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Abstract: An analysis of multiple scattering by two Perfect Electric Conducting (PEC) spheres using
translation Addition Theorem (AT) for spherical vector wave functions is presented. Specifically,
the Cruzan formalism is used to represent the AT for spherical harmonics, which introduces the
translation coefficients for transformation of spherical harmonics from one coordinate to another.
The adoption of these coefficients with the use of two PEC spheres in a near zone region makes the
calculation of multiple scattering electric fields very efficient. As an illustration, the mathematical
formation using advanced computational approaches was inspected. Then, the generic truncation
criteria in the scattered electric field by two PEC spheres was deeply investigated using translation AT.
However, the numerical validation was obtained using Comsol simulation software. This approach
will allow to evaluate the scattering from macro-structures composed of spherical particles, i.e.,
biological molecules, clouds of airborne particles, etc. An original and fully general solution to
the problem using vector quantities is introduced, and the convergence of the solution in several
numerical examples is also demonstrated. This approach takes into account the effect of multiple
scattering by two PEC spheres for spherical vector function.

Keywords: scattering; translation addition theorem; Mie theory

1. Introduction

The problem of multiple scattering by closely spaced objects has a wide range of engi-
neering applications, including electromagnetic (EM) wave transmission by rain [1], scatter-
ing by complex bodies [2–5], scanning of buried objects [6,7], biological cell detection [8,9],
radar and remote sensing applications in biomedical diagnostics, etc. [10,11]. The resolu-
tion of multiple scattering problems by PEC spheres allows an analytic treatment and a
better physical interpretation into the scattering mechanism for novel applications [12,13].

The problem of scattering from two identical spheres with small radii was formu-
lated by Liang and Lo [14]. The translation AT for vector spherical wave functions as
multipole expansion was used to express the derived solution of EM fields distributed
by spheres. Later on, Olaofe [15] described the multiple scattering by an unequal and
parallel circular cylinders. An overview of previous research projects on multiple scattering
problems showed that a theoretical investigation of the effects of inter-particle coupling
on morphology-dependent resonances of spheres was examined by Fuller [16]. Lo and
Bruning determined the new recursion relationship for the calculations of the multiple
scattering of EM waves by two arbitrary spheres, reducing the difficulty of the computa-
tional quantitative analysis in scattering problems [17]. Further, Wang and Chew derived
the recursive approach (T-matrix algorithm), which is used for the formation of multiple
scattering fields by several spheres. This method is suitable for the calculation of the vector
AT and valid for Monte Carlo simulation for many diagnostic applications [18].

Electronics 2022, 11, 126. https://doi.org/10.3390/electronics11010126 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-8836-484X
https://orcid.org/0000-0001-5474-8952
https://orcid.org/0000-0001-9457-7617
https://doi.org/10.3390/electronics11010126
https://doi.org/10.3390/electronics11010126
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics11010126
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11010126?type=check_update&version=1


Electronics 2022, 11, 126 2 of 14

In 1954, Friedman and Russek proposed the calculation of AT for spherical scalar
wave functions [19]. Cruzen and Stein also developed the AT for spherical harmonics,
fitting it for the appropriate solution of multiple scattering by spheres [20,21]. More
recently, a further improvement was introduced by Mackowski with the superposition
solution method for multiple spheres scattering problems [22]. Xu illustrated the multiple
scattering by aggregate spheres, and interpreted the detail of the fast evaluation of Gaunt
coefficients [23]. The vector translation AT for spherical harmonics was first formulated
by Xu for an analytical solution of multiple scattering problems. Then, the computational
difference between the three vital types of analytical expressions was determined for the
vector translation coefficients: Stein’s [20], Cruzan’s [21], and Xu’s [24]. Moreover, Xu
presented the necessary recursive approaches to exactly calculating the Gaunt coefficients
using Wigner 3-j [25].

Recently, Batool et al. specified a brief outline of the multiple scattering by a PEC
sphere using translation AT for spherical harmonics [26]. Additionally, the effect of trun-
cation error on its convergence behavior in AT for spherical harmonics was deduced [27].
As is known, some researchers reported the truncation error and its convergence in Mie
theory [28]. It was observed that the most popular Wiscombe’s criterion was not sufficient
to overcome the truncation error of translation AT for spherical vector functions [29].

In the current manuscript, the multiple scattering analysis using two PEC spheres
was studied. The Cruzen formula for the translation addition coefficients based on Wigner
3-j was selected. Then, the scattering electric field using AT for spherical harmonics
was derived and the mathematical formation using numerical simulation approach was
computed. During our numerical investigation, the truncation error and its convergence
were observed to vary with respect to the frequency. The study offers an examination of
the impact of finite terms on the truncation error of AT related to spherical vector wave
function. The truncation effect forces the numerical results of spherical harmonics to vary,
as common for the most truncation criteria used. Currently, the most used truncation
criterion in the literature is the one proposed by Wiscombe more than 40 years ago. This
criterion allows to accurately choose the truncation of the series in order to express an
electric field in the presence of a single scatterer. On the other hand, it does not take into
consideration more complex scenarios, as in the case of two or more scatterers. In this
scenario, the field must be expressed in spherical vector wave functions translated on the
center of a reference system of each other sphere. This translation is reached by exploiting
the AT, which in turn is obtained by a superposition of vector spherical functions that must
obey an appropriate truncation criterion. As a consequence of the numerical simulation
results, the translation of both spheres along z-axis and the observed scattering pattern
by varying frequency and radii of the spheres were presented. Comsol (Multiphysics
5.4) simulation software for the validation of the numerical results was used and the best
comparison between Matlab and Comsol results was also retrieved.

2. Formation of the Problem

Two PEC spheres with radii a and c with respect to the center at the origins O and
O′ of two different coordinates systems are taken under consideration. The sphere with
O as origin is characterized by a spherical coordinates system (r, θ, φ), while (r′, θ′, φ′)
characterizes the sphere with origin O′. The distance between the centers of spheres along
z-axis is δ as shown in Figure 1. Let us study a horizontal elliptically polarized plane wave
that propagates along a certain direction of the three dimensions cartesian coordinates
system. The plane wave can be written as [30,31]:

Ei(r) = epol exp(ikir) =
(
Eθθ+ Eφφ

)
exp(ikir) (1)
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with

ki = k1(sin θi cos φix0 + sin θi sin φiy0 + cos θiz0) (2)

θ0i = (cos θi cos φix0 + cos θi sin φiy0 − sin θiz0) (3)

φ0i = − sin φix0 + cos φiy0 (4)

Then, the incident electric field in terms of spherical harmonics can be written
as [30,31]:

Ei(r) =
+∞

∑
ν=1

ν

∑
µ=−ν

[
aµνM(1)

µν (r) + bµνN(1)
µν (r)

]
(5)

Vector spherical harmonics M(1)
µν and N(1)

µν is [30,31]:

M(1)
µν = exp(iµφ)jν(kr)

[
iµ

Pµ
ν (cos θ)

sin θ
θ0 −

∂Pµ
ν (cos θ)

∂θ
φ0

]
(6)

N(1)
µν = exp(iµφ)

jν(kr)
kr

ν(ν + 1)Pµ
ν (cos θ)r0+ (7)[

∂Pµ
ν (cos θ)

∂θ
θ0 + i

µPµ
ν (cos θ)

sin θ
φ0

]
exp(iµφ)

1
kr

∂

∂r
[rjν(kr)]

considering

π
µ
ν (cos θ) = µ

Pµ
ν (cos θ)

sin θ
(8)

τ
µ
ν (cos θ) =

∂Pµ
ν (cos θ)

∂θ
(9)

The vector spherical harmonics expressions can be simplified as follows:

M(1)
µν = exp(iµφ)jν(kr)

[
iπµ

ν (cos θ)θ0 − τ
µ
ν (cos φ)φ0

]
(10)

N(1)
µν = exp(iµφ)

jν(kr)
kr

ν(ν + 1)Pµ
ν (cos θ)r0+ (11)[

τ
µ
ν (cos θ)θ0 + iπµ

ν (cos φ)φ0

]
exp(iµφ)

1
kr

∂

∂r
[rjν(kr)]

Now, let us consider modified spherical vector functions characterized by an angles θ
and φ. The following expressions are obtained replacing the spherical vector function with
the tesseral function:

mµν = exp(iµφ)
[
iπµ

ν (cos θ)θ0 − τ
µ
ν (cos θ)φ0

]
(12)

nµν = exp(iµφ)
[
τ

µ
ν (cos θ)θ0 + iπµ

ν (cos θ)φ0

]
(13)

pµν = exp(iµφ)ν(ν + 1)Pµ
ν (cos θ)r0 (14)

By above-simplified Equations (10) and (11), we achieve:

M(1)
µν = jν(kr)mµν (15)

N(1)
µν =

jν(kr)
kr

pµν +
1
kr

∂

∂r
[rjν(kr)]nµν (16)
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The features of orthogonality properties are used for vector spherical harmonics,
which implies that the coefficients can be expressed in a modified form:

aµν = iν
(2ν + 1)(ν− µ)!
ν(ν + 1)(ν + µ)!

epol ·m∗µν(θt, φt) (17)

bµν = iν−1 (2ν + 1)(ν− µ)!
ν(ν + 1)(ν + µ)!

epol · n∗µν(θt, φt) (18)

The elliptically polarized incident field for a sphere may once be written as:

Ei(r, θ, φ) =
+∞

∑
ν=1

ν

∑
µ=−ν

[
aµνM(1)

µν (r, θ, φ) + bµνN(1)
µν (r, θ, φ)

]
(19)

with

aµν = iν
(2ν + 1)(ν− µ)!
ν(ν + 1)(ν + µ)

exp (−iµφi)
[
− iEθi π

µ
ν (cos θi)− Eφi τ

µ
ν (cos θi)

]
(20)

bµν = iν−1 (2ν + 1)(ν− µ)!
ν(ν + 1)(ν + µ)

exp (−iµφi)
[
− iEθi τ

µ
ν (cos θi)− Eφi π

µ
ν (cos θi)

]
(21)

Figure 1. Geometry of the two PEC spheres exercising translation of the spheres along-z-axis using
translation AT.

2.1. Expansion of Incident Plane Wave

The incident electric field is expanded into multipole fields series around the origins
O and O′ of the spherical coordinates systems (r, θ, φ) and (r′, θ′, φ′). Thus, the incident
plane wave using multipole coefficients expansion may be written as follows, since the
radial vector r = r′ + δ = exp(−ik1r′) exp(−ik1δ cos α) [14].

Ei(r′, θ′, φ′) =
+∞

∑
ν=1

ν

∑
µ=−ν

[
a∗µνM(1)

µν (r′, θ′, φ′) + b∗µνN(1)
µν (r′, θ′, φ′)

]
(22)

where

a∗µν = exp(−ik1δ cos α)aµν (23)

b∗µν = exp(−ik1δ cos α)bµν (24)
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2.2. Scattered Field by Two Conducting Sphere

Scattered field by two PEC spheres may be represented with EI
s and EI I

s , respectively.
In this problem, the total electric field is described by the incident and scattered electric
fields, and it is expressed as follows:

Etotal = Ei + EI
s + EI I

s (25)

where

EI
s(r, θ, φ) =

+∞

∑
ν=1

ν

∑
µ=−ν

[
eµνM(3)

µν (r, θ, φ) + fµνN(3)
µν (r, θ, φ)

]
(26)

EI I
s (r

′
, θ
′
, φ
′
) =

+∞

∑
ν=1

ν

∑
µ=−ν

[
gµνM(3)

µν (r
′
, θ
′
, φ
′
) + hµνN(3)

µν (r
′
, θ
′
, φ
′
)
]

(27)

2.3. AT for Translation of the Vector Spherical Harmonics

The translation AT for spherical vector wave equations depends on the relative schism
in a spherical coordinates system using different origin O and O′. The following expres-
sions are used to express the translation of lth coordinates system (r, θ, φ) to jth (r′, θ′, φ′)
coordinates system.

M(3)
µν (l) =

∞

∑
n=1

n

∑
m=−n

Aµν
mn(l, j)M(1)

mn(j) + Bµν
mn(l, j)N(1)

mn(j) (28)

N(3)
µν (l) =

∞

∑
n=1

n

∑
m=−n

Bµν
mn(l, j)M(1)

mn(j) + Aµν
mn(l, j)N(1)

mn(j) (29)

Then, translation of a jth coordinates system (r′, θ′, φ′) to lth coordinates system
(r, θ, φ) at translation distance δ may be formulated as:

M(3)
µν (j) =

∞

∑
n=1

n

∑
m=−n

Cµν
mn(j, l)M(1)

mn(l) + Dµν
mn(j, l)N(1)

mn(l) (30)

N(3)
µν (j) =

∞

∑
n=1

n

∑
m=−n

Dµν
mn(j, l)M(1)

mn(l) + Cµν
mn(j, l)N(1)

mn(l) (31)

2.4. Formation of Vector Translation Coefficients

EM field in terms of translation is illustrated by an infinite sum with respect to a
coordinate system with a different reference. Therefore, Cruzan’s mathematical derivations
for Al,j

mnµν and Bl,j
mnµν coefficients can be written in a simplified form [21]:

Al,j
mnµν = (−1)−m (2ν + 1)(n + m)!(ν− µ)!

2n(n + 1)(n−m)!(ν + µ)!
exp[i(µ−m)φl j]

×
qmax

∑
q=0

ip[n(n + 1) + ν(ν + 1)− p(p + 1)]aq

×h(1)p (kd)Pµ−m
p (cos θ)

(32)

The following expressions are reached:

Al,j
mnµν = (−1)−mζ(m, n, µ, ν)

qmax

∑
q=0

h(1)p (kr) (33)

Cl,j
mnµν = (−1)−mζ∗(m, n, µ, ν)

qmax

∑
q=0

h(1)p (kr) (34)
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where

ζ(m, n, µ, ν) =
(2ν + 1)(n + m)!(ν− µ)!

2n(n + 1)(n−m)!(ν + µ)!
exp[i(µ−m)φl j]

×
qmax

∑
q=0

ip[n(n + 1) + ν(ν + 1)− p(p + 1)]aq Pµ−m
p (cos θl j)

and

Bl,j
mnµν = (−1)−m+1 (2ν + 1)(n + m)!(ν− µ)!

2n(n + 1)(n−m)!(ν + µ)!
exp[i(µ−m)φl j]

×
Qmax

∑
q=1

ip+1{[(p + 1)2 − (n− ν)2][(n + ν + 1)2 − (p + 1)2]}
1
2

×b(−m, n, µ, ν, p + 1, p)h(1)p+1(kr)Pµ−m
p+1 (cos θ)

(35)

Similarly

Bl,j
mnµν = (−1)−m+1ξ(m, n, µ, ν)

qmax

∑
q=0

h(1)p+1(kr) (36)

Dl,j
mnµν = (−1)−m+1ξ∗(m, n, µ, ν)

qmax

∑
q=0

h(1)p+1(kr) (37)

where

ξ(m, n, µ, ν) =
(2ν + 1)(n + m)!(ν− µ)!

2n(n + 1)(n−m)!(ν + µ)!
exp[i(µ−m)φl j]

×
Qmax

∑
q=1

ip+1{[(p + 1)2 − (n− ν)2][(n + ν + 1)2 − (p + 1)2]}
1
2

× b(−m, n, µ, ν, p + 1, p)Pµ−m
p+1 (cos θl j)

(38)

Similarly, Cj,l
mnµν and Dj,l

mnµν coefficients are obtained by taking the complex conjugate

of ξ(m, n, µ, ν) and ζ(m, n, µ, ν) from Aj,l
mnµν and Bj,l

mnµν. Here, k is the propagation constant,
aq = a(−m, n, µ, ν, p), q = 1, 2, . . . , qmax, p = n + ν− 2q and

qmax = min
(

n, ν,
n + ν− |m + µ|

2

)
(39)

Gaunt coefficients have been described in the literature [24], the total electric field for
the lth coordinates system (r, θ, φ) may be explicitly written as:

Etotal(l) =
+∞

∑
ν=1

ν

∑
µ=−ν

aµνM(1)
µν (l) + bµνN(1)

µν (l) + eµνM(3)
µν (l) + fµνN(3)

µν (l)

+
+∞

∑
ν=1

ν

∑
µ=−ν

∞

∑
n=1

n

∑
m=−n

gµν

{
Aµν

mn(l, j)M(1)
mn(l) + Bµν

mn(l, j)N(1)
mn(l)

}
+

hµν

{
Bµν

mn(l, j)M(1)
mn(l) + Aµν

mn(l, j)N(1)
mn(l)

}
(40)
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Similarly, the total electric field for the jth coordinates system (r′, θ′, φ′) may be written
as:

Etotal(j) =
+∞

∑
ν=1

ν

∑
µ=−ν

a∗µνM(1)
µν (j) + b∗µνN(1)

µν (j) + gµνM(3)
µν (j) + hµνN(3)

µν (j)

+
+∞

∑
ν=1

ν

∑
µ=−ν

∞

∑
n=1

n

∑
m=−n

eµν

{
Cµν

mn(j, l)M(1)
mn(j) + Dµν

mn(j, l)N(1)
mn(j)

}
+

fµν

{
Dµν

mn(j, l)M(1)
mn(j) + Cµν

mn(j, l)N(1)
mn(j)

}
(41)

Applying the boundary condition, the tangential component of the electric field must
continue on the surface of spheres. Using the orthogonality properties, the simultaneous
linear equations can be expressed as:

eµν = Xn(a)

{
aµν +

(
gµν

∞

∑
n=1

n

∑
m=−n

Aµν
mn + hµν

∞

∑
n=1

n

∑
m=−n

Bµν
mn

)}
(42)

fµν = Yn(a)

{
bµν +

(
gµν

∞

∑
n=1

n

∑
m=−n

Bµν
mn + hµν

∞

∑
n=1

n

∑
m=−n

Aµν
mn

)}
(43)

gµν = Xn(c)

{
a∗µν +

(
eµν

∞

∑
n=1

n

∑
m=−n

Cµν
mn + fµν

∞

∑
n=1

n

∑
m=−n

Dµν
mn

)}
(44)

hµν = Yn(c)

{
b∗µν +

(
eµν

∞

∑
n=1

n

∑
m=−n

Dµν
mn + fµν

∞

∑
n=1

n

∑
m=−n

Cµν
mn

)}
(45)

where

X(r0) = −
jν(kr)

h(1)ν (kr)
|r=r0 (46)

Y(r0) = −
j
′
ν(kr)

h
′(1)
ν (kr)

|r=r0 (47)

After solving the linear equations, all coefficients eµν, fµν, gµν, hµν can be obtained,
thanks to which it is easily possible to determine scattering, extinction, and absorption
cross-section [32]. As a result of the above derivations and the use of Equations (28) and
(29), the scattered field can be achieved:

Es(l) =
∞

∑
ν=1

ν

∑
µ=−ν

[
eµν

∞

∑
n=1

n

∑
m=−n

{
Aµν

mn(l, j)M(3)
mn(j) + Bµν

mn(l, j)N(3)
mn(j)

}
+ fµν

∞

∑
n=1

n

∑
m=−n

{
Bµν

mn(l, j)M(3)
mn(j) + Aµν

mn(l, j)N(3)
mn(j)

}] (48)

3. Numerical Results

This paper introduces the numerical results of multiple scattering by two PEC spheres.
The validity of the present mathematical formalism has been investigated by multi-
paradigm programming language (Matlab) and simulation software (Comsol Multiphysics
5.4). The proposed method efficiency has been analyzed by comparison of Matlab and
Comsol numerical results. This article is dedicated to a scattering theory using transla-
tion AT for spherical harmonic functions. Specifically, the calculation of the translation
coefficients for two PEC spheres and the numerical outcomes of the scattered electric field
between two PEC spheres in the near zone region are discussed. Therefore, Equation (48)
was used for numerical simulation using a Matlab code.
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3.1. Validation Test for Two PEC Spheres at Zero Translation Distance

In the first numerical test, the translation distance between two PEC spheres is zero.
This means that the problem of two PEC spheres is reduced into a problem with a single PEC
sphere. Then, the single PEC sphere present in a free space is investigated to demonstrate
the validity of numerical simulations. For a single PEC sphere, the scattering coefficients
eµν and fµν can be obtained by using the solution of two linear equations. As a result
of the above calculations gµν = 0 and hµν = 0, and the use of Equations (42) and (43),
the scattered coefficients can be achieved:

eµν = Xn(a)aµν (49)

fµν = Yn(a)bµν (50)

It occurs when the origin of the lth and jth coordinates system are overlapped (i.e., no
translation is involved). m = µ, n = ν, Aµν

mn ≡ 1, Bµν
mn ≡ 0, and m 6= µ, n 6= ν, Aµν

mn ≡ 0,
and Bµν

mn ≡ 0. From the previous conditions, the following expressions are obtained
M(3)

µν (l) ≡ M(3)
µν (j), N(3)

µν (l) ≡ N(3)
µν (j). Consequently, the scattered field by using the above

Equations (49) and (50) may be written as:

Es(l) =
∞

∑
ν=1

ν

∑
µ=−ν

[
eµνM(3)

µν (l) + fµνN(3)
µν (l)

]
(51)

For this purpose, the following parameters are selected: radius of the sphere a = 0.1 m,
frequency f = 0.3 GHz, angles of incident θi = 0 rad, and φi = 1 rad. Considering the
position of cartesian coordinates system with center xr = yr = zr = 0 and center of the
sphere xq = 0, yq = 0, zq = 0, the field was measured along the line segment with double
of length for the radius of the sphere lying parallel along x-axis, which is placed at hight
z = 0.3 m, y = 0. The numerical results (Matlab code) are comparable with the simulation
results (COMSOL Multiphysics 5.4) as shown in Figure 2.
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Figure 2. Real part (left) and imaginary part (right) of the scattered electric field by a PEC sphere
present in free space. Matlab results (blue color dot lines) are super-imposed on Comsol results (red
marker color lines). Here, selected parameters are frequency f = 0.3 GHz, radius a = c = 0.1 m.

Further, the scattering behavior with translation of both PEC spheres at different trans-
lation distance was investigated. The plots for the scattering electric field are analyzed at
three different range of frequencies: 3 MHz, 0.3 GHz, and 3 GHz, respectively. The derived
mathematical formalism reveals the response of the truncation error for translation AT
of spherical harmonics. It is observed that for lower frequency, the numerical results of
the Matlab code presents the optimized convergence at lower truncation sum N, whereas
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the higher the frequency, the higher the value of truncation sum N for the numerical results
of the Matlab code.

3.2. Case 1: f = 3 MHz

In this section, the numerical results of scattered electric fields have been investigated
at a frequency f = 3 MHz. Let suppose that the PEC spheres I, II were translated along
z-axis at z = 0.3 m and z = −0.3 m, respectively. The position of the field measuring line
can be defined as: the line segment to double the radius of sphere that lies parallel along
x-axis; that is placed at height z = 0.1 m, y = 0. For the analysis of the scattering field
pattern, the following parameters have been chosen: radius of spheres I, II a = c = 0.1 m,
angles of incident θi = 0 rad, and φi = 1 rad. The best comparison between Matlab code
and Comsol simulation results are illustrated in Figure 3. The numerical results show that
the real part of scattering fields for Ex and Ez components has a larger amplitude compared
to the imaginary part of the same Ex and Ez. The component of electric field Ey is equal to
zero for both real and imaginary cases.
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Figure 3. Real part (left) and imaginary part (right) of the scattered electric field by two PEC spheres.
In particular, Matlab results (blue color dot lines) are perfectly superimposed on Comsol results (red
marker color lines). Sphere I and sphere II are translated at 0.3 m and −0.3 m along z-axis, and the
selected frequency is f = 3 MHz.

Figure 4 presents the translation of both PEC spheres I, II translated along z-axis at
z = 0.5 m and z = −0.5 m. The position of the field measuring line is translated at hight
z = 0.2 m. The observed numerical results at a lower values of truncation sum at N = 5
Matlab code show the perfect matching with Comsol results.

3.3. Case 2: f = 0.3 GHz

The numerical results of scattered electric fields have been inspected at a frequency
f = 0.3 GHz. The PEC spheres I, II have translated along z-axis at z = 0.5 m and z = −0.5 m.
The position of the field measuring line is translated along z-axis at z = 0.3 m. During our
numerical analysis, the chosen parameters were: radius of spheres I, II a = c = 0.1 m,
angles of incident θi = 0 rad, and φi = 1 rad. The best comparison between Matlab code and
Comsol simulation results are illustrated in Figure 5.
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Figure 4. Real part (left) and imaginary part (right) of the scattered electric field by two PEC spheres.
In particular, Matlab results (blue color dot lines) are perfectly super-imposed on Comsol results (red
marker color lines). Sphere I and sphere II are translated at 0.5 m and −0.5 m along z-axis, and the
selected frequency is f = 3 MHz.
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Figure 5. Real part (left) and imaginary part (right) of the scattered electric field by two PEC spheres.
In particular, Matlab results (blue color dot lines) are perfectly super-imposed on Comsol results (red
marker color lines). Sphere I and sphere II are translated at 0.5 m and −0.5 m along z-axis, and the
selected frequency is f = 0.3 GHz.

The numerical results show that the real part of scattering fields for Ez components
has a higher amplitude compared to the imaginary part of the same Ez, while the real part
of scattering fields for Ex components has a smaller amplitude compared to the imaginary
part of the same Ex. The component of electric fields Ey is equal to zero for both real and
imaginary cases.

Figure 6 demonstrates the translation of both PEC spheres I, II along z-axis at z = 0.4 m
and z = −0.4 m. The position of the field measuring line is translated at a height z = 0.1 m.
The numerical results, for a lower value of truncation sum N = 4 Matlab code, show
fluctuations beyond the results obtained through Comsol. Increasing the truncation sum to
N = 37 Matlab code makes the numerical results perfectly match with Comsol.
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Figure 6. Real part (left) and imaginary part (right) of the scattered electric field by two PEC spheres.
The red color lines (Comsol results), blue and green lines (Matlab results) at different value of the
truncation sum N, sphere I, and sphere II are translated at 0.4 m and −0.4 m along z-axis, and the
selected frequency is f = 0.3 GHz.

3.4. Case 3: f = 3 GHz

The PEC spheres I, II were translated along z-axis at z = 0.08 m and z = −0.08 m.
The position of the field measuring line is translated along z-axis at z = 0.3 m. During our
numerical test, the following parameters have been chosen: radius of the spheres I, II
a = c = 0.05 m, angles of incident θi = 0 rad, φi = 1 rad, and f = 3 GHz. Figure 7
illustrates the numerical results for a lower value of truncation sum N = 5 Matlab code,
showing fluctuations across the Comsol results. Increasing the truncation sum to N = 40
in Matlab code makes the numerical results perfectly match with Comsol outcomes.
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Figure 7. Real part (left) and imaginary part (right) of the scattered electric field by two PEC spheres.
The red color lines (Comsol results), blue and green lines (Matlab results) at different value of the
truncation sum N, sphere I and sphere II are translated at 0.08 m and −0.08 m along z-axis, and the
selected frequency is f = 3 GHz.
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4. Truncation Error Analysis of Scattered Electric Field Using Vector Translation AT

The criteria of truncating the inherent infinite series with a finite version of the same
to achieve convergence was developed. This leads to a little fluctuation compared to the
test of the scattered electric field by two PEC spheres using Comsol and Matlab simulation
software, as mentioned in Section 3. The error rate for the proposed approach due to the
value of truncation sum N is investigated in this section. Using Equation (49), the error
function for scattered electric field is defined as follows:

err =
‖En+1

s − En
s ‖

‖En
s ‖

n = 1, 2, 3 . . . (52)

where

‖En
s ‖ =

√√√√ N

∑
n=1
|En

s |2 (53)

The higher value of truncation number N in the scattered electric field can be employed
to tune the accuracy of the solution. Additionally, as the lower values of truncation sum N
the error level increases with the variation of frequency. When we increase the number of
terms to N ≥ 40 by using above input, the convergence results are depicted in Figure 8.
Finally, the criteria of truncation behavior related to translation AT reliant directly on
frequency was discovered. For higher frequency, the truncation sum N converges at a
higher numerical value for translation AT shown in Table 1. This methodology is useful
even for spheres as small r << λ and spheres as large r >> λ. The former solution is
very general and applicable to multiple PEC spheres. When sphere I is moving away from
sphere II, for both cases real and imaginary numerical results, a higher concentration of
scattering electric field pattern is shown. The improvement of our approach will provide a
new concept to researchers for developing the deep analysis of the light scattering problem
across general distributions of spheres.
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Figure 8. Representation of the truncation variation sum N (left) and its convergence solution with
the variation of different frequency f = 3 M, f = 0.3 G, f = 3 G (right).

Table 1. Variation of truncation number N with respect to frequency.

# Frequency Size of a Sphere Convergence of the Solution
(Truncation Number N)

1 3 MHz 0.1 m N = 5

1 0.3 GHz 0.1 m N = 37

2 3 GHz 0.05 m N = 40
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5. Conclusions

This paper presents and explores multiple scattering by two PEC spheres through
computer simulations. A method of translation AT for spherical vector wave equation
was introduced. To describe this problem, a Cruzan’s formalism for vector translation
coefficients was proposed. The scattering electric field by two PEC spheres in a near zone
region was calculated. The translation of spheres I, II along the z-axis was thought out
and resolved to understand the scattering behavior. The results of our calculations were
investigated using a numerical approach. The numerical results were compared with the
Comsol simulation models and both software results were found to be perfectly matched
one another, which gives a fairly good validation.

In summary, the work presented in this letter has investigated the finite truncation
sum N. The convergence of the solution is useful to determine the scattering efficiency
of a homogeneous spherical scatterer by a plane wave. From a practical point of view,
the proposed mathematical expressions are clearly useful to facilitate fast simulations of
light scattering phenomena. It should be noted that this truncation criterion applies to
homogeneous spheres, whereas other shapes result in their own scattering coefficients.

We aim to build on shared fundamentals, highlight the most pressing research chal-
lenges, and exchange state-of-the-art methodologies and approaches. This all-community
approach will promote solutions to those issues facing many practical applications in
complex media through the rigorous underpinning of mathematical techniques and the
development of effective computational methods.
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