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Abstract: Multiuser Detection (MUD) is quite challenging in uplink grant-free non-orthogonal
multiple access wireless communication networks in which users sporadically transmit data. The
reason for this is that the base station (BS) must perform detection of both multiuser activity and
user signals concurrently, because knowledge of user activity status is not available at the BS. In
this paper, a new multiuser detector, named the Forward-Reverse Orthogonal Matching Pursuit–
Union–Subspace pursuit (FROMPUS)-based MUD, is proposed. The detector takes advantage of
the concept of an initial support set. This serves as initial knowledge that is then employed in the
reconstruction of active users’ signals. In addition, the detector uses the “serial-include” technique of
incorporating a likely support set element candidates and a reliability testing procedure in which the
most prominent elements of the support set are selected. To assess the performance of the proposed
detector, computer simulations are performed. The results obtained for various parameter settings
show that the FROMPUS performs better than any of the other five detectors considered in this paper.
However, this excellent performance comes with a slightly higher computational complexity cost.
Nonetheless, the cost is inconsequential, since the detector operates at the BS where complexity is of
low priority in comparison to performance.

Keywords: NOMA; uplink grant free; compressive sensing; greedy algorithms; multiuser detector;
5G; beyond-5G

1. Introduction

The advent of the fifth and beyond fifth generation (5G) of wireless communication
networks brings along with it the massive connectivity of users and devices, short message
packets, low latency, sporadic communication, and low power, just to mention a few as-
pects. One of the frontrunners among the technologies that make all of these possibilities a
reality is the non-orthogonal multiple access (NOMA) scheme for multiuser transmission
in networks. The NOMA scheme has become the transmission scheme of choice due
to some downsides associated with its orthogonal multiple access (OMA) scheme coun-
terparts, which were used in previous generations of wireless communication networks.
Some of these downsides include restriction to the number of users that OMA’s available
resources can simultaneously cater for, and the use of dedicated feedback path-based
scheduling techniques, resulting in additional overhead in terms of signally for orthogonal-
ity maintenance, just to mention a few. On the other hand, the NOMA-based 5G wireless
communication network [1–10] is capable of supporting multiple users’ connectivity via
non-orthogonal resources.

One of the major signal processing tasks that is required for optimal performance of
NOMA-based 5G wireless networks is the detection of multiple signals with the aid of a
multiuser detector (MUD). This detection is more challenging in the uplink grant-free (GF)
transmission mode employed in NOMA systems. Usually, GF-free access is considered
in uplink in a bid to reduce signaling overhead in the system. In the uplink GF-NOMA
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system, prior knowledge of user activity is not available at the base station (BS), because
each active user sends their information data without needing to obtain permission via an
uplink grant request. Consequently, the BS must implement detection of both multiuser
activity and user signals at the same time. There have been different approaches and
algorithms developed to implement multiuser detection in uplink GF-NOMA wireless
communication networks in the literature. Some of these are presented below.

The first category is those techniques that employ multiple measurement vector
(MMV) models in the design of the MUD. In [11], the authors develop a simultaneous
orthogonal matching pursuit (SOMP)-based MUD to recover the transmitted signal by
converting the single measurement vector (SMV) model into an MMV model. The authors
in [12] adopt a differential OMP algorithm to develop a MUD scheme for a system with an
MMV model. In [13], a compressive MUSIC-based MUD is constructed on a compressive
MUSIC algorithm, a deterministic extension of compressive sensing (CS), to achieve de-
tection of transmitted signals in the uplink NOMA system. A joint sparsity-based greedy
algorithm recovery is proposed in [14] for MMV problems, named SOMP-EXT, which
operates based on the mechanism of SOMP. The main function of this algorithm is to
estimate the ratios of a posteriori probability for each of the sparse signals and return the
extrinsic information via an iterative mechanism.

One of the common drawbacks of the aforementioned methods is the huge associated
computational complexity involved as a result of the multiple measurement vector-based
models that are used, with no significant performance justifying the huge computational
cost. Hence, not many works have been documented in this area.

The second category includes techniques that employ the SMV model. Among the
works in this category is that presented in [15], in which a compressive sensing algorithm
without knowledge of the sparsity level, as proposed in [14], is extended for the estimation
of multiuser activity and the detection of users’ signals in uplink GF-NOMA systems.
Another is the method presented in [16], in which an iterative order recursive least square
(IORLS) algorithm that uses sparsity for each frame is proposed. The IORLS recursively
uses a modified orthogonal matching pursuit (OMP) mechanism within a frame to extract
the sparsity support information. In [17], the authors put forward an MUD scheme
that switches between traditional detection techniques and the CS-based reconstruction
algorithm. The switching is conditioned on the sparsity level of the signals that are to
be detected: when sparse signals are involved, the CS-base reconstruction mechanism is
activated; however, when non-sparse signals are to be processed, the traditional estimation
method kicks in. The major drawback of this approach is that it is highly computationally
costly. In [18], CS-based detection and multicarrier access schemes are combined in the
context of machine-type communication (MTC) systems. In this method, the authors
exploit the inherent sparsity of sporadic transmission of MTC in the users’ signals received
at the receiver in the system. In [19], the authors propose an MUD based on the structured
matching pursuit (SMP) algorithm for joint estimation of both users’ transmitted signals
and their corresponding activities in continuous time slots. Temporal correlation of the sets
of active users is employed in [20] to construct a dynamic CS (DCS)-based MUD. This was
employed to realize the detection of both user data and user activities in communication
networks. In [21], the authors propose a combination of a channel estimation scheme and
a multiuser detection (MUD) technique for scenarios in which users are either active or
inactive in a frame in uplink GF-NOMA communication networks. In [22], a comparative
study of three CS algorithm-based MUDs for uplink GF-NOMA communication networks
is presented. In both [23] and [24], amended implementations of both subspace pursuit
(SP) and orthogonal matching pursuit (OMP) are used by the author to develop the
proposed MUDs. A newly developed iterative hard thresholding-based accelerated step-
size (IHT_ASS) algorithm is used to construct the proposed MUD scheme documented
in [25]. In [26], NOMA-based code domain networks are analyzed for both cases in which
the networks are overloaded and cases where they are underloaded in an uplink GF-NOMA
system in which the schemes are subjected to similar MUD schemes. In [27], two amended
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classical SP and OMP algorithms are jointly used to develop a new MUD scheme for uplink
GF-NOMA. This is employed purposefully for both detection of user data and estimation
of user activities. The authors in [28] develop two user activity detection algorithms by
using the dynamic channel tap delays as prior information for detection purposes. In [29],
the authors propose active user detection (AUD) based on the expectation propagation (EP)
algorithm and combine it with the channel estimation method for massive machine-type
communication (mMTC) networks. The proposed expectation propagation algorithm is
a Bayesian framework that is highly costly in terms of computational complexity. An
intelligent reflecting surface (IRS)-based MUD method is proposed for use in ultra-reliable
and low-latency communications (URLLC) in [30]. Faster-than-Nyquist (FTN)-NOMA
uplink is investigated in [31] in terms of random access, in which user activity detection
is combined with user signal detection using a factor graph mechanism. The proposed
method is based on the expectation-maximization (EM) algorithm, which is combined
with the message passing algorithm. The multiuser detection using the proposed scheme
requires a prohibitively high computational complexity cost. The same authors in [31]
propose a receiver that executes the reconstruction of channel state information, detection
of user activities, and decoding of transmitted user signals in [32]. In a bid to mitigate user
interference in NOMA systems, the authors in [33] propose a multiuser detection (MUD)
based on a demodulation-based minimum mean square error scheme together with a
successive interference cancellation method. However, in [34], gradient information is used
by the authors to develop a gradient descent-based gradient pursuit (GDGP)-based MUD
for mMTC networks. Multiuser detection is proposed in [35] for another counterpart of
NOMA, the interleave-division multiple access (IDMA) scheme. The authors incorporated
compressed sensing into the proposed “current chip-by-chip (CBC) iterative detector”,
which jointly performs user activity and data detection. In the same version of the NOMA
scheme considered in [35], the authors in [36] analyzed all available options for designing
address generation units for multiuser detectors. Thereafter, a complexity reduction
technique is applied to those designs.

Among these techniques, some perform well, but with huge inherent computational
complexity costs, while others perform poorly, with low computational complexity costs.
Some of the above-mentioned methods exhibit both downsides.

This paper proposes a new MUD that exhibits improved performance and acceptable
computational complexity in comparison with some existing MUDs in the literature. To
achieve this, the SMV model for the uplink GF-NOMA system is considered, in which
a novel MUD based on a fusion of some existing traditional compressive sensing algo-
rithms is developed. The proposed detector is named the Forward-Reverse OMP-Union-SP
(FROMPUS)-based MUD. The proposed MUD is based on the fused modified OMP- mod-
ified SP algorithm described in [27], which is mainly used for the initialization of the
proposed FROMPUS-based MUD. The traditional OMP and SP algorithms generally detect
signal elements serially, in line with corresponding decrease in amplitude. The perfor-
mance of this systematic selection relies on the system’s uncertainty level. However, for
a sparse system like uplink GF-NOMA systems, the maximum amplitude-based selec-
tion mechanism tends to fail to detect the exact elements. Consequently, the procedure
incorrectly incorporates incorrect elements into the support set. In developing the pro-
posed FROMPUS-based MUD, the “serial include” mechanism of incorporating probable
support set elements is referred to as “Forward-Include”. In essence, this paper’s main
contribution, which is an extension of the work presented in [27], is the development of
a novel FROMPUS-based MUD that is both serial and reversible in operation, in a bid to
reduce errors in the initial support set. This is achieved by taking advantage of the good
aspects during the initialization stage. Furthermore, the temporal correlation of active
users is also exploited by the FROMPUS-based MUD to enhance its performance. The
performance of the proposed FROMPUS-based MUD algorithm is presented and compared
with other considered MUDs in the context of uplink GF-NOMA wireless communication
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networks. Some insights into the computational complexity costs of all of the MUDs are
also presented.

The remainder of this paper is arranged as follows. The next section focuses on typical
uplink GF-NOMA communication networks, while Section 3 dwells on the proposed
FROMPUS-based MUD for uplink GF-NOMA communication systems. The computer
simulation results for the proposed MUD and other MUDs are presented in Section 4.
The computational complexity costs of all of the MUDs are briefly presented in Section 5.
Section 6 concludes the paper with some insights into future research directions.

2. Uplink GF-NOMA Network System Model

A typical uplink GF-NOMA network is shown in Figure 1. In this network, users
come on and off for transmission purposes in a random manner, without needing to apply
for transmission grant permission. The network is made up of a single base station (BS)
that the users in the networks can connect with. The active users are the nodes that are
transmitting signals to the BS, and the users corresponding to nodes that are silent or are
not transmitting signals to the BS in any given time slot are referred to as inactive users.
Since the activities of users in networks are sporadic, the BS has the enormous task of
identifying the users that are active, and simultaneously recovering the transmitted signals
of the users.
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The system model is assumed to comprise U total users. These users are distributed
in the network randomly, connecting to the BS in a GF-free transmission mode. It is further
assumed that each of the user nodes that are connected to the BS possesses a single antenna.
Supposing that modulation and channel coding procedures have been completed, the
symbol of an active user’s transmitted information can be represented as xu. This symbol is
assumed to be from a signal constellation set that is complex, such as M-phase shift keying
(M-PSK). In this network, each of the users is allocated their corresponding spreading
sequence. The unique spreading sequence allocated to the uth user symbol xu is given by
an N-dimensional complex-valued vector, cu. One of the qualities of the NOMA multiuser
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transmission scheme, in comparison with its OMA counterpart, is the capacity to allow
overloading in the system. In such a scenario, the available number of resources (e.g.,
subcarriers) is less than the number of users U, i.e., N < U. The signals of all of the active
users in the networks are superimposed, and they all, at the same time, propagate over N
subcarriers via the wireless fading channels. In the course of a random access scenario, the
uth user transmits over T continuous time slots.

By following a signal model based on a single measurement vector (SMV) that is
similar to that followed in most of the reviewed papers, on the nth subcarrier at the BS, the
signal received at the receiver yn is given as:

yn =
U

∑
u

gn,ucn,uxu + wn, (1)

where parameter gn,u represents the fading channel’s gain of the uth user at the nth subcar-
rier to the BS. The gains gn,u are independently complex distributions with mean zero and
unit variance, Cℵ(0, 1). Furthermore, in (1), cn,u represents the nth element of the spreading
vector cu, and wn is the nth subcarrier component of the noise, which is complex and has
a Gaussian distribution Cℵ

(
0, σ2). If all yn, xu, and wn are arranged in their correspond-

ing vectors y = [y1, y2, . . . , yN ]
Tr, x = [x1, x2, . . . , xU ]

Tr, and w = [w1, w2, . . . , wN ]
Tr,

respectively, then Equation (1) can be re-written as:

y = Hx + w. (2)

The parameter H in Equation (2) is a matrix of size N ×U with hn,u = gn,ucn,u, the
matrix’s element, situated on the uth column and nth row. The operator [.]Tr is the transpose.

3. The Proposed Detector for Uplink GF-NOMA Networks: FROMPUS

In this section, the proposed Forward-Reverse OMP-Union-SP (FROMPUS)-based
MUD is developed. As previously mentioned, in any uplink GF-NOMA system, the precise
number of active users at any given time will be significantly lower than the total number
of users in the coverage area of the BS in a particular network. In terms of massive internet
of things (IoT), as is the case in mMTC-based 5G wireless systems, with the associated
massive connectivity (with the presence of large numbers of users), in a particular time slot,
there are only a few users that are transmitting information data. In this type of uplink GF
mode of transmission, signal processing in terms of multiuser detection becomes what is
known as a sparse signal recovery problem. Moreover, given that users can be sporadically
active and inactive in the networks in practical communication scenarios, in adjacent time
slots, some users will be present in the networks that will be transmitting their information
data with a significantly high probability. Accordingly, in several continuous time slots
in the systems, active user sets will temporarily correlate with each other. In constructing
the proposed FROMPUS-based MUD, a dynamic model is assumed for uplink GF-NOMA
systems, where it operates in a continuous time slot. At the t-th time index, the transmitted
signal can be denoted as x[t], then the collective transmitted signals X can be represented
as X =

[
x[1], x[2], . . . , x[T]

]
. From the signal received at the BS, Y =

[
y[1], y[2], . . . , y[T]

]
,

in the T continuous time slots, where t = 1, 2, . . . , T, the signal X is to be recovered. At
the t-th time slot, the signal received at the BS can be expressed as:

y[t] = H[t]x[t] + w[t], for all t , (3)

with H[t] standing for the corresponding measurement channel matrix, which is complex,
at the t-th time index. The Gaussian noise vector is represented by the parameter w[t] in
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Equation (1) at the t-th time index. By representing sparsity’s level of x[t] as =, the support
set, ζ[t] of active users can be written as:

ζ[t] =
{

u : x[t]u 6= 0, u ∈ {1, 2, . . . , U}
}

. (4)

In Equation (4), x[t]u is the transmitted signal of the uth user from among all of the
transmitted signals’ vector x[t] of all users. The complement of Equation (4) is given as:

ζc[t] =
{

u : x[t]u = 0, u ∈ {1, 2, . . . , U}
}

. (5)

With the idea of the support set, the active component of x[t] can be denoted as
x[t]

ζ[t]
, referring to the selection of non-zero components of x[t], active users. As a result,

x[t]
ζc[t] = 0. In this paper, the idea of an initial support set ζ ini, serving as the initial knowledge

employed by a reconstruction algorithm to enhance the detection process, is introduced.
Since users can randomly be active and inactive in the system in practical communication
scenarios, in the adjacent time slots, some users will be transmitting data with a significantly
high likelihood, leading to active user sets within several continuous time slots in the
network being temporarily correlated with each other. Consequently, by sharing support
set information among these active users, estimation of some parts of the a priori support
set can be obtained and then employed as an initialization parameter to enhance detection
processing. Therefore, the idea of the initial support set is introduced as:

ζ ini = ζcorr ∪ ζerr, (6)

where ζcorr is the correct support set estimate and ζerr is the erroneous estimated support
set. Insofar as the support set has been determined, the related values of the signal can be
easily estimated using the least square (LS)-based estimator. Hence, once the perfect initial
support set ζ ini, as expressed in Equation (6), has been found, the performance of greedy al-
gorithms at detecting users’ transmitted signals in the networks can be improved. It should
be noted that greedy algorithm approaches can be serial (one-by-one selection of support
set) or parallel (simultaneous selection of multiple support set elements), and reversible
(during which previously selected elements of the support set can be eliminated later if
determined to be undependable) or irreversible (where elements added to the support set
remain permanent) [37]. The proposed FROMPUS-based MUD falls into the group of serial
pursuit greedy algorithms and uses reversible support set reconstruction mechanisms.

By following a similar concept to that in [37], in the development of the proposed
FROMPUS-based MUD, the “serial-include” technique of incorporating probable candidate
elements into the support set is called “Forward-Include”. The union of the outputs of the
modified OMP and modified SP algorithms is employed in the “Forward-Include” node of
the proposed FROMPUS-based MUD. Following this is the reliability testing procedure, in
which the most significant ith element of the support set is selected from (i + 1) elements.
This process is referred to as “Reverse-Select”. The final stage is the detection of the sparse
active user signals with the aid of the least square algorithm, using the refined support set
from the “Reverse-Select” node. Each of these nodes is detailed below.

3.1. Node A: Fused Modified OMP-Modified SP

This node is at the initialization stage of the proposed FROMPUS-based MUD. Its
inputs are Y =

[
y[1], y[2], . . . , y[T]

]
, H =

[
H[1], H[2], . . . , H[T]

]
, ζ ini, active user side in-

formation, =si (assumed known), and the value of T continuous time slots. This node
is presented as Algorithm 1. Each constituent Modified OMP algorithm and Modified
SP algorithm (interested readers should consult [27] for their details) generates its corre-
sponding estimated support sets in steps 3 and 4. These are then employed in step 5 in a
union/fusion to generate the initial support set, followed by the LS process for the initial
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estimate of active user signals in step 6. Step 7 is the formation of the set of indices that
corresponds to the component of the temporal signal’s estimate with = largest amplitude.
This is formed as supp

(~
x, =

)
in a bid to obtain a refined support set. This refined support

set is employed by the “Forward-Include” node of the proposed FROMPUS-based MUD.

Algorithm 1 Fused Modified OMP-Modified SP

Input: Y =
[
y[1], y[2], . . . , y[T]

]
, H =

[
H[1], H[2], . . . , H[T]

]
, T, ζ ini, =, =si

Output: ζ0, r0

Initialization: i← 1 ;
ˇ
ξ
[i]
← ζ ini , 8x[i] ← 0

Iteration:
Support sets from the Modified SP and Modified OMP [27]:
1. for t = 1 to T do
2. i← i + 1
3.

ˇ
ξ
[t] [i]

MOD−SP ← MOD_SP(Y, H, T, =,=si,
^
ξ
[t] [i−1]

)

4.
ˇ
ξ
[t] [i]

MOD−OMP ← MOD_OMP(Y, H, T, =,=si,
^
ξ
[t] [i−1]

)
Fusion Strategy: 45002

5.
~
Ψ

[t][i] ←
ˇ
ξ
[t][i]

AmdSP ∪
ˇ
ξ
[t][i]

AmdOMP

6. ~x ~
Ψ

[t][i] ← (H[t])†
−
ς
[t][i] y

[t] ; ~x ~
Ψ

c[t][i] ← 0

7.
ˇ
ξ
[t][i]
←supp(~x ~

Ψ
[t][i] ,=)

8. 8x^
ξ
[t][i]←(H[t])†

ˇ
ξ
[t][i] y

[t]; ~x^
ξ

c[t][i]←0

9. 8x[t][i]← 8xˇ
ξ
[t][i]

10. r[t][i]←y[t] −H[t] 8x[t][i]
= y[t] −H[t](H[t])†

ˇ
ξ
[t][i] y

[t]

Residue:
11. if

(
‖r[t][i]‖2 ≥ ‖r[t−1][i]‖2

)
& (i > ( =+ 1))

12. r[t][i]←r[t][i−1]

13. ζ0←
ˇ
ξ
[t][i]

14. r0←r[t][i]

15. break
16. end if
17. end for
18. return ζ0, r0

3.2. Node B: Forward-Include

The Forward-Include strategy is similar to steps 7, 8, and 10 of the Fused Modi-
fied OMP-Modified SP node of the proposed FROMPUS-based MUD, summarized in
Algorithm 1, with only the inclusion of a union step. The inputs into this node include
Y =

[
y[1], y[2], . . . , y[T]

]
, H =

[
H[1], H[2], . . . , H[T]

]
, continuous time slots T, and the out-

puts of the Fused Modified OMP-Modified SP node, ζ
[t]
j ← ζ0 , r[t]j ← r0 . The focus of this

node is on the selection of the highest amplitude-based element in a bid to select the correct
element of the active users support set. This procedure is documented as Algorithm 2. In

step 2 of Algorithm 2, the set of indices relating to the component of
(

H[t]
)†

rj with the
largest amplitude is estimated. In step 3, the union of the result of step 2 and the support
set from the Fused Modified OMP-Modified SP node of the proposed FROMPUS-based
MUD is computed, while the residual signal is obtained in step 4.
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Algorithm 2 Forward-Include

Input: Y =
[
y[1], y[2], . . . , y[T]

]
, H =

[
H[1], H[2], . . . , H[T]

]
, ζ

[t]
j , r[t]j , T

Output: r[t]j+1, ζ
[t]
j+1

1. for t = 1 to T do

2.
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(
H[t]

)†

ζ
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j+1

y[t]

5. end for
6. return r[t]j+1, ζ

[t]
j+1

3.3. Node C: Reverse-Select

This node is mainly for reliability testing. If there are errors in the ζ ini used in the
Fused Modified OMP-Modified SP node, these errors will likely propagate to the Fused
Modified OMP-Modified SP node’s output, ζ0. Hence, there is a need to execute an ordering
procedure that will help to arrange the corresponding residual vectors appropriately, which
is essential for reliability testing. This is the purpose of this node, which is given as
Algorithm 3. The finally computed support set, ζ

[t]
f in, in step 3 is employed by the proposed

FROMPUS-based MUD to compute the active users’ transmitted signals.

Algorithm 3 Reverse-Select

Input: Y =
[
y[1], y[2], . . . , y[T]

]
, H =

[
H[1], H[2], . . . , H[T]

]
, ζ

[t]
j+1, T, j

Output: r[t]f in, ζ
[t]
f in

1. for t = 1 to T do
2.

−
x

ζ
[t]
j+1
←
(

H[t]
)†

ζ
[t]
j+1

y[t] ;
−
x

ζ
c[t]
j+1
← 0 , (.)† is matrix pseudo-inverse

3. ζ
[t]
f in ← supp

(
−
x

ζ
[t]
j+1

, j
)

, Final support set for the estimation of the active user’s signal

Residue:
4. r[t]f in ← y[t] −H[t]

(
H[t]

)†

ζ
[t]
f in

y[t] , Final residual signal

5. end for
6. return r[t]f in, ζ

[t]
f in

The full proposed FROMPUS-based MUD is represented in Algorithm 4, noting that
r[t]j , r[t]j+2, and r[t]f in are the initially estimated, intermediate estimated, and finally estimated

temporary residual signals, respectively. Similarly, ζ
[t]
j , ζ

[t]
j+1, and ζ

[t]
f in are the initially

estimated, intermediate estimated, and finally estimated active user support sets, respec-
tively. The active users’ signals are detected using the LS-based procedure in step 18 and
are returned in step 20 of the proposed MUD. The full proposed FROMPUS-based MUD
algorithm is illustrated in a block diagram in Figure A1 of Appendix A.
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Algorithm 4 The proposed FROMPUS-based MUD

Input: Y =
[
y[1], y[2], . . . , y[T]

]
, H =

[
H[1], H[2], . . . , H[T]

]
, T, ζ ini, =, =si, j

Output:
ˆ
X =

[
ˆx
[1]

, ˆx
[2]

, . . . , ˆx
[T]
]

Node A: Initialization:
1. (ζ0, r0) ← Fused Modified OMP-Modified SP ( Y, H, T, ζ ini, =, =si)

2. ζ
[t]
j ← ζ0 , r[t]j ← r0 , j← =

Iteration:
3. Repeat
Node B:
4. (r[t]j+1, ζ

[t]
j+1 ← Forward-Include ( Y, H, T, ζ

[t]
j , r[t]j )

5. Repeat
Node C:
6. (r[t]f in, ζ

[t]
f in) ← Reverse-Select ( Y, H, T, ζ

[t]
j+1, j)

7. if
(
‖r[t]f in‖2 < ‖r[t]j ‖2

)
then

8. ζ
[t]
j ← ζ

[t]
f in

9. r[t]j ← r[t]f in
10. j← j− 1
11. else
12. break
13. end if
14. until (j = 0)
15. j← j + 1
16. until j = =+ 1

17.
ˆ
ζ
[t]
← ζ

[t]
j−1

18. ˆx ˆ
ζ
[t] ←

(
H[t]

)†
ˆ
ζ
[t] y[t] ; ˆx ˆ

ζ
c[t] ← 0

19. ˆr[t] ← r[t]j−i2

20. return
ˆ
X =

[
ˆx[1] , ˆx[2] , . . . , ˆx[T]

]
4. Computer Simulation Results

This section details the computer simulations carried out in a bid to document the
performance of the proposed FROMPUS-based MUD compared with some other previously
greedy algorithm-based MUDs considered in the literature. These MUDs are the OMP-
based MUD and Comp Efficient OMP-based MUD presented in [22], the modified subspace
pursuit-based MUD [23], the modified orthogonal matching pursuit-based MUD [24], and
the SOMP-based MUD developed for signal recovery in an MMV model [11]. In the
simulation results, an oracle least square (Oracle LS) algorithm-based MUD that possesses
both accurate knowledge of the positions of the elements in X that are non-zero as well
as the correct support set of the users is employed for benchmarking the performance
of the proposed FROMPUS-based MUD and the other MUDs. In the simulated uplink
GF-NOMA network, the modulation scheme assumed is quadrature phase-shift keying
(QPSK). The continuous time slots are initially fixed at T = 7, while the available resources,
the subcarriers, are fixed at N = 100. The sparsity level of x[t], the number of active
users, is also initially fixed at = = 20, and the other parameters are set as follows. The
total number of users U in the GF-NOMA network is initially set at 50 and then changed
for subsequent simulations in order to obtain the results presented in this section. In
most works in the literature focusing on uplink GF-NOMA networks, the general belief
on the basis of various simulations carried out is that the major benefit of the NOMA
system is the system’s capability with respect to overloading capacity. As a result, the
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comparative performances of the proposed FROMPUS-based MUD and the other MUDs
are documented in terms of the percentage overloading factor, expressed as:

Percentage overloading factor =
(

U
/

N × 100
)

%. (7)

This overloading factor is obtained by increasing the total number of users U in
the subsequent simulations from the initially set value of 50 up to a maximum of 400.
Furthermore, in the computer simulation, the channel matrix H is assumed to be known,
and satisfies the restricted isometry property (RIP) condition with a high probability, which
allows for accurate recovery of signals that are sparse [38]. The various results presented
in this section are aimed at identifying the impacts of variations of system parameters on
the performances of both the FROMPUS-based MUD and the other MUDs. The first set
of results displayed in Figure 2 shows the achievable bit error rate (BER) versus signal-
to-noise ratio (SNR) performance of the proposed FROMPUS-based MUD in an uplink
GF-NOMA system in comparison with the other five MUDs. The results are for a scenario
in which the uplink GF-NOMA network is overloaded, similar to what can occur in any
OMA-based network. In this instance, the MUDs that perform poorly are the OMP-based
MUD, the Comp Efficient OMP-based MUD, and the SOMP-based MUD [11]. The worst
performance is shown by the SOMP-based MUD, which is understandable, since it was
originally designed to operate for signal recovery in an MMV model, rather than the
SMV model considered in this paper. The proposed FROMPUS-based MUD shows the
best performance out of all of the MUDs investigated in this paper, especially at higher
SNR, while the Modified OMP-based MUD and the Modified SP-based MUD are the next
best-performing MUDs, respectively. The results in Figure 3 illustrate the performances of
all of the MUDs when the uplink GF-NOMA network is fully loaded. The performances
of all of the MUDs follow the same trends when compared with the results presented in
Figure 2. However, in Figure 4a,b, which shows the comparative performances of all of
the MUDs when the network is overloaded with an overloading factor of 150%, it can be
seen that the general performances of all of the MUDs are not as good as those presented
in Figures 2 and 3. These results show that all of the MUDs find it difficult to recover the
active users’ transmitted signals in an overloading scenario. Under these conditions, it
can be seen from Figure 4a that the proposed FROMPUS-based MUD still outperforms
the Modified OMP-based MUD and the Modified SP-based MUD by 0.6 dB and 1.0 dB,
respectively, and the other MUDs by 3.6 dB at a BER of 10−2. In Figure 4b, the proposed
FROMPUS-based MUD still outperforms the Modified OMP-based MUD and the Modified
SP-based MUD by 0.7 dB and 1.6 dB, respectively, and the other MUDs by over 4.0 dB
at a BER of 10−2. The MUDs are assessed at a higher overloading factor of 300%, which
is more aligned with massive connectivity in a typical uplink GF-NOMA network. The
number of active users in the network is fixed at both = = 20 and = = 30, and the
corresponding results are as shown in Figure 5a,b, respectively. With the other parameters
fixed and the number of active users increased to = = 30, the performances of all of the
MUDs deteriorate, with the Modified OMP-based MUD being affected significantly. The
proposed FROMPUS-based MUD still shows exceptional performance at this stage, with a
performance about 1.2 dB and 1.5 dB better than that of the Modified OMP-based MUD and
that of the Modified SP-based MUD, respectively, and outperforms the other MUD by over
4.0 dB at a BER of 10−2 in Figure 5a. The performance of the proposed FROMPUS-based
MUD is better than that of the Modified SP-based MUD and the Modified OMP-based
MUD, by about 1.0 dB and 2.0 dB, respectively, and is about 4.2 dB better than the other
MUD at a BER of 10−1.
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The next set of results, shown in Figure 6a–c, are obtained when the MUDs are
employed in the uplink GF-NOMA network for different values of the continuous time
slots: T = 5, T = 10, and T = 15, respectively. The overloading factor is fixed at 200%,
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and the number of active users is fixed at = = 20. When the continuous time slot’s
value changes from T = 5 to T = 10, there is no obvious change in the performance of
any of the MUDs. However, when the continuous time slot’s value changes to T = 15,
the performances of all of the MUDs slightly improve, taking advantage of the slightly
longer time slots. The last set of results in Figure 7a,b shows the effects of increasing the
overloading factor to more than 300, and increasing the number of active users to more than
30. In Figure 7a, it can be seen that when the overloading factor is increased to 400% and
the number of active users is fixed as 30, the performances of all of the MUDs deteriorates,
with the proposed FROMPUS-based MUD still showing better performance than the other
MUDs at higher SNR. It should be noted that most of the results presented in the literature
are for overloading factors between 100% and 300%. Furthermore, as the number of active
users increases to 40 from 20 with the overloading factor fixed at 200% (in comparison with
Figure 4b), similar performance deteriorations are seen in all of the MUDs for the scenarios
considered in this paper, while the proposed FROMPUS-based MUD still exhibits better
performance than the other MUDs at higher SNR.
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5. Computational Complexity Analysis

This section presents the order of computational complexity cost for each of the MUDs,
computer simulation results of which are documented in Section 4. The least expensive
MUD in terms of computational complexity cost is the Comp Efficient OMP-based MUD,
with a computational complexity cost of order O (UlogU). The OMP-based MUD has a
complexity cost of O

(
N=2). The complexity cost of the SOMP-based MUD is O

(
NU=2).

The Modified OMP-based MUD has a complexity cost of order O
(
=
(

NU +=2N
))

, while
the complexity cost of the Modified SP-based MUD is O

(
=
(

NU +=2 +=N
))

. The pro-
posed FROMPUS-based MUD’s complexity cost is higher than all of the other MUDs



Electronics 2022, 11, 125 17 of 20

except for the SOMP-based MUD, with its computational complexity cost estimated to be
on about an order of O(=(5NU +=(=+ N +=N))). Given the advances in integrated
circuit technology, the use of the FROMPUS-based MUD in uplink GF-NOMA networks
will not be impeded by its computational complexity cost to a degree acceptable at the BS.
Comparative complexity costs, along with some numerical results for all of the MUDs, are
shown in Table 1.

Table 1. Comparative computational complexity costs.

MUD Detector Order of Complexity Cost Numerical Results (N = 100, U = 300, = = 20)

Comp Efficient OMP UlogU 1 711

OMP N=2 40,000

SOMP NU=2 12,000,000

Modified OMP =
(

NU +=2N
)

1,400,000

Modified SP =
(

NU +=2 +=N
)

648,000

FROMPUS =(5NU +=(=+ N +=N)) 3,848,000

6. Conclusions and Future Works

Different MUDs have been proposed in the literature, with some suffering from poor
performance and some showing good performance but suffering from high computational
complexity costs. This paper presents a new multiuser detector named Forward-Reverse
OMP-Union-SP (FROMPUS)-based MUD. The proposed method shows good performance
and also exhibits acceptable computational complexity cost in comparison with the other
MUDs considered in this paper. For the detection procedure, FROMPUS exploits the
idea of an initial support set, which serves as initial knowledge and is employed in the
reconstruction of the active users’ transmitted signals. This enhances the detection process
of FROMPUS. Furthermore, FROMPUS takes advantage of the “serial include” technique
of incorporating a potential candidate element in the support, as well as the reliability
testing procedure in which the most prominent support set elements are selected from
a pool of available elements. From the simulation results presented, it is evident that
FROMPUS employs these features to enhance its performances: the FROMPUS-based
MUD shows excellent performance in comparison with the other MUDs considered in
this paper. However, the only downside of the proposed FROMPUS-based MUD is its
slightly high computational complexity cost in comparison with some of the detectors
considered in this paper. On the other hand, the computational complexity cost can be
compromised in situations where the performance of MUD is the main priority, especially
at the base station, where the detection process is performed in the context of uplink GF-
NOMA wireless communication networks. Based on these results, the proposed detector
is a good candidate for 5G and beyond 5G wireless networks with multiple access-based
NOMA schemes.

In terms of future research directions, the immediate focus will be directed towards
the reduction of the computational complexity cost of the proposed FROMPUS-based MUD
without compromising its overall performance. Furthermore, the proposed FROMPUS-
based MUD will need to be investigated for massive multiple-input multiple-output-
NOMA (massive MIMO-NOMA) and millimeter wave-based multiuser wireless communi-
cation networks.
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Appendix A

In this section, a block diagram illustrating the operations of the proposed FROMPUS-
based MUD is presented in Figure A1. As can be seen from the block diagram, the
operations of the MUD commence with initialization, which is based on the Fused Modified
OMP-Modified SP. Its outputs are transmitted into the “Forward-Include” unit of the MUD,
which selects the highest amplitude-based element in a bid to select the correct element of
the active users support set. Its output is used by the “Reverse-Select” unit of the MUD,
which simply performs a reliability test. The support set computed by this unit is employed
by the FROMPUS to compute the desired active users’ transmitted signals.
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