
electronics

Article

Implementation of a DPU-Based Intelligent Thermal Imaging
Hardware Accelerator on FPGA

Abdelrahman S. Hussein 1,* , Ahmed Anwar 1, Yasmine Fahmy 1 , Hassan Mostafa 1,2 ,
Khaled Nabil Salama 3 and Mai Kafafy 1

����������
�������

Citation: Hussein A.S.; Anwar A.;

Fahmy Y.; Mostafa H.; Salama K.N.;

Kafafy M. Implementation of a

DPU-Based Intelligent Thermal

Imaging Hardware Accelerator on

FPGA. Electronics 2022, 11, 105.

https://doi.org/10.3390/

electronics11010105

Academic Editor: Nunzio Cennamo

Received: 31 October 2021

Accepted: 13 December 2021

Published: 29 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Engineering, Cairo University, Giza 12613, Egypt; ahmed.anwar.saeed@gmail.com (A.A.);
yasfahmy@eng.cu.edu.eg (Y.F.); hmostafa@staff.cu.edu.eg (H.M.); mai.b.s.ali@eng.cu.edu.eg (M.K.)

2 Nanotechnology and Nanoelectronics Program, Zewail City of Science and Technology,
University of Science and Technology, Giza 12578, Egypt

3 Electrical Engineering Program, King Abdullah University of Science and Technology,
Thuwal 23955-6900, Saudi Arabia; khaled.salama@kaust.edu.sa

* Correspondence: abdelrahman_hussein@ieee.org

Abstract: Thermal imaging has many applications that all leverage from the heat map that can be
constructed using this type of imaging. It can be used in Internet of Things (IoT) applications to detect
the features of surroundings. In such a case, Deep Neural Networks (DNNs) can be used to carry
out many visual analysis tasks which can provide the system with the capacity to make decisions.
However, due to their huge computational cost, such networks are recommended to exploit custom
hardware platforms to accelerate their inference as well as reduce the overall energy consumption of
the system. In this work, an energy adaptive system is proposed, which can intelligently configure
itself based on the battery energy level. Besides achieving a maximum speed increase that equals
6.38X, the proposed system achieves significant energy that is reduced by 97.81% compared to a
conventional general-purpose CPU.

Keywords: Convolutional Neural Network (CNN); Deep Learning Processing Unit (DPU); Field
Programmable Gate Array (FPGA)

1. Introduction

Thermal imaging, also known as thermography, is constructing a heat map of the
surrounding. This is done by detecting the heat signature of the different objects using
thermal cameras that operate in the infra-red range (9–14 µm). Although thermography
started as a military application to detect enemy forces, it has recently found its way to
many more applications thanks to its numerous advantages. For example, the dependence
on heat allows thermography to operate well in a non-lit environment, and consequently,
it is suitable for surveillance applications [1] and wildlife monitoring [2]. Thermal imaging
can be used to monitor the welfare of the elderly as it only captures the human body
temperature and, therefore, does not violate their privacy [3]. Thermography helps to
detect early diseases in humans and plants besides early detection of thermal discomfort
among farm animals.

Thermography applications, especially monitoring, produce long sequences of thermal
images (or video frames). Different frames are expected to have different significance. For
example, while some frames might be safely ignored, others might be essential. An
intelligent edge device should not only decide the significance of the frame but also adjust
its behavior accordingly. As suggested in [4], edge devices should adjust their compression
rate and activity rate according to the image importance, the battery status, and the
remaining operation time.

In this paper, an edge device with a thermal camera, a transmitter, and an Intelligent
Thermal Image Processing Unit (ITIPU) is proposed. Detailed design of the ITIPU is

Electronics 2022, 11, 105. https://doi.org/10.3390/electronics11010105 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1903-6914
https://orcid.org/0000-0001-9796-7813
https://orcid.org/0000-0003-0043-5007
https://orcid.org/0000-0001-7742-1282
https://orcid.org/0000-0003-1311-9740
https://doi.org/10.3390/electronics11010105
https://doi.org/10.3390/electronics11010105
https://doi.org/10.3390/electronics11010105
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics11010105
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics11010105?type=check_update&version=1


Electronics 2022, 11, 105 2 of 20

provided in Section 3. Generally, the ITIPU consists of an image classifier, encoder, and
controller. The classifier is used to determine the importance of the captured image, the
encoder compresses the image before transmission, and the controller makes decisions
based on the classifier output. These decisions include deciding the compression rate of
the image and the frame rate of the thermal camera. The classification and the compression
are both designed based on Convolutional Neural Networks (CNN) architectures with
different mathematical operations and different layers. It should be noted that despite the
dominant accuracy achieved by the state-of-the-art deep neural networks, this comes with
a huge price represented in the computational cost [5]. This huge computational cost can
be observed for example in a simple model such as the LeNet-5 model, which requires
about 680 × 103 arithmetic operations (addition or multiplication) per classification (op/cl)
to carry out a simple MNIST handwritten digits classification, whereas the VGG16 requires
about 31G op/cl handling the 1000-class ImageNet task [5]. As the aim of this work is
to design and implement a general-purpose ITIPU, FPGA is an excellent candidate to be
used to accelerate our Deep Neural Network (DNN) model besides offering capacity for
customization. FPGA is also exploited to offer significant reconfigurability and adaptability
during run-time which can be used to reconfigure the programmable logic based on specific
pre-defined parameters, such as the remaining battery energy level or data transfer speed.
In order to deploy a CNN on the FPGA, long design time might be needed which is a
challenging problem, and correspondingly, a great effort is then required to deploy a CNN
architecture to an FPGA. Xilinx Inc. has addressed this problem by releasing an Intellectual
Property core (IP core) called Deep Learning Processing Unit (DPU). The DPU provides
an efficient implementation of different CNN architectures on the FPGA by supporting
various deep learning operations. The DPU offers flexibility in the implementation of
CNNs on the FPGA as well as efficiency in terms of, design time, energy consumption,
and latency.

While this work proposes a compression engine besides a set of classifiers that differ
in performance and accuracy, these differences should be leveraged to expand both the
adaptive and reconfigurable features of the system in order to address the limitations of
the IoT applications and enhance the computational processing capacity. Accordingly, the
proposed system should demonstrate a set of crucial specifications and features that would
overcome those limitations. Such crucial features are considered to be parallel processing
on different levels and reconfigurability. While the former should be realized in executing
different tasks (i.e., classification, and compression) simultaneously as well as parallelism
on the scale of each task, the latter can be reflected on reconfiguring the system based on a
specific sensitivity list.

In this work, an ITIPU based on a unified deep-learning design is proposed. The
design is implemented by a DPU on the programmable logic of the Xilinx Zynq UltraScale+
MPSoC ZCU104 FPGA Evaluation Kit. The main aim of the design is to achieve a pro-
grammable flexible design with a high image processing throughput and minimum energy
consumption. The main contributions of this work are:

• An adaptive system is proposed to carry out the image classification and compression.
The system is reconfigured based on several parameters such as the battery energy
level and the data transfer rate.

• To best of the authors’ knowledge, this is the first time such an IP is used in an adaptive
scheme in order to maintain the system operation in different scenarios. This promotes
its feasibility for IoT applications as it results in lengthening the battery life, especially,
in applications with a limited energy budget.

• Additionally, the proposed system is capable of executing both classification and
compression tasks simultaneously, which boosts the overall system performance.

• The experimental results of this work provide useful design recommendations and
insights to hardware accelerators designers to reduce the CNN accelerators design
time with high throughput and low energy consumption.
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The rest of this paper is organized as follows: Section 3 shows the system-level and
Section 4 shows the proposed designs of deep learning-based image classification and
compression. DPU design flow is presented in Section 5, and the implementation is detailed
in Section 6. Finally, Section 7 concludes the paper.

2. Related Work

Recently, the authors in [6] evaluated the performance of the DPU, among other
architectures, using different vision kernels and neural networks as benchmarks. The
outcomes showed that the DPU-Based accelerator on FPGA outperformed both ARM
Cortex A57 CPU with 32-bit floating-point precision and Nvidia Jetson TX2 with 16-bit
floating-point precision in terms of the throughput of MobileNet-V2. Furthermore, the
accuracy loss observed due to the model compression was negligible (less than 1.1%).
With regard to object detection applications, Wang et al. [7] used the DPU to accelerate
YOLOv3 [8] and compare its performance with its counterpart on Nvidia GeForce GTX1080.
While the numerical precision was significantly reduced on the DPU compared to the GPU
(8-bit fixed precision and 32-bit floating-point, respectively), the DPU demonstrated more
than 2× for single-threaded and 6× while leveraging multi-threading higher throughput
than the GPU. In terms of energy efficiency, the DPU processed 3.38 FPS/W whereas
the GPU only maintained only 0.26 FPS/W. Similarly, Chan et al. [9] deployed the same
system for robots to detect agricultural crops where the DPU also outperformed both
CPU and GPU in terms of power efficiency. From the perspective of the software stack,
Zhu et al. [10] addressed the challenge of optimizing the task scheduler by building a task
assignment that uses the Vitis AI software stack. This led to significant improvement in
terms of performance. One main problem with the aforementioned work is that the systems
demonstrated constant energy consumption that did not change according to certain
sensitivities (e.g., the battery lifetime). This may present a challenge for IoT applications
to adopt these systems. Accordingly, this work addresses this problem by proposing
an energy-adaptive system that features a shorter development time, higher flexibility
that covers a wide range of CNN architectures. The other observation is that the prior
work evaluated the DPU performance using standardized CNN architectures (e.g., VGG16,
ResNet-50, etc.). Thus, the proposed work also addresses this observation by proposing
novel CNN architectures for classification and compression.

3. System Design

This section describes the system-level design of an intelligent thermal image pro-
cessing unit (ITIPU). The unit consists of an image classifier, an image compressor, and a
controller as shown in Figure 1. A thermal camera feeds its captured frames to the image
classifier, which classifies each frame to a number of predetermined classes. Following that,
the frames are compressed by a multi-rate image encoder before being transmitted, over
the wireless channel, to the destination. The classification outcome is used as an input to
the controller to determine the compression rate of the classified frame. For example, a
frame belonging to an unimportant class can be highly compressed (or skipped) in order to
save transmission energy. The controller also uses the classification outcome to regulate the
frame rate of the thermal camera. For example, it can opt to reduce the frame rate when a
series of insignificant or uninteresting frames is received.
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Figure 1. Block diagram of the intelligent thermal image processing unit.

The classification and compression units are designed as CNNs. We use, without loss
of generality, the aerial thermal image dataset provided by SenseFly in [11] to train and test
the classification and compression units. The dataset is a series of thermal images captured
by a drone that monitors solar panels installation. For classification purposes, the images
are grouped into two classes: images with solar panels, and images without solar panels.
Sample images of the two classes are shown in Figure 2. The images are greyscale of size
512 × 512. The following section provides the detailed design of the classification and
compression units.

(a) (b)

Figure 2. Sample images of the two classes from the SenseFly dataset [11]. (a) sample image from
class 1 (with solar panels); (b) sample image from class 2 (without solar panels).

4. Image Classification and Compression Unit Design
4.1. Deep Learning Based Image Classification

This work focuses on deep learning-based classifiers as they automatically learn the
best feature representation of the input images during a supervised training process. They
only require the availability of sufficient data for training without the need for field experts
to manually extract and handcraft the features for the classifier. The proposed classifier is
generic and can be reused for different applications as the same CNN can be retrained to
learn a different set of features from different sets of data.

The literature has plenty of CNN-based classifiers, however, the majority of them
depend on key modules proposed by key classifiers such as the inception module in
GoogleNet [12], the residual block in ResNet [13], the dense blocks in DenseNet [14], the
separable depthwise convolution in MobileNet v1 [15], and the inverted residual block
in MobileNet V2 [16]. A comprehensive survey on recent deep CNN architectures can be
found in [17]. Bianco et al. [18] have compared the performance and complexity of different
well-known architectures of CNN-based image classifiers. The comparison has shown that
MobileNet v1, MobileNet v2, and DenseNet exhibit the best performance on resources
limited applications, which suits the nature of IoT-oriented applications. However, using
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such classifiers, through transfer learning, for a device with a custom thermal application
is a waste of resources because they use deep CNNs with millions of parameters (around
4.24 M in MobileNet v1 and 3.47 M in MobileNet v2) as they are designed to classify over
1000 classes of RGB visible images. While in custom thermal applications the device usually
needs to distinguish between few classes of thermal (greyscale) images that contain much
fewer features than RGB visible images.

4.2. Proposed Image Classifier Design

The designed classifier combines the concepts of separable depthwise convolution
from MobileNet v1 [15], the inverted residual from MobileNet v2 [16], and the feature map
concatenation from DenseNet [14]. Figure 3 shows the architecture of different classifier
models. Different models have different complexities (i.e., different numbers of parameters).
For example, the models in Figure 3a–c have 5858, 2052, and 7556 parameters, respectively.
The model in Figure 3d can have two forms: the thick form which has 24,802 parameters,
and the thin form which has 7282 parameters. The notion thick or thin depends on the
number of output features of the first 2D conv block (denoted by F in Figure 3). A thick
model has F = 32, while a thin model has F = 16. As shown in the figure, all the models
have the same core architecture with variation in the length (the number of stages), the
thickness (the number of feature maps), and the number of dense (fully connected) layers at
the output. This allows a simple hardware switch between the different models by disabling
some connections/layers. The model switch should be guided by a higher-level decision
based on the available battery energy, remaining operation time, and required accuracy.

Figure 4 shows the structure of the “stage” block in Figure 3. Like MobileNet v2, each
“stage” block consists of three Convolutional (Conv) layers. The first Conv layer doubles
the number of input feature maps, denoted by F in Figure 4. The second Conv layer is a
depthwise convolution. The depthwise convolution along with the third Conv layer are the
equivalent of a depthwise separable convolution. The third Conv layer halves the number
of input features. The flow of feature expansion, followed by depthwise convolution
and feature compression has been presented in [15,16] to reduce the design complexity.
Batch normalization layers normalize the input using the batch statistics (i.e., mean and
variance). This normalization keeps the input from going to very high or very low values,
and consequently improves the stability of CNNs. It also has a slight regularization effect as
it adds some randomness to the input features. The input of each “stage” block in Figure 3
is concatenated to the stage output to allow the propagation of coarse and fine detailed
features through the network. Feature concatenation has been proposed in DenseNet [14]
to reduce the need to learn redundant features, and it also allows fast access to the gradient
during backpropagation. The Max Pooling layer between stages in Figure 3 reduces the
size of the input to the next stage, and the global average pooling layer is used, instead of a
dense layer to reduce the complexity by reducing the number of variables. The dependence
on the average of each feature map in classification also reduces the chances of overfitting
the training data.

The classifier has been trained and tested on images from the senseFly dataset [11].
The input image is classified to one of classes that indicate whether the image shows solar
panels or not. Data augmentation techniques, such as rotation, horizontal and vertical
flipping, and cropping, have been applied to the training images to improve the learning
process of the classifier and to avoid overfitting. Table 1 shows the classification accuracy
and loss of the different classifier models in Figure 3. The number of images in the
training, validation, and test sets are 3732, 334, and 90 images respectively. We use the
notion “Thick/Thin-1/2-Dense/” to distinguish the different classifier models presented
in Figure 3. The first term indicates whether a model is thick or thin, the second term
indicates the number of stages in the model, and the third term indicates if the model has
two dense (fully connected) layers at the output. We refer to the models in Figure 3a–c as
“Thick-1”, “Thin-1-Dense”, “Thin-2-Dense”, respectively. We refer to the thick model in
Figure 3d as “Thick-2” and the thin model in Figure 3d as “Thin-2”.
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Figure 3. Different classifier models. (a) Thick (F = 32) one-stage model; (b) Thin (F = 16) one-stage
model with a dense layer; (c) Thin (F = 16) two stages model with a dense layer; (d) Thick (thin) two
stages model, F = 32 (16).
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Figure 4. Architecture of the “Stage” block.

Table 1. Classifier Training, validation and test accuracy and loss on a core i7-4790 @ 3.6 GHz CPU.

Classifier
Design Training Validation Test

Thickness Parameters Accuracy Loss Accuracy Loss Accuracy Loss

Thick-1 32 5858 81.32% 0.42 79.64% 0.44 76.67% 0.46

Thin-1-Dense 16 2052 79.88% 0.46 74.85% 0.50 80.00% 0.49

Thin-2 16 7282 94.37% 0.18 92.22% 0.23 96.67% 0.14

Thick-2 32 24,802 95.66% 0.15 93.11% 0.20 97.78% 0.10

Thin-2-Dense 16 7556 98.98% 0.04 97.31% 0.08 97.78% 0.04

4.3. Deep Learning Based Image Compression

Auto-encoders are neural networks that consist of an encoding part followed by a
decoding part [19]. The encoder’s job is to extract the features from the input image, while
the decoder’s job is to combine the features back to restore the original image. Auto-
encoders learn what features to extract through training, where the auto-encoder aims
to minimize the Mean Squared Error (MSE) between the input (original) image and the
output (restored) image. The encoding part and the decoding part are trained together, but
after that, they operate separately as the encoder is usually located at the transmitter and
the decoder at the receiver. Using auto-encoders for image compression fits the operation
on edge devices with custom thermal applications because they are less complex and
more resource-efficient than other universal compression algorithms (e.g., JPEG) which
are designed to compress a wide range of RGB visible images that have higher visual
information content (i.e., higher entropy) than thermal images.

4.4. Proposed Autoencoder Design

The proposed autoencoder consists of Conv layers and downsampling/upsampling
layers as shown in Figure 5. The first half of the autoencoder is the encoder (at the
transmitter) and the second half is the decoder (at the receiver). The Conv layers in the
encoder part extract the features of the input image and the downsampling layers reduce
the size of the feature maps (for compression). The size of the encoder output is a 128 × 128
feature map compared to a 512 × 512 input image, which allows a 16:1 compression
ratio. The compression ratio can be further increased by setting the lowest valued features
on the output feature map to 0. The benefit of such variable-rate compression is that
the transmitter has the freedom to change its compression rate based on many factors
including the image significance and the battery energy level. This adjustment does not
require any change in the architecture or extra communication between the transmitter
and the receiver to inform the receiver of the new compression rate as the receiver still
receives the same expected number of features but with some of them zeroed. The Conv
layers in the decoder part combine the received features to recover the original image,



Electronics 2022, 11, 105 8 of 20

upsampling layers are used in the decoder to reverse the operation of the downsampling
layers in the encoder. The autoencoder has a total of 3298 parameters. Table 2 shows the
auto-encoder loss. Figure 6 shows a sample input image and the decoded images when
different percentage of the encoder features are set to 0.

Figure 5. Autoencoder architecture.

Figure 6. Original and decoded images when different percentages of encoder output is set to zeros.

Table 2. AutoEncoder Losses on a core i7-4790 @ 3.6 GHz CPU.

Training Loss Validation Loss Test Loss

3.3328 × 10−4 3.0254 × 10−4 3.2446 × 10−4

5. DPU Design Flow
5.1. DNN Acceleration

In terms of processing infrastructure, general-purpose processors, such as CPUs and
GPUs, have been dominant for years now being deployed for DNN inference, especially
the uncompressed DNN models in which the arithmetic operations are represented in
floating-point matrix multiplications. However, thanks to the DNN approximation, this has
opened the horizons to exploit custom hardware platforms such as Field Programmable
Gate Arrays (FPGAs) and Application Specific Integrated Circuits (ASICs) to leverage the
usage of fixed-point quantization, which results in faster inference with accuracy reduction
less than 1% [20,21].

Since the need for faster and real-time inference is becoming more demanding, many
hardware companies lean towards the custom hardware approach [22]. Concerning ASIC,
Google’s Tensor Processing Unit (TPU) [23] represents a good example of a DNN accelerator
implemented on ASIC as well as Intel Nervana [24]. On the other hand, the FPGA-based
accelerators are found in Microsoft Brainwave [25] and Xilinx DPU [26].

Generally, the acceleration development flow takes one of two approaches to design
and implement the accelerator; the first is to design the accelerator in Register-Transfer
Level (RTL) using one of the famous Hardware Description Languages (HDL) such as
VHDL or Verilog, or to describe the accelerator top-level design in C/C++ then high-level
synthesize the code into synthesizable HDL. Table 3 summarizes the differences between
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these two approaches in addition to highlighting the privileges of using the DPU as an
alternative approach to reduce the accelerator design and development cycle.

Table 3. Comparison between Different Accelerator Development Flows [26–28].

RTL HLS DPU

Time to Market Slow Faster due to using Fastest due to using
high-level language automated frameworks

Languages or VHDL, Verilog C/C++ DNN GraphDef
Objects Supported Models, Python

Associated Xilinx Xilinx Vivado Xilinx Vivado HLS Xilinx Vitis
Tool AI Framework

Eventual Output Bit file used to Unreadable RTL that Executable file that
program FPGA follows the conventional contains the network

RTL flow afterwards to run on the DPU

The DPU is an IP provided by Xilinx to accelerate DNN models, which provides
a high level of parallelism, and energy efficiency that makes it an efficient alternative
for IoT devices. Practically, the DPU is a programmable acceleration engine that is not
dedicated to a specific CNN model or architecture. This has been achieved by a specialized
instruction set that drives the DPU operations, which makes the DPU more generic to work
efficiently for many CNN models. The developer is then required to convert the targeted
CNN model from the famous DNN frameworks format, such as Tensorflow and Cafe, into
the compatible one supported by the DPU engine. This conversion is carried out using a
unified software stack called Vitis AI Framework provided by Xilinx. This AI framework is
responsible for quantizing and pruning the model, compiling the model into the equivalent
instructions that are supported by the DPU, and making performance profiling.

Figure 7 depicts the internal architecture of the DPU, which fundamentally consists of
a scheduler module, Processing Engines (PEs), instruction unit block, and global memory
pool module. The Application Processing Unit (APU) is the ARM processor, on which
the application is running, serves interrupts and data transfer from and to the DPU. The
instruction unit handles reading and executing the instructions associated with the different
operations of the accelerated CNN. The Fetcher’s main role is to fetch the DPU instructions
associated with the model from the memory. Following that, the decoder is responsible
for decoding the instructions to drive the PEs. The dispatcher is responsible for managing
the data/instructions transfer among the PEs and the memory. The Global Memory Pool
acts as a buffer for the input and output data as well as intermediate output from the DPU,
which results in high throughput.

Figure 7. Xilinx Deep Learning Processing Unit (DPU) top-level architecture [10,26].
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In this work, the unified DPU hardware accelerator is used to accelerate all the models
proposed without making any modification to the original system setup. The accelerator
is configured based on the battery energy level which makes the entire system energy
adaptive, as shown in Figure 8.

Figure 8. Energy adaptive DPU configurations.

5.2. Model Quantization and Compilation

Quantization is the process of representing the data in a smaller number of bits in a
scheme that minimizes the error between the original and quantized data. This, accordingly,
results in reducing the energy and storage cost area. Therefore, the memory access gets
optimized since it dominates the energy consumption [5]. In this work, the quantization
and channel pruning techniques are leveraged to address these issues while achieving high
performance and high energy efficiency with little degradation in accuracy.

Within the Vitis AI stack, a specialized quantizer is used to convert the numerical
representation of the model weights from 32-bit floating point to 8-bit fixed point precision.
Furthermore, the Vitis AI quantizer prunes the network from the ineffective connections,
which also enhances the overall accelerator performance.

Besides, the framework also entails a core component, which is the pruner. The pruner
is responsible for lowering the number of model weights without resulting in significant
precision loss. This happens through an iterative process that takes advantage of the
redundant and near-zero parameters, which aims at reducing the number of computations
in the model. However, this can cause accuracy loss, which can be overcome by the next
stage which is the fine-tuning [29].

Vitis AI comes with a domain-specific compiler that maps the quantized model into
the associated supported sequence of instructions that drive the DPU. This happens by
recognizing each layer and convert it into equivalent instructions. By the end of such
process, the main goal is to generate the kernels that shall be deployed on the FPGA and
then used by some provided API functions to drive the accelerators.

In this work, the Vitis AI compiler is used to compile the classifiers and the com-
pression encoder after quantizing them into 8-bit fixed-point precision. By nature, the
compiler supports a range of different CNN layers that can be accelerated by the DPU.
However, there are some layers that force the developer to implement them in software so
that they will eventually get executed on the CPU which is denoted by Hardware-Software
Co-Design. For example, the softmax activation function and the Global Average Pooling
Layer are not supported by the DPU, and correspondingly, they have been implemented
on the software side.

At the end of the process, the DPU kernels that contain the parameters of the separated
regions are generated. In run-time, these kernels shall be loaded into the DPU ahead of
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propagating the input image over the model. In order to perform this task, Vitis AI provides
a uniform coded API that handles the execution of the model on the heterogeneous platform
of the CPU and the DPU.

5.3. Vitis AI API

The main objective of the Vitis API functions is to configure the DPU for the CNN
model desired to be accelerated. This includes reading the DPU instruction sequence of the
model and loading weights in the DPU. Besides, the API functions are used to handle the
data exchange between the CPU and the DPU, which allows the data to be pre-processed
before being fed to the DPU or post-processed after carrying out the inference, which is
accelerated by the DPU.

The Vitis API functions are programmed to load the different classifiers proposed
in this work as well as the compression encoders based on several parameters, such as
battery energy level, and ata transmission rate. The API propagates the images through the
classifier on the DPU for accelerated inference, then takes the output data, which is then
used to configure the DPU again with the compression encoder weights and instructions
for accelerated compression. Finally, the API takes the compressed image out from the
DPU, store it in the off-chip memory, then send it to the specified destination.

5.4. FPGA Implementation of DPU

The DPU hardware accelerator has been implemented on the targeted Xilinx Zynq
UltraScale+ MPSoC ZCU104 FPGA Evaluation Kit. Resource utilization and power con-
sumption are considered as the main hardware performance metrics. The DPU design
parameters and configurations are elaborated in Table 4.

Table 4. Configuration parameters of the implemented DPU.

Parameter Value

DPU Architecture B4096

DPU Operational Frequency 300 MHz

As demonstrated in Figure 7, the DPU is connected to the ARM processor on the
FPGA chip to manage task scheduling and offloading weights and data to the DPU. The
DPU is connected to the ARM core through an AXI Bus that carries data and weights to the
DPU. In addition, Mixed-Mode Clock Manager (MMCM) block is used to generate required
frequencies. Table 5 demonstrates the resources utilization of the DPU on the ZCU 104.
The MMCM block consumes less than 1% of the total DPU resources. Table 6 shows the
power consumption of the DPU at 300 MHz. The DPU power consumption and resource
utilization are optimized by leveraging special UltraRAM slices [30]. The UltraRAM is a
novel memory solution by Xilinx, which introduces higher memory speed with low energy
consumption and resource utilization. The DPU operates with 4 MB memory attached to
it coming from both URAM blocks as well as BRAM blocks. This amount of memory is
enough for this application and for any future scaling of the system. The floorplan of the
DPU is illustrated in Figure 9.

Table 5. DPU Resources Utilization on ZCU 104.

CLB LUTS CLB Registers BRAM DSP Slices

Total Resources 230.4 K 460.8 K 312 1.72 K

The DPU 103.7 K 198.9 K 290 1.38 K

Resource Utilization 45% 43% 92.9% 80.2%
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Table 6. The DPU dynamic power consumption on ZCU 104 in Watts.

Utilization Clocks Signals Data BRAM DSP

11.65 2.2 4 3.87 0.635 2.118

Figure 9. FPGA floorplan of the DPU accelerator.

6. System Setup and Experimental Results
6.1. System Setup

In these experimental results, Xilinx Zynq UltraScale+ MPSoC ZCU104 Evaluation Kit
is used. Figure 10 shows the DPU hardware accelerator coupled with the ARM processor.
On the top of the system, the five classifier models and encoder model reside and are man-
aged by a custom API that uses Vitis AI library functions to manage the communications
between the APU (The ARM Processor Unit) and the DPU accelerator. The Vitis AI API
library communicates with the DPU driver to handle the data movement between both
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sides of the system, which are all controlled by the Petalinux OS that runs on top of the
ARM processor.

Figure 10. Proposed system block diagram.

The thermal camera sends a number of frames to the APU, which controls the entire
system. The frames are then propagated one by one through the classifier in order to
determine its class. The output of the inference process is then sent to the APU in order to
configure the DPU to accelerate the encoding with the required compression parameters,
based on the battery energy level and the transfer rate. Following that, the compressed
frames are sent to the specified destination.

At the system level, the data are initially stored in the off-chip DDR-RAM, which
is controlled by the DDR-Controller through the AXI-Bus. The system data is initially
loaded in the off-chip memory before being moved to the on-chip DPU buffers as a part of
configuring the DPU for acceleration. Once the DPU finishes a process, the data is taken
from the output on-chip buffers back to memory for any desired post-processing. The data
include the model input image, with a size of is 512 × 512, the model weights and biases,
and model associated instructions.

On start-up, the DPU fetches the model associated instructions from the off-chip
memory, which are then used to control the PEs inside the Hybrid Computing Array
shown in Figure 7. The data is then loaded in the DPU to accelerate the inference (in case
of classification) or the compression (in case of accelerating the encoder). To reduce the
overall memory bandwidth, the data remain used as much as possible, which enhances the
overall performance of the system in terms of latency as well as energy consumption.

Furthermore, the API takes an adaptive approach, based on a set of decision parame-
ters, that picks which classifiers and which encoder compression rate should be used to
configure the DPU.

6.2. Experimental Results and Discussions

As the main objective of this flow is to accelerate the inference process while main-
taining the lowest accuracy loss, the performance of the proposed system is characterized
with respect to certain trade-offs. The performance results are shown in Tables 7 and 8
for the classifiers and the compression engine, respectively, on both CPU and DPU. The
performance (i.e., accuracy, speed, and energy) of each model has been evaluated on Intel
Core i7-4790 that operates at 3.6 GHz with 16 GB RAM coupled. In this context, the Intel
processor is referred to as the CPU platform.
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Table 7. Classifiers Implementation parameters.

Classifier
Quantization Throughput (Image/Sec) Energy (J/Image)

Pre-Accuracy Post-Accuracy Loss CPU DPU Speedup CPU DPU Reduction

Thick-1 76.67% 75.56% 1.45 5.2 13.26 2.55× 16.154 0.884 94.53%

Thin-1-Dense 80% 67.78% 15.28 12 24.04 2× 7 0.488 93.03%

Thin-2 96.67% 84.44% 12.65 8 38.46 4.81× 10.5 0.304 97.10%

Thick-2 97.78% 86.67% 11.36 3.5 22.32 6.38× 24 0.525 97.81%

Thin-2-Dense 97.78% 93.33% 4.55 8 38.61 4.83× 10.5 0.304 97.10%

Table 8. Compression Engine Performance on CPU vs. DPU.

Throughput (Image/Sec) Energy (J/Image)

CPU DPU Speedup CPU DPU Reduction

22.2 123.46 5.56× 3.784 0.095 97.49%

First, the post-quantization accuracy for each model was evaluated using the eval-
uation model generated by the Vitis AI quantizer using a test set that has 90 test cases.
On the other hand, the encoder accuracy is evaluated by estimating the Mean-Squared
Error (MSE) between the compressed images before and after quantization based on the
evaluation model. In such scenario, the MSE between the original and post-quantization
encoder models is 7.194 × 10−5. Additionally, Figure 11 highlights the differences between
the compressed images generated by the original and quantized encoders.

Figure 11. Encoder compressed output image before quantization on the first row and post-
quantization encoder output on the second.

Furthermore, the system throughput is evaluated by the overall inference time on
both CPU (Intel Processor) and the FPGA to show the hardware acceleration benefits. The
Intel CPU power consumption is estimated to be 84 W [31]. As demonstrated in Table 6,
the total power consumption of the DPU is measured and equals 11.65 W.

6.2.1. Classifiers

Several trade-offs should be considered in the hardware accelerator design in the
proposed system. Firstly, the accuracy loss that results from quantization should be
evaluated for each model. In this context, the Thick-1 model has achieved the least accuracy
loss of all models, which is nearly 1.45%. On the other hand, the Thin-1-Dense model
has achieved the least post-quantization accuracy and accuracy loss which are about 68%
and 15.3%, respectively. Moreover, the Thick-2 model has achieved the highest accuracy
among all models before and after quantization. The speed increase of the classifiers is
ranged from 2× to about 6.4× compared to the CPU (Intel Processor). The former belongs
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to Thin-1-Dense, while the latter is associated with the Thick-2 model. Figure 12 reflects the
gap between the throughput on the DPU compared to the CPU. In Figure 13, the number of
parameters and the speed increase achieved by the accelerator is plotted. It can be observed
that a direct proportion can describe the effect of the number of model parameters on the
DPU to accelerate the model inference.

Figure 12. Gap between throughput on CPU and DPU.

Figure 13. Relationship between the number of model parameters and speed increase factor after
deployment on the DPU.

In terms of energy consumption, the DPU achieves a significant reduction in the
energy consumed during inference time, which saves at least 93% of its counterpart on
the CPU, whereas the maximum energy saving achieved has been 97.8%. As a result,
this makes all the models suitable for IoT applications. Based on the battery energy level,
one model is configured to the DPU trading-off accuracy to lengthen the battery life [32].
The gap between the energy consumption on the CPU and the DPU can be realized from
Figure 14.
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Figure 14. Gap between energy consumption on CPU and DPU.

6.2.2. Compression Encoder

The CNN-based encoder achieves the highest throughput and lowest energy con-
sumption per image compression process, compared to the classifiers. The MSE between
the original and the quantized models is 7.194 × 10−5, which is considered insignificant.
Hereby, the compressed images should be capable of inheriting the main features of the
original images while being significantly compressed. This can be observed by the encoder
output images in Figure 11.

6.3. System Limitations

Despite the fact that the proposed system handles a variety of CNN layers in an
energy-adaptive manner, the system still tackles some limitations. Firstly, the current
system does not fully leverage multi-core DPU implementation to accelerate one stage
of the system on one core and the other stage on the other core. Furthermore, the CNN
compiler associated with the DPU (i.e., Vitis AI compiler) does not support some operations
like Global Average Pooling and Softmax, hence, these operations have to be handled by
the CPU. In such case, the data is moved from the DPU memory to the CPU memory so
that the CPU executes these operations then send it back again to the DPU memory to
resume the acceleration flow. Hereby, this results in an additional overhead on the system.

7. Conclusions

In this paper, the implementation of an intelligent thermal imaging classification and
compression is discussed. The system is adaptive to a set of factors, such as energy budget.
Image classification is carried out using different CNN architectures with an average
accuracy drop of 4.22% and an average speed increase of 4.11× after deployment on the
DPU. A compression model is proposed which compresses the image from 512 × 512 into
128 × 128 pixels using an auto-encoder architecture. After training the auto-encoder, the
encoder part, which is used to compress the image, is deployed to the DPU with a speed
increase of 5.56×. The compression model can be integrated with another classification
model for more optimization in computations and memory usage. The system performs
faster than commercial CPUs, which led to a more energy-efficient behavior per frame.
Furthermore, in terms of speed increase, it was found that the number of the parameters of
the proposed models depicted had a significant impact on the acceleration speed increase
rate.In the future, the system can be extended to support manual process assignment to
each of the DPU cores so that a higher level of parallelism can be leveraged. Additionally,
in order to achieve better optimization, it is important to investigate the software stack of
the Vitis-AI to enhance the quantizer and the compiler for more efficient task scheduling.
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Appendix A. Parameters of the Proposed Image Classifier and Autoencoder

The parameters of the proposed image classifier models in Figure 3 are presented in
Tables A1 and A2. Moreover, the parameters of the proposed auto-encoder in Figure 5 are
presented in Table A3.

Table A1. Parameters of the Image Classification Unit: models Thick-1 and Thin-1-Dense.

Model Thick-1 Thin-1-Dense

Layer Description #Parameters Description #Parameters

Zero Pad. 1 pixel — 1 pixel —

2D Conv, Stride = 2 32 Filter, 3 × 3 × 1 Kernel 288 16 Filter, 3 × 3 × 1 Kernel 144

Batch Norm. — 128 — 64

2D Conv, Stride = 1 64 Filter, 1 × 1 × 32 Kernel 2048 32 Filter, 1 × 1 × 16 Kernel 512

Batch Norm.+ RelU6 — 256 — 128

Depthwise 2D Conv 64 Filter, 3 × 3 × 1 Kernel 576 32 Filter, 3 × 3 × 1 Kernel 288
Stride = 1

Batch Norm.+ RelU6 — 256 — 128

2D Conv, Stride = 1 32 Filter, 1 × 1 × 64 Kernel 2048 16 Filter, 1 × 1 × 32 Kernel 512

Batch Norm. — 128 — 64

Concat. — — — —

Global Avg. Pool — — — —

Dense+RelU N/A N/A 6 Neurons 198

Dense+SoftMax 2 Neurons 130 2 Neurons 14

Table A2. Parameters of the Image Classification Unit: models Thin-2-Dense and Thick(Thin)-2.

Model Thin-2-Dense Thick(Thin)-2

Layer Description #Parameters Description #Parameters

Zero Pad. 1 pixel — 1 pixel —

2D Conv, Stride = 2 16 Filter, 3 × 3 × 1 Kernel 144 32(16) Filter, 3 × 3 × 1 Kernel 288(144)

Batch Norm. — 64 — 128(64)

2D Conv, Stride = 1 32 Filter, 1 × 1 × 16 Kernel 512 64(32) Filter, 1 × 1 × 32(16) Kernel 2048(512)

Batch Norm.+ RelU6 — 128 — 256(128)

Depthwise 2D Conv 32 Filter, 3 × 3 × 1 Kernel 288 64(32) Filter, 3 × 3 × 1 Kernel 576 (288)
Stride = 1

Batch Norm.+ RelU6 — 128 — 256(128)
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Table A2. Cont.

Model Thin-2-Dense Thick(Thin)-2

Layer Description #Parameters Description #Parameters

2D Conv, Stride = 1 16 Filter, 1 × 1 × 32 Kernel 512 32(16) Filter, 1 × 1 × 64(32) Kernel 2048(512)

Batch Norm. — 64 — 128 (64)

Concat. — — — —

2D Max Pool. 2× 2 — 2×2 —

2D Conv, Stride = 1 64 Filter, 1 × 1 × 32 Kernel 2048 128(64) Filter, 3 × 3 × 64(32) Kernel 8192(2048)

Batch Norm.+ RelU6 — 256 — 512(256)

Depthwise 2D Conv 64 Filter, 3 × 3 × 1 Kernel 576 128(64) Filter, 3 × 3 × 1 Kernel 1152(576)
Stride = 1

Batch Norm.+ RelU6 — 256 — 512(256)

2D Conv, Stride = 1 32 Filter, 1 × 1 × 64 Kernel 2048 64(32) Filter, 1 × 1 × 128(64) Kernel 8192(2048)

Batch Norm. — 128 — 256 (128)

Concat. — — — —

Global Avg. Pool — — — —

Dense+RelU 2 Neurons 390 N/A N/A

Dense+SoftMax 2 Neurons 14 2 Neurons 258 (130)

Table A3. Parameters of the Image Compression Unit:Auto-encoder.

Encoder-Part

Layer Description #Parameters

2D Conv, Stride = 1 16 Filters, 3 × 3 × 1 Kernel, Bias = True, Activation = Tanh 160

2D Conv, Stride = 1 8 Filters, 3 × 3 × 16 Kernel, Bias = True, Activation = Tanh 1160

2D Max Pool 2×2 —

2D Conv, Stride = 1 4 Filters, 3 × 3 × 8 Kernel, Bias = True, Activation = Tanh 292

2D Max Pool 2 × 2 —

2D Conv, Stride = 1 1 Filters, 3 × 3 × 4 Kernel, Bias = True, Activation = Tanh 37

Dncoder-Part

Layer Description #Parameters

2D Conv, Stride = 1 16 Filters, 3 × 3 × 1 Kernel, Bias = True, Activation = Tanh 160

2D upsampling 2 × 2 —

2D Conv, Stride = 1 8 Filters, 3 × 3 × 16 Kernel, Bias = True, Activation = Tanh 1160

2D upsampling 2 × 2 —

2D Conv, Stride = 1 4 Filters, 3 × 3 × 8 Kernel, Bias = True, Activation = Tanh 292

2D upsampling 2 × 2 —

2D Conv, Stride = 1 1 Filters, 3 × 3 × 4 Kernel, Bias = True, Activation = Tanh 37



Electronics 2022, 11, 105 19 of 20

References
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