult. The formula is as follows:

LDSC = 1− 2

N
∑

I=1
gi pi

N
∑

i=1
g2

i +
N
∑

i=1
p2

i

(9)

For the sake of accelerating the convergence speed of the network, alleviate the
problem of gradient disappearance in the process of back propagation and the impact of
category imbalance, and achieve the accurate segmentation of COVID-19 lung-infected
tissue, we combined the two loss functions for network training, and the formula is
as follows:

L = LBCE + LDSC (10)

4.4. Implementation Details

Our computer is configured with i5-10600KF (CPU), 32 GB RAM, and the graphics
card is an NVIDIA GeForce GTX3070. The experimental language is Python, and all models
were executed in the Pytorch framework. In order to balance computational efficiency and
memory consumption, we used the Adam optimizer to minimize the loss function. The
initial learning rate was set to 0.0002, the learning rate attenuation strategy used a fixed
step size attenuation, the learning rate was adjusted every 20 epochs, and the attenuation
coefficient was set to 0.8. This paper divided the training set, validation set, and testing
set at a ratio of 7:1:2, as shown in Table 1. The training set was sent to the network with
a batchsize of 4 for iterative training. At the end of each epoch, we validated the model
and saved the best performing results. The largest epoch was set to 200. After training,
the best weights of the model were saved, and then the generalization performance of
the model was tested. Moreover, we adopted several data enhancement methods widely
used in semantic segmentation, such as translation, rotation, flipping, and scaling, which
effectively enhance the diversity of training data and improve the generalization ability of
the model in the case of a small training dataset.

Table 1. Distribution of samples for segmentation.

Set Training Validation Testing Total

Dataset-B (B1, B2) 1376 196 391 1963
Dataset-M 258 38 77 373

5. Results
5.1. Performance Evaluation of the Segmentation Network

With the purpose of verifying the segmentation performance of the SD-UNet proposed
in this paper for the COVID-19 pneumonia disease, we compared SD-UNet with the state-
of-the art models on the binary-class COVID-19 lung infection dataset.

Table 2 shows the segmentation results of our proposed method compared with
PSPNet, R2U-Net, CE-Net, U-Net, DeepLab v3+, and UNet++. The codes of these models
are all open source. We used the same training strategy for training SD-UNet and the
other models to ensure fairness of the comparison. From Table 2, we can observe that our
SD-UNet had a great advantage in the overall segmentation performance compared with
other models on the binary-class COVID-19 lung infection dataset. It is worth mentioning
that our proposed SD-UNet had better segmentation results compared with the baseline
model U-Net. Specifically, four of the five indices of SD-UNet were significantly improved
compared with U-Net. This shows that our SD-UNet effectively improved the segmentation
performance of COVID-19 lung infections and achieved the expected optimization goal
compared with the baseline model. To be specific, our proposed SD-UNet performed best
except for the Spe index. Compared with the model UNet++ that achieved the second best
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result, our SD-UNet improved by 0.94%, 0.36%, 0.17%, and 1.10% in DSC, Acc, Spe, and JS,
respectively. Moreover, as shown in Figure 5, although the segmentation effect of UNet++
was better than that of U-Net, it still predicted the background area as the lung infection
area and the lung infection area as the background area segmentation, and the segmentation
effect was not accurate enough. The segmentation results produced by SD-UNet were
closest to the ground truth in overall shape and position; they effectively distinguished
the infection area from the background area, solved the over-segmentation and under-
segmentation problems of other algorithms, had clearer and smoother boundaries, and
were more sensitive to the segmentation of small objects compared to other methods. This
shows that our proposed method is more robust and effective for the segmentation task of
COVID-19 lung infection.

Table 2. Quantitative analysis of different segmentation methods for COVID-19 using Dataset-B.

Network Sen DSC Acc Spe JS

PSPNet [44] 0.8192 0.8084 0.9615 0.9772 0.6784
R2U-Net [45] 0.8680 0.8289 0.9576 0.9697 0.7079
CE-Net [46] 0.8892 0.8399 0.9770 0.9812 0.7291
U-Net [24] 0.8624 0.8544 0.9879 0.9942 0.7508

DeepLab v3+ [36] 0.8767 0.8571 0.9877 0.9931 0.7546
UNet++ [25] 0.9010 0.8602 0.9870 0.9915 0.7592

Our SD-UNet 0.8988 0.8696 0.9906 0.9932 0.7702

Figure 5. Segmentation results of different models for the COVID-19 binary-class lung
infection dataset.

In order to further evaluate the performance of our method on different types of
COVID-19 pulmonary disease, we selected three state-of-the art models for comparison
on the multi-class COVID-19 lung infection dataset. From the experimental results of
Table 3, Sen, DSC, JS, Acc, and Spe in our proposed lung segmentation network reached
0.6169, 0.5936, 0.9821, 0.9907, and 0.4788, respectively. This indicates that our evaluation
indicators achieved the best comprehensive performance compared with the existing
baseline model U-Net and its variants such as U-Net, Attention U-Net, and U-Net++,
but not the Spe index. Compared with the baseline model U-Net, the proposed method
improved by 0.25%, 3.03%, 0.37%, 0.28%, and 2.15% in these five indices. In particular,
although U-Net++’s segmentation index Sen was 2.24% higher than our method, other
indices were lower than our proposed method. In analysis, the pixel contrast between
the GGO class and background class was low. On the other hand, the appearance of the
GGO class was blurred. This is why it is difficult for GGO to be accurately segmented by
the network compared with the Con (Consolidation) class. However, the segmentation
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index of the GGO class of our proposed method was still the best compared to other
methods. All of the above experiments show that our method has a stronger ability to deal
with semantic segmentation. Specifically, as shown in Figure 6, our SD-UNet effectively
distinguished the lung infection area from the background area and clearly segmented
the outline of the infection area, more approximately reaching the result based on the
doctor’s manual labeling. It is worth mentioning that our method can better segment
different types of infections and can clearly capture the category characteristics of GGO
and Con (Consolidation). It also shows good segmentation results even for the more
challenging GGO category, which indicates that our method has potential for COVID-19
auxilliary diagnosis.

Table 3. Quantitative analysis of different segmentation methods for COVID-19 using Dataset-M.

Network Class Sen DSC Acc Spe JS

U-Net [24]
Avg 0.6144 0.5633 0.9784 0.9881 0.4573

GGO 0.4557 0.3889 0.9780 0.9842 0.2975
Con 0.7731 0.7377 0.9788 0.9920 0.6171

Attention U-Net [32]
Avg 0.6041 0.5701 0.9813 0.9897 0.4580

GGO 0.5145 0.4018 0.9802 0.9846 0.3008
Con 0.6935 0.7384 0.9824 0.9948 0.6152

UNet++ [25]
Avg 0.6393 0.5869 0.9804 0.9895 0.4734

GGO 0.5391 0.4144 0.9797 0.9853 0.3124
Con 0.7395 0.7594 0.9811 0.9937 0.6344

Our SD-UNet
Avg 0.6169 0.5936 0.9821 0.9907 0.4788

GGO 0.4613 0.4225 0.9823 0.9902 0.3146
Con 0.7725 0.7647 0.9819 0.9912 0.6430

Figure 6. Segmentation results of different models for the COVID-19 multi-class lung infection
dataset, where the white and magenta parts indicate the GGO and consolidation, respectively.
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5.2. Analysis and Discussion

With the aim of exploring the effect of the Dense ASPP and SA components in SD-UNet,
we performed ablation studies using Dense ASPP and SA components independently on
the dataset-B. The experimental results are shown in Table 4; it can be seen that both the
Dense ASPP and SA components play positive roles in improving the segmentation ability
of the network. For the Dense ASPP component, the Sen, DSC, Acc, and JS indicators were
improved compared with the backbone, which can be explained as follows: Dense ASPP
can help the network capture long-distance lesion features and improve the segmentation
accuracy of multi-scale lesion tissue. For the SA component, the DSC, Acc Spe, and JS
indicators also showed a better result relative to the backbone. This can be understood that
the SA component can better use global information to adaptively determine which parts
of the image are activated in the process of feature extraction so as to achieve the effect of
emphasizing important features and suppressing irrelevant features, helping to achieve
better segmentation results. In general, Our SD-UNet combines the advantages of high
sensitivity of the Dense ASPP module with high specificity of the SA module to improve
the segmentation performance of COVID-19.

Table 4. Ablation Study on the COVID-19 binary-class lung infection dataset.

Network Sen DSC Acc Spe JS

UNet 0.8852 0.8561 0.9795 0.9923 0.7508
UNet + Dense ASPP 0.9047 0.8616 0.9878 0.9915 0.7597

UNet + SA 0.8759 0.8667 0.9869 0.9936 0.7668
Our SD-UNet 0.8988 0.8696 0.9906 0.9932 0.7702

On the basis of the U-Net segmentation network architecture, the SA and SE modules
were embedded into the network for training to verify that the performance of the SA mod-
ule was better than that of the SE module in the task of pulmonary infection segmentation.
Table 5 shows the comparative test results of the two modules.

Table 5. Quantitative comparison of the SA and SE modules for COVID-19 binary-class lung
infection dataset.

Network Sen DSC Acc Spe JS

UNet 0.8852 0.8561 0.9795 0.9923 0.7508
UNet + SE 0.8623 0.8626 0.9874 0.9915 0.7626
UNet + SA 0.8759 0.8667 0.9869 0.9936 0.7668

As a measure of the confusion degree of the multi-classification model, the confu-
sion matrix can express the performance of the classification algorithm in a visualized
way. Therefore, to better evaluate the performance of the proposed multi-class segmen-
tation model, we drew the confusion matrix obtained from the multi-class segmentation
experiments. As shown in Figure 7, the values on the diagonal line indicate the correct
prediction results, and the remaining values are the wrong prediction results caused by the
misjudgment of the model.
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Figure 7. Confusion matrix of multi-class segmentation experiments.

5.3. Cross-Validation

Given that our segmentation dataset is relatively small and the distribution of the
COVID-19 segmentation dataset is very complicated, it is difficult to be fully understood.
When we manually divide the dataset, there will be an imbalance in the data division,
resulting in insufficient robustness of the model training results. This imbalance will have
a significant impact on small dataset, so we chose a cross-validation operation to obtain a
more accurate and objective evaluation of the model. Tables 6–9 are the results of 5-fold
cross-validation of the model. It can be seen that there are certain fluctuations in each
evaluation index when we divide the dataset many times. Except for the binary-class
Sen and multi-class Acc indices, the change trend of each index is consistent with that in
Tables 2 and 3, which also confirms that our segmentation model has better generalization
performance.

Table 6. The Sen and DSC of 5-fold cross-validation results of different models for the COVID-19
binary-class lung infection dataset.

Network Sen DSC

PSPNet 0.8022 ± 0.0194 0.7920 ± 0.0293
R2U-Net 0.8430 ± 0.0263 0.8070 ± 0.0314
CE-Net 0.8674 ± 0.2080 0.8149 ± 0.0257
U-Net 0.8452 ± 0.0162 0.8328 ± 0.0140

DeepLab v3+ 0.8624 ± 0.0173 0.8463 ± 0.0159
UNet++ 0.8721 ± 0.0233 0.8485 ± 0.0189

Our SD-UNet 0.8826 ± 0.0159 0.8588 ± 0.0126

Table 7. The Acc, Spe and JS of 5-fold cross-validation results of different models for the COVID-19
binary-class lung infection dataset.

Network Acc Spe JS

PSPNet 0.9310 ± 0.0421 0.9251 ± 0.0515 0.6417 ± 0.0340
R2U-Net 0.9258 ± 0.0465 0.9187 ± 0.0611 0.6703 ± 0.0315
CE-Net 0.9326 ± 0.0523 0.9419 ± 0.0437 0.6933 ± 0.0370
U-Net 0.9382 ± 0.0373 0.9720 ± 0.0235 0.7216 ± 0.0272

DeepLab v3+ 0.9557 ± 0.0360 0.9514 ± 0.0382 0.7344 ± 0.0254
UNet++ 0.9426 ± 0.0484 0.9527 ± 0.0429 0.7449 ± 0.0238

Our SD-UNet 0.9606 ± 0.0328 0.9642 ± 0.0330 0.7602 ± 0.0150
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Table 8. The Sen and DSC of 5-fold cross-validation results of different models for the COVID-19
multi-class lung infection dataset.

Network Class Sen DSC

U-Net
Avg 0.5635 ± 0.0947 0.5278 ± 0.1028

GGO 0.3944 ± 0.0558 0.3660 ± 0.0767
Con 0.7326 ± 0.0772 0.6896 ± 0.0958

Attention U-Net
Avg 0.5623 ± 0.0728 0.5344 ± 0.0799

GGO 0.4853 ± 0.0636 0.3796 ± 0.0520
Con 0.6393 ± 0.0574 0.6892 ± 0.0808

UNet++
Avg 0.5894 ± 0.0869 0.5494 ± 0.0898

GGO 0.4971 ± 0.0426 0.4000 ± 0.0568
Con 0.6817 ± 0.0697 0.6988 ± 0.0657

Our SD-UNet
Avg 0.5798 ± 0.0736 0.5618 ± 0.0781

GGO 0.4441 ± 0.0592 0.4075 ± 0.0545
Con 0.7155 ± 0.0573 0.7161 ± 0.0626

Table 9. The Acc, Spe, and JS of the 5-fold cross-validation results of different models for the
COVID-19 multi-class lung infection dataset.

Network Class Acc Spe JS

U-Net
Avg 0.9207 ± 0.0665 0.9218 ± 0.0722 0.4041 ± 0.0783

GGO 0.9258 ± 0.0539 0.9156 ± 0.0716 0.2563 ± 0.0598
Con 0.9156 ± 0.0648 0.9280 ± 0.0745 0.5519 ± 0.0726

Attention U-Net
Avg 0.9256 ± 0.0620 0.9273 ± 0.0681 0.4132 ± 0.0751

GGO 0.9141 ± 0.0625 0.9221 ± 0.0637 0.2778 ± 0.0432
Con 0.9371 ± 0.0509 0.9325 ± 0.0540 0.5486 ± 0.0635

UNet++
Avg 0.9323 ± 0.0561 0.9292 ± 0.0623 0.4341 ± 0.0476

GGO 0.9316 ± 0.0514 0.9270 ± 0.0540 0.2886 ± 0.0385
Con 0.9330 ± 0.0550 0.9314 ± 0.0634 0.5796 ± 0.0587

Our SD-UNet
Avg 0.9403 ± 0.0501 0.9354 ± 0.0585 0.4506 ± 0.0394

GGO 0.9511 ± 0.0427 0.9384 ± 0.0537 0.2993 ± 0.0279
Con 0.9395 ± 0.0516 0.9324 ± 0.0609 0.6019 ± 0.0538

6. Conclusions

In this paper, we propose a novel framework dedicated to COVID-19 segmentation:
SD-UNet. It integrates the Dense ASPP and SA modules into our segmentation framework
to better mine the multi-scale context and global context information in COVID-19 lung
CT infection slices. Pre-processing operations are also performed on COVID-19 samples to
eliminate irrelevant background information and enhance information related to COIVD-19
lesion segmentation. During training, to accelerate the convergence of the network and
alleviate the problem of gradient disappearance in the process of back propagation and
the impact of category imbalance of mall datasets, we also deployed a combo loss function
for segmentation supervision. The experimental results show that compared with the
baseline U-Net and other cutting-edge segmentation methods, SD-UNet can achieve a
more accurate segmentation effect for COVID-19. In addition, not only can we segment
COVID-19 lung infections globally in our segmentation framework, we can also segment
different types of infections (GGO and Consolidation) in detail. Moreover, the good
segmentation performance also proves that our method has great practical significance for
the development of computer-aided diagnosis technology for COVID-19. It is expected
to assist doctors in making diagnosis and treatment plans more accurately and quickly
and to improve the segmentation effect. However, there are some deficiencies in the
experiment, e.g., the predicted COVID-19 lesion contours are not elaborate enough. The
main reason is the relatively limited COVID-19 lesion segmentation data labeled by the
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experts, resulting in the insufficient training sample sizes of the model. In the future, we
will further expand our research in the following aspects: increase the amount of data, use
more image enhancement technology, explore various loss functions suitable for medical
image segmentation, continue to optimize our segmentation framework, and apply our
segmentation framework to other segmentation tasks such as blood vessel segmentation,
liver segmentation, and pancreas segmentation.
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