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Abstract: There is a surge in the total energy demand of the world due to the increase in the world’s
population and the ever-increasing human dependence on technology. Conventional non-renewable
energy sources still contribute a larger amount to the total energy production. Due to their greenhouse
gas emissions and environmental pollution, the substitution of these sources with renewable energy
sources (RES) is desired. However, RES, such as wind energy, are uncertain, intermittent, and
unpredictable. Hence, there is a need to optimize their usage when they are available. This can
be carried out through a flexible operation of a microgrid system with the power grid to gradually
reduce the contribution of the conventional sources in the power system using energy storage systems
(ESS). To integrate the RES in a cost-effective approach, the ESS must be optimally sized and operated
within its safe limitations. This study, therefore, presents a flexible method for the optimal sizing
and operation of battery ESS (BESS) in a wind-penetrated microgrid system using the butterfly
optimization (BO) algorithm. The BO algorithm was utilized for its simple and fast implementation
and for its ability to obtain global optimization parameters. In the formulation of the optimization
problem, the study considers the depth of discharge and life-cycle of the BESS. Simulation results
for three different scenarios were studied, analyzed, and compared. The resulting optimized BESS
connected scenario yielded the most cost-effective strategy among all scenarios considered.

Keywords: depth of discharge; energy capacity; energy storage system; flexibility; power capacity;
renewable energy; wind energy

1. Introduction

Owing to the need for a reliable, clean, cheap, and large amount of electric power,
microgrids have grown to be very popular. Nations are making policies that ensure not
only the continuous supply of electricity but also electricity generation that is clean and
healthy for the environment [1]. Microgrids have found themselves to be an integral part
of many interconnected power systems. Having grown from small to large sizes, they
seem to be the most promising future for the world’s need for clean energy. The microgrid
can operate in off-grid (island) mode or grid-connected (anti-island) mode [2]. Due to
the variability and intermittency of RESs, the island operation of the microgrid could be
very challenging, as it is difficult to keep it operating smoothly for a long time without
external support [3]. Usually, some features of the microgrid make it work efficiently under
a constantly varying load. These features include distributed generators, storage systems,
and a dumped load, which is a controllable load [4].

The microgrid can be supported with ESS to enhance its smooth operation. Never-
theless, the grid-connected microgrid receives support from the grid when fluctuations
from the RES or variation from loads occur. These are some of the attributes that differ-
entiate microgrids from centralized systems. Furthermore, the cost of maintenance and
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cost of operation in a centralized system is expensive when compared with that of the
microgrid system because these costs are small in microgrid systems. Another advantage
of microgrids over the centralized systems is the lower cost of setting up. Additionally,
the microgrid systems produce cleaner energy, quality, and more reliable power than the
centralized system when adequately controlled. The use of microgrid systems to produce
cleaner power sources necessitates the use of ESS for its operation. Therefore, we are
motivated to propose an efficient way to determine the optimal size of the battery energy
storage system (BESS), which is the type of ESS considered in this study. Furthermore,
we considered the life span and depth of discharge of the BESS in the formulation of the
optimization problem, and the problem is solved using the BO algorithm.

As a case study, the proposed method is tested using the hourly load demand and
wind power of a typical small residential area with a peak load of approximately 163 kW.
By comparing the results of the three different scenarios of the study, we observed that
the proposed methodology is reliable and gives the optimal solution. It searches for all
possible solutions to find the optimal size of the BESS. Thus, it is able to minimize the
overall operation cost of the microgrid.

The capacity optimization of BESS has been copiously addressed in the literature;
however, gaps are still opened for the improvement of battery life under a highly varying
wind-penetrated microgrid, since the battery operation under this condition is much more
intermittent and requires more flexibility compared to its operation with other RES or
under ordinary conditions. There is a need to investigate the size and life of the battery
for its healthy operation. Moreover, we propose the butterfly algorithm, which has only
been reported in few similar problems in the previous studies. We used the BO algorithm
to evaluate the impact of wind power on battery operation, considering the depth of the
dispatch of discharge (DOD) and the lifespan of the BESS under carefully selected scenarios.
The strategies and the approach adopted would be helpful in the future study relating to
wind-battery microgrid systems.

The rest of the paper is organized as follows. Various works related to this paper are
discussed in Section 2. The problem formulation is discussed in Section 3, and the pro-
posed methodology and all optimization constraints are explained in Section 4. The BO
optimization algorithm is presented in Section 5, whereas Sections 6 and 7 are dedicated to
results and discussions followed by conclusions, respectively.

2. Related Work

Although the RESs are free and available almost everywhere, they require a consider-
able investment cost to be converted to electrical energy. The investment cost is dependent
on the location and size of the distribution system. Various strategies for integrating the
RESs in microgrids have been discussed in [5–8]. In [9], the authors present a survey of
the planning of distributed generation in distribution systems, where they reviewed the
effects of the system operating characteristics and conditions of DG systems, such as their
reliability, stability, electric losses, and voltage profile. Reference [10,11] described different
types of energy storage technologies and their applications. Although a number of them
have been developed and commercially available, many are still under research and have
received research support recently. ESS differ in the rate of charge and rate of discharge [12],
energy capacity, and power capacity [13,14]. Consequently, storage technologies differ in
size and weight. Figure 1 describes the characteristics of different ESS technologies [15].
The figure shows that BESS, such as lithium-ion, nickel–cadmium, lead–acid, etc, have
higher energy capacities and a medium power rating. The power rating of the lithium-ion
battery is in the range of 10 kW–100 kW, and that of Ni-Cd can be as high as 1.5 MW. Li-ion
and Ni-Cd have commonly been used in RE power integration [16,17].

The ESS can be placed at any point on the grid depending on the configuration
employed and the purpose for which they are deployed. For example, the ESS can perform
the job of load leveling and peak shaving to support the peak demand [11]. Under such
conditions, the ESS act as a load. The ESS can also help to attenuate any fluctuation in
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frequency and voltage magnitude, which consequently helps to improve the power quality
of the renewable generators, as used in the microgrids. As an indispensable component of a
microgrid, they can support the islanded operation mode by providing an uninterruptible
means of power supply in the form of an uninterruptible power supply (UPS) to renewable
generation sources, such as PV and wind power generation. Furthermore, when the cost
of grid electricity is low, the ESS can store electricity from the utility, which is sold to
customers at periods of high prices. This provides a good economical benefit for the
microgrid operators. Additionally, the ESS can help to stabilize the voltage and frequency
level of the microgrid following load disturbances, thus helping to improve the power
quality of the grid [3].

To find the optimal size of a BESS, many strategies have been proposed in the literature.
The formulation of problems involving BESS sizing usually follow a similar approach, as
it usually includes the demand, BESS, and all power sources. However the optimization
problems are usually formulated as cost minimization or profit maximization, which can be
solved using classical optimization methods or metaheuristic optimization methods, such as
the particle swarm optimization (PSO), genetic algorithm (GA), and grey-wolf optimization
(GWO) [18,19], and new approaches, such as the whale optimization algorithm (WOA),
firefly optimization (FFO), and Cayote optimization algorithm (COA), are reported in [20–22].
Yuan et al., [20] presented a study for the sizing and allocation of BESS by minimizing the loss
in the distribution in a distribution network using the new COA. The study compared the COA
with optimization algorithms, such as the whale optimization algorithm, firefly optimization
algorithm, and PSO, and found that the COA produced efficient results. A similar approach
was presented in [22], but used a whale optimization algorithm to reduce power losses in the
distribution network. The optimal size of BESS is computed in [21] in a stand-alone microgrid
using the convex optimization method, and the effectiveness of the method was demonstrated
by a comparison with PSO and GA.

A two-level sizing of grid-scale BESS is proposed in [23], considering the effect of the
uncertainty of wind power in the operation of the BESS. The proposed strategy involved
lower level and upper level operations. The lower level operation introduced the bat-
tery’s cycle life model in the processing simulation of the battery for long-term operation.
The upper level utilizes a marginal economic utility analysis and BESS reforming in the
optimal sizing of the BESS. The study developed an iterative sizing algorithm designed
to investigate the cycle of the battery after each round of an hour chronological operation.
The cycle life of the battery is then corrected, after which, marginal analysis is performed
on the power capacity and energy capacity of the battery based on double shadow prices.
The results shows that the proposed technique is effective in the estimation of the cycle life
of the battery under wind power uncertainties.

In [5], the authors investigated the optimal integration of RES with BESS in microgrids.
The application of RES and BESS in the microgrid operation was discussed in [6,24]. In [25],
the authors proposed the possibility of generating 100 MW from wind farms in four cities,
including Dhahran, Riyadh, Jeddah, Nejran, and Guriat. The study, however, recommends
hybrid technology to support the wind power of these cities.

In [26], the authors used a Markov chain to illustrate the fluctuation of wind power,
and this fluctuation is measured by the variance of the grid power. The study suggested
that the DP and Markov decision process are not suitable for tackling the dynamic problem
of BESS because the variance measurement is non-additive but quadratic. The study
developed an iterative optimization algorithm to derive a function that would address the
mentioned problem. The derived difference formula’s efficiency is similar to the policy
iteration in the Markov decision. Furthermore, the study presents a divide-and-conquer
method that is much faster than the Markov chain method. Based on these techniques,
the study evaluates the type, selection and capacity of BESS, which can enhance industrial
guidance for the design of BESS, thereby minimizing the long-term fluctuation of RE and
improving the stability of microg
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Figure 1. Characteristics of different ESS technologies.

Salman et al., presented a similar study in [27] for a wind-penetrated microgrid using
the nonlinear optimization for both grid-connected and stand-alone microgrids. The opti-
mal size of the battery and energy scheduling of an isolated microgrid was investigated
in [28] using the firefly optimization algorithm. Furthermore, the optimal BESS for grid-
connected microgrids subject to wind uncertainties has been investigated in [29] using
stochastic programming.

Although the sizing and operation of BESS in a wind-penetrated microgrid have been
tremendously studied in the literature, only few of the previous studies have used the BO
algorithm to solve the optimization problem. Specifically, based on the limitations cited
in [23,26], we present the BOA as another flexible solution for solving the problem of BESS
wind power integration in the microgrid. Moreover, the contributions to study in this work
are summarised as follows:

(1) The proposed strategy in this study evaluates the impact of wind power operation on
the DOD and cycle life of the BESS under specifically selected scenarios;

(2) The study investigates the impact of wind power fluctuations in different locations
and seasons of the year on the operation of the BESS;

(3) It adopts the method of the capacity incremental strategy to size the BESS until the
optimal capacity is reached and the effect of each incremental size is observed on
the DOD of the BESS. This strategy shows the flexibility limit allowed within the
microgrid distribution generation to achieve an economic operation;

(4) Finally, this paper introduces the use of BOA for solving the optimization problem as
a promising approach for the integration of BESS in a wind-penetrated microgrid.

3. Problem Formulation

In this section, the formulation of the problem is discussed and the modeling of the
individual microgrid components is described.

In formulating the problem in this study, we consider a microgrid configuration of
the type displayed in Figure 2. The microgrid is configured such that it can switch its
operation between BESS connected mode and BESS disconnected mode. The wind power,
which is the only RES, and three diesel generators are connected through the generator bus
to the AC bus. Furthermore, the residential demand is connected through the load bus to
the AC bus. There is also a dump load connected to the load bus that consumes the excess
power after the demand is met and the BESS is fully charged. This prevents the BESS from
being overcharged or the network lines from being overstretched. The BESS is connected
directly through the switch to the AC bus. It is assumed that the battery has its converter
and switching controller within the BESS module, and so the operation of the converter
topologies and their control is beyond the scope of this study.
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Figure 2. The proposed microgrid system.

To investigate the objectives of this study, the strategies adopted are summarized into
three operating scenarios as follows:

Scenario 1: BESS disconnected mode, where the microgrid is operated without the BESS;
Scenario 2: BESS connected mode, with a constant battery capacity of 100 kWh;
Scenario 3: BESS connected mode with an optimized battery capacity.

3.1. Wind Power Model

The power of a wind turbine is given by (1) [27]. The wind power model equation
relates the output hourly power to the speed of the wind.

Pw,t =


0 vt ≤ vCI or vt ≥ vCO

Pmax
w

vt−vCI
vR−vCI

vCI ≤ vt ≤ vR

Pmax
w vR ≤ vt ≤ vCO

(1)

where vt is the wind speed at time t, vCI is the cut-in wind speed, vCO is the cut-out wind
speed, vR is the rated wind speed, and Pmax

w is the rated power of the wind plant.
The total cost of the dissipated power by the wind power plant for period T is given

by (3) [28].

CRF =
1

365
× ir(1 + ir)ly

(1 + ir)ly − 1
(2)

Cw(t) =

(
T

∑
t=1

Pw,t

)
∗ ICw ∗ CRF (3)

where ICw is the initial wind plant cost and CRF is known as the capital recovery factor,
which is given by (2), with ir and ly referred to as the interest rate and projected battery
lifetime of the wind power plant, respectively.

3.2. Generator Model

For a generator, i, the cost at a particular time, t, is given in terms of its dispatch power
as (4) [30]. This assumes that we are using a diesel generator and that it serves as our
secondary power generation source for the microgrid. The primary power source is wind
power.

Cg(t) =
N

∑
i=1

(
aiP2

g,i(t) + biPg,i(t) + ci

)
(4)

where Pg,i(t) is the output power of generator i at time t. ai, bi, and ci are the coefficient of
the ith generator. N is the number of generators considered.
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3.3. Battery Energy Storage Model

The BESS is considered as one of the most popular ESSs due to its wide availability and
technology maturity [31]. The selection of a BESS type depends mostly on the application,
as each technology has its power and energy characteristics, with the lithium-ion battery
being one of the most efficient for storing wind and solar energy due to its long life, high
efficiency, and high energy density [32]; thus, it has been selected for this study.

The analysis of the cost of BESS has been shown to depend on the life-cycle of the bat-
tery [27,28]. The life-cycle is dependent on the depth of discharge (DOD) of the battery [33].
Consequently, the cost of the BESS is also dependent on DOD. The battery DOD (DODb(t)),
life-cycle for a given DOD (l(t)), and the battery cost (Cb) are given in the equations shown
in (5).

DODb(t) = 1 − SOCb(t) (5a)

l(t) = 694 ∗ (DODb(t))−0.795 (5b)

Cb(t) =
Cb,cap ∗ Pb(t)

Esto ∗ l(t) ∗ η2
b

(5c)

where Cb,cap is the initial battery capacity cost. These equations also assume that the unit
optimization time (∆t) is 1 h.

4. Proposed Methodology

In this section, the proposed sizing methodology for the problem is discussed. Fur-
thermore, the objective function and all associated constraints are explained in this section.

4.1. The Objective Function

Having described the cost of the individual units making up the microgrid in the
preceding sections, the total cost is, therefore, the sum of the costs of the wind plant
(Cw), the generator (Cg), and the BESS (Cb). Hence, the objective function for the optimal
sizing problem is given in (6) as follows. The task is to minimize this objective function.
The minimization of this cost function will yield the optimal size of the BESS.

J = min
T

∑
t=1

(
Cw(t) + Cg(t) + Cb(t)

)
(6)

where Cw, Cg, and Cb are as previously defined and T is the total operation period, which
is 24 h in this study.

4.2. Constraints

Minimizing the objective function comes with a set of constraints. The optimization
must be carried out subject to the following constraints:

4.2.1. Power Balance Constraint

The power balance constraint in a power system is the primary constraint. This
constraint ensures that the principle of demand and supply of power is maintained. It is
given in (7).

Pw(t) + Pb(t) +

(
N

∑
i=1

Pg(t)

)
− PL(t) = 0 (7)

where PL(t) is the power demanded by the load at time t.
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4.2.2. Generator Constraint

At any time instant t, the output power of any generator i must be bounded by its
minimum and maximum power limits. This limit is expressed by (8):

Pg(i)min ≤ Pg(i, t) ≤ Pg(i)max i = 1, 2, ..., N (8)

4.2.3. BESS Constraint

The constraints related to the BESS are expressed by Equations (9)–(13). In this work,
we have chosen a positive and negative power convention for the discharging and charging
powers of the battery. This means that the battery acts as a load when it is charging and
as a generator when it is discharging. The optimization time interval, ∆t, is taken as 1 h.
At any instance, the power withdrawn from the battery must be within acceptable limits of
the battery; this condition is formulated in (9). Furthermore, the discharging and charging
constraints of the battery are expressed in (10) and (11), respectively. The µb is a binary
variable that states the operating status of the battery. It is equal to 1 when the battery
discharges and 0 when it charges. This variable prevents the charging and discharging of
the battery at the same time.

Furthermore, the energy of the battery at any time instance must be within the limit
allowed for the battery. This is captured in the constraint expressed in (12). The charging
and discharging of the energy of the battery, which is dependent on the charging and
discharging power, is given by (13) [34].

Pmin
b ≤ Pb(t) ≤ Pmax

b (9)

0 ≤ Pb,dch(t) ≤ Pb ∗ µb (10)

− Pb ∗ (1 − µb) ≤ Pb,ch(t) ≤ 0 (11)

Emin
b ≤ Eb(t) ≤ Emax

b (12)

Eb(t + 1) =

Eb(t)−
Pb,dch ∗ ∆t

ηb,dch
(Pb(t) > 0)

Eb(t)− Pb,ch(t)∆t ∗ ηb,ch (Pb(t) < 0)
(13)

where Pmin
b and Pmax

b are the minimum and maximum power that can be drawn from the
BESS at any time t. Similarly, Emin

b and Emax
b refer to the minimum and maximum energy

limits of the BESS at any time t. Pb,ch(t) and Pb,dch(t) are the charging and discharging
powers at time t. Pb(t) and Eb(t) are the battery power and energy at that time instance t.

Equation (13) also expresses state of charge (SOC) of the battery at any time t is
dependent on the previous SOC and depends on the charging and discharging efficiencies,
as well as the charging and discharging powers.

4.2.4. Proposed Optimization Procedure

Depending on the load demand, our proposed method utilizes the BO algorithm for
the power balancing strategy at every hour in order to obtain the optimal battery size.
Whenever the wind power is lesser than that of the demand, the algorithm dispatches
powers from the generators and/or the BESS. However, this is based on the DOD of the
battery, which ultimately affects the operational cost.

Depending on the cost equations of the power sources and the load demand at a
particular hour, the proposed algorithm dispatches an optimal power from the energy
sources and power generators. Whenever the cost of the BESS is higher than that of the
generator, the algorithm also allows for the generators to charge the battery. This implies
that the DOD of the battery is high at this instance. The battery SOC is computed every
hour, at which time, the algorithm takes a decision on whether to charge or discharge the
battery. The defined power resource scheduling strategy, which will minimize the overall
cost of the microgrid, is obtained for the optimal battery size. The range of the battery size
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is taken from 100 to 300 kWh. With this understanding, we next discuss how optimization
is performed using the BO algorithm.

5. Butterfly Optimization Algorithm

This section discusses the parameters and the implementation of the BO algorithm
as used in this study. The cost optimization that yields the optimal battery size is to
be performed using the BO algorithm. The BO algorithm was proposed in [35] and
has proven to be efficient for global optimization. The algorithm is a population-based
algorithm like many other meta-heuristic algorithms, such as GWO, PSO, GA, etc. [36].
However, unlike the other algorithms, it has the advantage of a faster convergence. It
is based on the movement of butterflies to attract one another. The algorithm is briefly
described as follows:

5.1. Butterfly

It was observed that butterflies have an extremely precise feeling of finding the well-
spring of scent. A butterfly’s power is created, and is related to its wellness. The butterfly
then creates an aroma that is proportional to the created power. This implies that the power
of a butterfly fluctuates as it moves from one place to another. Different butterflies can then
sense the aroma as the butterflies moves. If a butterfly can detect the aroma, it will advance
toward it; otherwise, it will move haphazardly in search of an aroma.

5.2. Fragrance

The fundamental property that distinguishes BOA from the other meta-heuristic
algorithms is the butterfly aroma. Every aroma has its dedicated fragrance, such that
each fragrance has its specific individual contact for every butterfly. The fragrance f is
proportional to the stimulus intensity (I) and power exponent (a). The proportionality
constant is the butterflies sensory modality (c). The fragrance f is therefore given by the
expression in (14). In most cases, c and a are in the range [0, 1].

f = c × Ia (14)

5.3. Movement of Butterflies

Optimization using BOA is dependent on the movement of the butterflies in search of
the global minimum. This is carried out in three steps as follows:

(a) All butterflies can detect the presence of other butterflies due to the emission of some
fragrance by all the butterflies;

(b) All butterflies have two patterns of movement: (1) towards the butterfly emitting the
best fragrance or (2) moving randomly;

(c) The landscape of the objective function determines the stimulus intensities of
the butterflies.

5.4. Generalized BO Algorithm

The generalized flowchart of the BO algorithm is as shown in Figure 3. BOA optimiza-
tion is performed in three phases: (1) the initialization phase, (2) the iteration phase, and (3)
the final phase. In the initialization phase, the objective function and the solution space
(taking note of all constraints) are defined. The values of the BOA hyper-parameters are also
defined in this phase. This is immediately followed by the creation of the initial population
of butterflies by the algorithm. This population is used for optimization. The population
size of the butterflies remains unchanged throughout the optimization process. This results
in a fixed memory size allocation to store their information. The fragrance and objective
(fitness) values are then used to update the position of the butterflies in the search space.

The second phase defines the iteration phase where the optimization is performed.
For each iteration t, the fitness of all of the butterflies is calculated. This fitness is based on
the new positions of the butterflies obtained in the previous iteration. This is then used
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to generate fragrances at their positions using (14). There are two search phases—(1) the
global search and (2) the local search phase. In the global search phase, the butterfly moves
towards the butterfly/solution g∗ with the best (fittest) solution using (15), whereas, in the
local search, the butterfly moves randomly in search of other butterflies close to its position
using (16).

xt+1
i = xt

i + (r2 × g∗ − xt
i )× fi (15)

xt+1
i = xt

i + (r2 × xt
j − xt

k)× fi (16)

where xt
i is the solution vector for the ith butterfly in iteration number t. The current best

solution is denoted by g∗. The fragrance of the ith butterfly is represented by fi, and r is
a random number in [0, 1]. The jth and kth butterflies from the overall solution space are
denoted by xt

j and xt
k, respectively.

Figure 3. BO Algorithm flowchart.

After each iteration, i.e., butterfly movement, the butterfly with the best objective
function is then selected. Based on the new objective function, the sensory modality c of
each butterfly is updated. This cycle continues until the stopping criteria are met. Such
criteria could be the amount of CPU time utilized, the maximum number of cycles achieved,
the maximum number of iterations without any fitness improvement, a specified error
range, or some pre-specified number of iterations. The commonly used stopping criteria
is a pre-specified number of iterations. We also intend to use this in this paper. At the
final stage, all calculations are carried out and the butterfly that achieved the minimal cost
function is selected.

The BOA initiates a search process to determine the optimal power dispatch of the
power of the microgrid that would guarantee that a safe operation of the BESS at the same
time ensures that all of the system constraints are not compromised within possible limits.
This procedure is repeated every time the capacity is increased at the incremental rate until
the optimal capacity is reached and an optimal dispatch is achieved. Due to its robustness,
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the BO algorithm has been applied to several optimization problems, such as to optimize
the parameters of a lead-lag controller for an improved stability performance [37].

A streamlined version of the algorithm called a dynamic BO algorithm (DBOA) was
also used to perform feature selection problems [38]. The performance of the BOA sur-
passes that of the PSO. In addition, the BOA has a faster speed of convergence to the
optimal solution than the PSO. The performance of the BOA was shown to supersede the
performance of the PSO in [39,40]. In particular, the study in [41] justified the applicability
of the BOA to an optimal dispatch problem such as ours, and it was proven that the BOA is
more efficient than both the PSO and the GA. Consequently, we believe that the BOA can
provide the desired efficient optimal solution.

The simulation in this study is carried out using the MATLAB simulation package
running on a Windows 10 Intel core i7 16G RAM PC.

6. Simulation Results and Discussion

To illustrate the performance of the proposed method, we present a low voltage
microgrid with three diesel generators and a Li-ion battery. Furthermore, we use a wind
RES of 150 kW capacity. The diesel generators data, presented in Table 1 and the BESS data,
such as its capital cost, maintenance cost, lifetime, and interest rate, presented in Table 2,
have been taken from [28].

Table 1. Generator parameters.

Diesel 1 Diesel 2 Diesel 3

ai ($/kW2) 0.0001 0.0001 0.0001
bi ($/kW) 0.0438 0.0479 0.0490

ci ($) 0.3 0.5 0.4
Pmin (kW) 0.0 0.0 0.0
Pmax (kW) 40.0 20.0 10.0

Table 2. System parameters.

Parameter Value

Initial SOC (%) 80
SOCmax

batt (%) 90
SOCmin

batt (%) 10
Initial Capital Cost ($/kWh) 625

Maintenance Cost ($/kWh)/year 25
Round-trip Efficiency (%) 90

Lifetime (years) 3
Pmin

batt (kW) 10
Pmax

batt (kW) 25
Interest Rate (%) 6

In Figure 4, we present a typical load profile of a residential area alongside the wind
power profile used to test the proposed strategy in this work. From Figure 4, we can
observe that, for most of the 24 h, the demand is greater than the power supplied by the
RES. At these periods, the generators and the BESS supply the remaining powers needed
to meet the demand. However, for very few periods, when the RES supply is greater than
the demand, the excess powers are used to charge the BESS. To maintain the SOC of the
BESS at an appreciable level for smooth and efficient running, the generators can be used
to charge the BESS when needed; for instance, when the cost of discharging the BESS is
greater than the cost of operating the generators. This condition occurs after the continued
use of the BESS results in the depletion of the SOC of the BESS, thereby raising its discharge
cost. Therefore, the BESS must operate at an optimal SOC, so that the state of health of the
BESS is preserved and its lifespan is increased.
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Figure 4. A residential demand profile and a wind power profile.

The results of the three scenarios considered are explained in the following subsections.

6.1. Scenario 1: BESS Disconnected Mode

In this scenario, the microgrid is operated without the BESS. As such, there will be no
cost for the BESS. The only sources of the power supply are the RES and the generators.
These sources have to be able to cater to the load demand at all times in order to not have
load shedding; that is, there must be no mismatch at all times. Figure 5 shows the load
demand and the supply from the RES and the generators for all times. The figure also
provides the supply power when our generators operate at full capacity. It can be observed
that, at some hours, the installed capacity cannot meet up with the demand, specifically
between hours 9–11 and 19–21. During these intervals, there will be a power mismatch,
which will cause an imbalance in the system due to load shedding. A power imbalance
has multiple effects on the power network and can potentially cause a loss of power to the
system. A loss of power means an increase in the scheduling operation of the microgrid
and, consequently, increased costs, increasing the overall operational costs.

To tackle these challenges, the installed capacity of the generators can be increased.
However, this would lead to a very high cost and reduced overall system reliability. Besides,
an increase in the number of generators or the generators’ capacity means an increase in
the release of greenhouse gases, which is not desirable. Therefore, alternative strategies
have to be explored.

Figure 5. Power dispatch by the microgrid in Scenario 1.

6.2. Scenario 2: BESS Connected Mode, with a Constant Battery Capacity of 100 kWh

From the first scenario, we have observed that the RES and diesel generators cannot
always meet up with the load demand at all times. Furthermore, power would be wasted
through the dump load at the times when the RES supply power exceeds the demand.
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The excess power could be made useful by allowing for the charging up of the battery.
Hence, there is a need to install a BESS in the microgrid.

To investigate the effect of BESS on the operation of the microgrid, a BESS of a fixed
100 kWh capacity was added to the system. This capacity is expected to eliminated the
power mismatch at any point in time. The power output of the RES, generators, and BESS
at every time is shown in Figure 6. The scheduling cost and the total operating cost per day
were found to be USD 246.2 and USD 293.85, respectively. The operation of the BESS could
be observed during the hours of high demand. For example, the BESS charges between
hours 2 and 3 and discharges between hours 6 and 8 due to an increase in the wind power.
The BESS charges again between hours 8 and 11. Although there was an increase in the
wind power and the output from the diesel generators, the combination of both is not
enough to meet the peak demand, which occurs at hour 11. Therefore, there has to be some
discharge from the BESS to meet this demand. The dispatch of the diesel generators in
Scenario 2 is shown in Figure 7, and shows the dispatch of the individual generator in
this scenario. This observation clearly demonstrates a relatively flexible operation of the
microgrid. A significant observation is made between hours 15 and 16, during which, the
outputs of all three generators are zero; this is a reflection of the fall in demand with a
corresponding increase in wind power.

Figure 6. Power dispatched by the microgrid in Scenario 2.

Figure 7. Generator power dispatched in Scenario 2.

A decline in the BESS power is noticed between hours 13 and 16, when the demand
dropped steadily as the BESS began to charge. Furthermore, at hour 18 through 21, the BESS
power reflects the sharp increase in demand with a fall in wind power. This operation
depicts that the battery only charges when the demand is less than the wind power and/or
when the cost of discharging the battery is higher than the cost of the diesel generators;
however, it may not be healthy for the battery due to being over-stressed.
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The impact of the charging operation of the BESS described can be seen on the DOD
of the BESS shown in Figure 8. The figure depicts that the DOD keeps changing as the
BESS operates from charging to discharging, and that a unity DOD is attained at the peak
demand or at the instants when there were reduced supplies from the other sources due
to their operating limits. The consequence of this includes a high cost of operation of the
battery, as well as a reduced lifespan. A high or unity DOD means that the BESS is operated
at the maximum and/or beyond the allowed SOC limits of the BESS, which is not desirable
for its healthy operation.

Figure 8. The depth of discharge of BESS in Scenario 2.

6.3. Scenario 3: BESS Connected Mode with Optimized Battery Capacity

In this scenario, we consider the optimal battery size that would produce a cost-
effective and smooth operation of the system. We searched for the optimal battery size
within a range of battery sizes that would yield a minimal operating cost whilst also
ensuring a flexible operation and increased battery lifespan. The range of the battery sizes
is from 100 kWh to 300 kWh, with a step size of 15 kWh.

In obtaining the optimal size, we considered all of the constraints and the power
balance equation. The optimal capacity of the battery was found to be 150 kWh. For this
scenario, the scheduling cost and total operating cost per day were obtained as USD 119.46
and USD 165.29, respectively. Both costs were less than the amount recorded in Scenario 2,
since the microgrid operates at optimum capacity. The power output of the RES, generators,
and BESS at every time is shown in Figure 9, where we can observe that the load demand
was met at all times. Generator 1 has been given the most priority of the three generators
because of its high power output limit and lower cost. This is noticed in the individual
power dispatch by each generator, as shown in Figure 10. Furthermore, all generators
responded to the change in the demand and output from the wind, as in Scenario 2.

Figure 9. Power dispatched by the microgrid in Scenario 3.
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Figure 10. Generator power dispatched in Scenario 3.

When the battery capacity was not optimized in Scenario 2, the battery was heavily
discharged in order to meet the demand. However, here, the DOD stays within the desired
operating limit of the battery. This can be seen in the optimized plot of the DOD shown
in Figure 11. The BESS was operated hourly, much like it is described in Scenario 2, and
its DOD assumes a similar pattern but never hikes to unity. The highest DOD value
is approximately 68%, at which point, the battery has to be charged in the next cycle;
otherwise, its cost will be higher than that of the generators. Operating the battery within
the DOD range guarantees a longer lifespan for the battery.

Figure 11. The depth of discharge of BESS in Scenario 3.

The dispatch of the battery power during its charging/discharging operation over the
24 h horizon is shown in Figure 12. A negative battery power indicates that the battery is
charging and a positive power indicates that the battery is discharging. It can be observed
that, for most of the time when the demand is high, the battery was discharging. This
indicates a flexible and optimal operation of the BESS. The maximum discharge power at
any time is set to 25 kW and the maximum charging power is set to −10 kW.
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Figure 12. Charging and discharging operation of BESS in Scenario 3.

7. Conclusions

In this work, a technique for optimizing the size of the BESS in a wind-penetrated
microgrid is proposed. In particular, we solved the optimization problem with the butterfly
optimization algorithm due to its easy and fast implementation and ability to generate
global optimized parameters. The optimal size of the battery was determined by minimiz-
ing the total daily operating cost of the microgrid. We found from our study that increasing
the capacity of the BESS, which comes at an increased cost, does not necessarily reduce
the operating cost. An incremental strategy based on the flexible operation and sizing of
the BESS in the microgrid is conducted in order to achieve a minimal daily operating cost.
Furthermore, our study revealed that an optimal size is necessary not only for economic
operation but also for a healthy operation of the BESS. Finally, we conclude that it is crucial
to obtain the optimal size of the ESS for an efficient and economic operation of the micro-
grid, as this would potentially help in elongating the lifespan of the battery. An alternative
approach for obtaining the optimal capacity of the BESS is by using a search algorithm to
size the BESS rather than an incremental approach on an assumed initial capacity. Such
an approach may be computationally expensive, but it gives a more accurate value for the
BESS capacity and the overall results. The proposed method is a general method that can
be extended to solve any optimization problem involving other types of energy storage
technologies irrespective of the location of the study.
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Abbreviations
The following abbreviations are used in this manuscript:

a Power exponent
ai, bi, ci Fuel cost coefficients for generation unit i
di, ei, fi Emission cost coefficients for generation unit i
AC Alternating current
BESS Battery energy storage system
BO Butterfly optimization
BOA Butterfly optimization algorithm
c Sensory modality of BOA
CE Cost of electricity, USD/MWh
CBESS Cost function of battery energy storage system
Cd.gen Total operating cost of diesel generation units, USD/MWh
Cb(t) Battery cost at time t, USD
Cb,cap Initial battery capacity cost, USD
Cg(t) Generator cost at time t, USD
Cw(t) Wind cost at time t, USD
CWT Daily cost of wind power dissipation, USD/MWh
CMGex Cost of power exchanged, USD/MWh
COA Cayote optimization algorithm
CRF Capital recovery cost, USD
DGi Power generated by diesel generation unit i, MW
DOD Depth of discharge of energy storage system, MWh
DODb(t) Depth of discharge of battery energy storage system at time t, MWh
Eb Battery energy
Emax

b Maximum rated energy of battery, MWh
Emin

b Minimum rated energy of battery, MWh
ESS Energy storage system
Esto Battery storage capacity
ηb Battery efficiency, USD/MWh
ηb,ch(t) Charging efficiency of battery at time t
ηb,dch(t) Discharging efficiency of battery at time t
fi Fragrance of the ith butterfly
FC Fuel cost, USD/MWh
FFO Firefly optimization
GA Genetic algorithm
GWO Grey-wolf optimization
I Stimulus intensity
ICw Initial wind plant cost, USD
ir Interest rate
iy Projected battery lifetime, in years
J Objective function
Li − ion Lead ion
MG Microgrid
nDOD

c Number of cycles of energy storage at a particular DOD
Ni − Cd Nickel–cadmium
Pb,ch(t) Charging power of the battery at time t
Pb,dch(t) Discharging power of the battery at time t
PBESS Battery power, MW
EBESS Battery energy, MWh
PD Load power demand, MW
Pg Grid power, MW
Pg,i Output power of the generation unit im MW
PL(t) Demanded or load power at time t, MW
Pw Wind power output, MW
Pw,t Wind power output at time t, MW
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Pb(t) Battery power at time t, MW
Pmax

b Maximum rated power of battery, MW
Pmin

b Minimum rated power of battery, MW
Pmax

M Maximum capacity of the transmission line, MVA
PSO Particle swarm optimization
PV Photo-voltaic
r A random number
RE Renewable energy
RES Renewable energy sources
SOC State of charge
SOCb(t) State of charge of battery at time t
T Period
t Iteration number
UPS Uninterrupted power supply
vCI Wind cut-in speed, km/h
vR Rated wind speed, km/h
vt Wind speed at time t, km/h
WOA Whale optimization algorithm
xt

i solution vector for the ith butterfly at iteration t
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