
electronics

Article

Efficiently Estimating Joining Cost of Subqueries in
Regular Path Queries

Van-Quyet Nguyen 1,* , Van-Hau Nguyen 1,* , Minh-Quy Nguyen 1, Quyet-Thang Huynh 2

and Kyungbaek Kim 3,*

����������
�������

Citation: Nguyen, V.-Q.;

Nguyen, V.-H.; Nguyen, M.-Q.;

Huynh, Q.-T.; Kim K. Efficiently

Estimating Joining Cost of Subqueries

in Regular Path Queries. Electronics

2021, 10, 990. https://doi.org/

10.3390/electronics10090990

Academic Editors: Fabio Grandi and

Domenico Ursino

Received: 28 February 2021

Accepted: 19 April 2021

Published: 21 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Faculty of Information Technology, Hung Yen University of Technology and Education,
Hung Yen 160000, Vietnam; quynm@utehy.edu.vn

2 School of Information and Communication Technology, Hanoi University of Science and Technology,
Hanoi 100000, Vietnam; thanghq@soict.hust.edu.vn

3 Department of Artificial Intelligence Convergence, Chonnam National University, Gwangju 61186, Korea
* Correspondence: quyetict@utehy.edu.vn (V.-Q.N.); haunv@utehy.edu.vn (V.-H.N.);

kyungbaekkim@jnu.ac.kr (K.K.)

Abstract: Evaluating Regular Path Queries (RPQs) have been of interest since they were used as
a powerful way to explore paths and patterns in graph databases. Traditional automata-based
approaches are restricted in the graph size and/or highly complex queries, which causes a high
evaluation cost (e.g., memory space and response time) on large graphs. Recently, although using the
approach based on the threshold rare label for large graphs has been achieving some success, they
could not often guarantee the minimum searching cost. Alternatively, the Unit-Subquery Cost Matrix
(USCM) has been studied and obtained the viability of the usage of subqueries. Nevertheless, this
method has an issue, which is, it does not cumulate the cost among subqueries that causes the long
response time on a large graph. In order to overcome this issue, this paper proposes a method for
estimating joining cost of subqueries to accelerate the USCM based parallel evaluation of RPQs on
a large graph, namely USCM-Join. Through real-world datasets, we experimentally show that the
USCM-Join outperforms others and estimating the joining cost enhances the USCM based approach
up to around 20% in terms of response time.

Keywords: graph queries; USCM; parallel evaluation; estimating joining cost

1. Introduction

Regular Path Queries (RPQs) are a powerful way of exploring connections and pat-
terns in a graph database [1]. A number of approaches have been studied for evaluating
RPQs [2,3]. However, only a few approaches provide the performance guarantee on com-
putational cost due to the large size of graphs and/or highly complex queries. Therefore,
developing efficient approaches for evaluating RPQs with a low computational cost is
essentially important in practice [4,5].

Goldman and Widom introduced automata [6] for evaluating RPQs, and it has become
a well-known approach. However, the automata-based approach has difficulty when
dealing with large graphs which results in the long response time by the mapping of the
automaton states onto the graph. Several optimization techniques have been addressed in
order to overcome this difficulty. One of the effective approaches is to rewrite RPQs [7–9].
In particular, these researches formulate a given regular expression into another format for
the purpose of avoiding the whole graph traversal to reduce the search space. Nonetheless,
one might face an obstacle when the RPQs are exceedingly complex (e.g., an RPQ with a
modifier operator * over a group of the alternate label).

Alternatively, the approaches based on the threshold rare label have been proposed
and have been achieving some success in evaluating RPQs on large graphs by Koschmieder
and Leser [10]. The idea of the approaches is based on the fact that, in a graph, not all of

Electronics 2021, 10, 990. https://doi.org/10.3390/electronics10090990 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-6898-4224
https://orcid.org/0000-0002-3256-5626
https://orcid.org/0000-0002-0788-6380
https://orcid.org/0000-0001-9985-3051
https://doi.org/10.3390/electronics10090990
https://doi.org/10.3390/electronics10090990
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10090990
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10090990?type=check_update&version=2


Electronics 2021, 10, 990 2 of 16

the labels are equally frequent. By using rare labels as the fixed points for graph searching,
the authors decomposed a given query into a sequence of RPQs. However, this approach
relies on the presence of rare labels, the number of rare labels in the queries, and in the
graphs, it could not often guarantee the minimum searching cost.

Recently, Nguyen et al. [11] used Unit-Subqueries Cost Matrix (USCM) to estimate the
searching cost of RPQs and obtain the viability of the usage of subqueries in RPQs evalua-
tion. However, this method does not take the joining cost among subqueries into account.
This neglect could increase the response time when evaluating RPQs on a large graph.

In this paper, we propose a method, USCM-Join, for estimating the joining cost of
subqueries in order to accelerate the USCM based parallel evaluation of RPQs. We first
propose cost functions and algorithms to estimate the result size of a given RPQ, which
is in terms of the joining cost of subqueries. Subsequently, we show how to improve the
evaluation performance of RPQs by splitting them with a combination of the estimated
joining and searching cost. Finally, through both real-world graphs and synthetic graphs,
we experimentally demonstrate that the USCM-Join outperforms the original one and
other approaches.

The rest of this paper is organized, as follows. Section 2 introduces an overview
of related work. Section 3 presents terms, definitions, and splitting RPQs for parallel
evaluation using USCM. In Section 4, we propose a method for estimating the result size of
RPQs and evaluating RPQs in a parallel manner by exploiting the joining cost. Section 5
conducted the experiments to evaluate the proposed method. Finally, Section 6 concludes
with a summary of our proposal.

This paper is an extension of work originally presented in The 9th International
Conference on Smart Media and Applications (SMA 2020) [12].

2. Related Work

There have been a lot of studies conducted on RPQs evaluation as well as providing
query languages on graph data [1–3,13–15]. A common way to evaluate an RPQ is using
the automata-based approach. This approach converts the graph to a DFA (Deterministic
Finite Automaton), and the expression of an RPQ can be translated into an automaton,
and then computes the cross-product of the automaton to find the answer [6]. However,
the limitation of this approach is that every state in automaton needs to be mapped onto
the graph, which causes substantial memory space consumption and a long response
time. To address this problem, a number of studies have been proposed with optimization
techniques to reduce the cost of RPQs evaluation.

A strategy for reducing the RPQs evaluation cost is to optimize the RPQs by rewriting
them into other ones [7,8]. Fernandez Mary et al. [7] presented two optimization techniques
based on graph schemas. The first one is query pruning, which is used to rewrite a
given regular path expression into another, which helps to reduce substantial search
space by avoiding all graph traversal. The second one avoids traversing the whole graph
by employing state extents, which transforms the original query into the one that starts
searching at the nodes being in state extents instead of the root. Calvanese et al. [8] proposed
a view-based query rewriting approach for evaluating RPQs in semi-structured data, which
guarantees that the new ones contain all the answers of the original ones. Other rewriting
approaches for optimizing regular path queries are presented in [16]. However, the query
rewriting techniques still have some limitations in dealing with highly complex RPQs,
such as the nested queries with modifier recursion, which leads to state explosion after
converting the rewritten query to a DFA for graph searching. Therefore, several techniques
have also been proposed for estimating query size [17] or minimizing DFAs [18,19].

Recently, a threshold rare label based approach has been proved to effectively reduce
the search space of RPQ evaluation on large graphs [10]. The authors employ a cost-based
technique to determine which labels in a graph and/or a query are considered to be
rare. Subsequently, the rare labels are used as start-points, end-points, and way-points
in traversal time, which reduce the number of visited nodes as well as the response time.



Electronics 2021, 10, 990 3 of 16

However, the disadvantage of this approach is that the graph search algorithm depends on
the presence of rare labels. Accordingly, in the case there are poor rare labels on the graph
and the RPQs, or long queries, this approach still takes a high evaluation cost.

The efficiency of RPQs evaluation has been intensively studied for distributed graphs.
Specifically, there is a survey that depicts the state of the art in query evaluation on
distributed graphs [20]. Dan Suciu [21] introduced a distributed query evaluation approach
on semi-structured data, which takes a bounded complexity O(n2) for the volume of
data transferred (n stands for the number of cross-edges among sites). Wenfei Fan et
al. introduced some efficient algorithms [22], which employed the partial evaluation
method to solve three classes of queries (i.e., reachability query, bounded reachability
query, and regular reachability query) on distributed graphs. However, their algorithms
face a bottleneck issue when the results are gathered together from distributed sources.
This issue has also been presented in [23], which motivates the authors to extend RPQs
evaluation in [24]. In which, a large number of redundant nodes and edges are found and
eliminated before the partial results are gathered together at the coordinate site.

To the best of our knowledge, although there have been many studies focusing on
RPQs evaluation, researches that are related to evaluation cost estimation of RPQs and
its efficiency have not received much attention [17,25–27]. Silke et al. [28] proposed cost
functions to estimate the response time and the result size of reachability path queries.
Davoust et al. [29] focused on estimating the volume transmitted through the network
while evaluating RPQs to provide appreciated strategies for evaluating them on distributed
graphs. Among all of these works, there is no one that issues any cost estimating functions
relying on RPQ operators as well as connectivity of labels in the query and the graph. In this
work, we propose an efficient method for evaluating an RPQ by splitting it into multiple
smaller subqueries based on the estimation of their searching cost and joining cost.

3. Preliminaries
3.1. Graph Data and Regular Path Queries

Graph Data. We consider an edge-labeled directed graph G = (V, E, Σ), where V is a
set of nodes, Σ is a set of labels, and E ⊆ V × Σ×V is a set of edges. An edge (v, a, u) ∈ E
indicates the edge direction from node v to node u labeled with a ∈ Σ.

Regular Path Queries. A regular path query Q(R) is a regular expression R over some
labels in Σ. Here, R is defined in formally by

R = ε | a | R ◦ R | R ∪ R | R∗,

where ε is an empty value; a is a label in Σ; R ◦ R, R ∪ R, and R∗ denote concatenation,
alternation, and Kleene Star, respectively.

Let us categorize the regular expression R into four types of RPQ as the following:

• Concatenation RPQ: R = a0a1...an
• Alternation RPQ: R = a0...ai−1(ai|ai+1)ai+2...an
• Kleene Star RPQ: R = a0a1...ai−1a∗i ai+1...an
• Highly Complex RPQ: R = a0a1...ai−1(ai|ai+1)

∗ai+2...an

where ai ∈ Σ, 0 ≤ i ≤ n. For the clarity of presentation, we use the symbol | for alternation
operator and drop the symbol ◦ in terms and equations, but keep them in the examples.

To answer an RPQ, Q(R), we need to search all paths in the graph G that satisfy a
given regular expression R. Here, a path ρ between node v0 and node vk in G is a sequence

ρ = v0
a0−→ v1

a1−→ v2...vk−1
ak−1−−→ vk

such that each (vi, ai, vi+1), for 0 ≤ i < k, is an edge. The sequence of labels of a path ρ,
denoted as L(ρ), is the string a0a1...ak−1 ∈ Σ∗, where Σ∗ is a set of all possible strings over

the set of labels Σ. The answer of Q(R) is a set of paths in the form Q(R) = v
L(R)−→ u, where

v, u ∈ V, and L(R) ⊆ Σ∗ is a regular language. Thus, a path ρ is an answer path of Q(R)
iff L(ρ) ∈ L(R).



Electronics 2021, 10, 990 4 of 16

Example 1. To illustrate our ideas in this paper, from now on, we use an edge-labeled
graph G of a social shopping network, as shown in Figure 1. In which, a node represents
an entity, such as a person or a product, and an edge indicates the relationship between
two entities with a label, such as f riend, f ollows, or purchased. As a result, we have a set of
edge labels

Σ = {isLeaderO f , f riend, f ollows, knows, purchased, likes, ownedBy}.

We now consider a simple RPQ with

R = isLeaderO f ◦ f ollows ◦ likes.

This query helps leaders of a company/shop to find out which products are liked by
people who are followed by their employees. By using automata-based approach, we can
find only one path satisfying the query, which is:

v3
isLeaderO f−−−−−−→ v7

f ollows−−−−→ v6
likes−−→ v10.

Figure 1. Example of a directed graph representing a social shopping network.

3.2. Uscm-Based Splitting Rpqs for Parallel Evaluation

In the USCM-based approach for parallel evaluation of RPQs [11], an original RPQ
is split into smaller subqueries based on the estimated searching cost. In this method, a
Unit-Subqueries Cost Matrix (USCM) is generated by analyzing the cost of unit-subqueries
in a graph. A unit-subquery is a smallest subquery Q(aiaj) concatenated by a start label ai
with an end label aj, where ai and aj are elements of the set labels Σ. The number ai edges
connected to aj edges is defined as the cost of a unit-subquery µ(ai, aj). Table 1 illustrates
an example of USCM. For a given RPQ, by estimating the searching cost of every possible
set of its subqueries with USCM, the RPQ is split into the best set of subqueries, which has
the minimum of estimated searching cost.



Electronics 2021, 10, 990 5 of 16

Table 1. Example of Unit-Subquery Cost Matrix (USCM) for a graph of social shopping network.

Label:Count isLeaderOf Friend Follows Knows Purchased Likes ownedBy Total

isLeaderOf:3 0 2 2 0 1 1 0 6

friend:2 0 0 1 3 1 3 0 8

follows:3 0 0 1 1 1 1 0 4

knows:6 3 0 0 2 3 1 0 9

purchased:4 0 0 0 0 0 0 4 4

likes:6 0 0 0 0 0 0 6 6

ownedBy:4 0 1 3 2 1 2 0 9

4. USCM-Based Parallel Evaluation of RPQs by Estimating Joining Cost

Because the joining cost means the cost of merging results of subqueries, it depends on
the result size of the subqueries. Therefore, we first describe how to estimate the result size
of a given RPQ as the joining cost. We then present how to split RPQs with combination of
the joining and searching cost.

4.1. Estimating Result Size of RPQs with USCM

(1) Concatenation RPQ. The result size is the number of paths on the graph satisfying the
query. We denote δ(ai) as the number of labels ai in G. It is undeniable that the result size
of an RPQ with length 1, R = a0, equals δ(a0). While an RPQ with length 2, R = a0a1, has
a result size being equal to µ(a0, a1). Intuitively, the number of paths satisfying the query
with R = a0a1 . . . an−1an depends on the number of paths on the graph being matched
with regular expression a0a1 . . . an−1. We formulate the estimation of result size by the
equation below.

P = µ(a0, a1)×
µ(a1, a2)

δ(a1)
× · · · × µ(an−1, an)

δ(an−1)
(1)

Example 2. Assuming that there is a graph G, as illustrated in Figure 1, then a recom-
mendation system can help leaders of a company/shop to find out which products are
liked by people who are followed by their employees. A regular expression R representing
this finding is

R = isLeaderO f ◦ f ollows ◦ likes.

By using Equation (1), we can estimate the result size of Q(R), as follows.

P = µ(isLeaderO f , f ollows)× µ( f ollows, likes)
δ( f ollows)

= 2× 1
3
≈ 1

Thus, the estimated result size is one that equals the number of true paths satisfying

the query, which is v3
isLeaderO f−−−−−−→ v7

f ollows−−−−→ v6
likes−−→ v10.

(2) Alternation RPQ. The result size of Q(R) in this case can be calculated by sum-
ming the number of paths matched two regular expressions: a0 . . . ai−1aiai+2 . . . an and
a0 . . . ai−1ai+1ai+2 . . . an. Specifically, we formulize the estimation by considering some
specific cases as the following:

• For the simplest case, R = a0(a1|a2)a3, there is no concatenation sub-query before and
after a group of alternate labels. The result size can be estimated, as follows.

P = µ(a0, a1)×
µ(a1, a3)

δ(a1)
+ µ(a0, a2)×

µ(a2, a3)

δ(a2)
(2)



Electronics 2021, 10, 990 6 of 16

• For a general case, R = a0 . . . ai−1(ai|ai+1)ai+2 . . . an, where i ≥ 2 and i + 3 ≤ n, we
estimate the result size of Q(R) by using the equation below.

P = Pi−1 ×
(

µ(ai−1, ai)

δ(ai−1)
× µ(ai, ai+2)

δ(ai)

+
µ(ai−1, ai+1)

δ(ai−1)
× µ(ai+1, ai+2)

δ(ai+1)

)
× µ(ai+2, ai+3)

δ(ai+2)
× · · · × µ(an−1, an)

δ(an−1)

(3)

where Pi−1 is the number of paths that are estimated by using Equation (1) on subquery
a0a1 . . . ai−1.

Example 3. We clarify our idea for estimating the result size of an alternation RPQ by
using an example where the regular expression

R = isLeaderO f ◦ ( f riend ∪ f ollows) ◦ purchased.

By using Equation (2), we can estimate the result size of Q(R), as follows.

P = µ(isLeaderO f , f riend)× µ( f riend, purchased)
δ( f riend)

+ µ(isLeaderO f , f ollows)× µ( f ollows, purchased)
δ( f ollows)

= 2× 1
2
+ 2× 1

3
≈ 2

We can see that the estimated result size equals the number of true paths which includes:

v1
isLeaderO f−−−−−−→ v4

f riend−−−→ v9
purchased−−−−−→ v5

and v12
isLeaderO f−−−−−−→ v13

f ollows−−−−→ v14
purchased−−−−−→ v15.

(3) Kleene Star RPQ. Typically, the result size of an RPQ having Kleene Star operator is
much larger than other ones. It is the summation of all paths satisfying one of all possible
paths that end at terminal-points, as shown in Figure 2. It includes the number paths with
length n (without ai), PO, and the number of paths containing at least one label ai, PK. Let P
be the result size in this case, we have P being equal to the summation of PO and PK, where
PO and PK are estimated by the equations below.

PO = Pi−1 ×
µ(ai−1, ai+1)

δ(ai−1)
× · · · × µ(an−1, an)

δ(an−1)
(4)

PK = Pi × (1 + ω + ω2 + .. + ωγ)× µ(ai, ai+1)

δ(ai)
× · · ·

× µ(an−1, an)

δ(an−1)

(5)

where ω =
µ(ai, ai)

δ(ai)
, and we assume that ω < 1 as usual; and, γ is the longest path length

of ai in the result of Q(R), as illustrated in Figure 2, γ ∈ N.



Electronics 2021, 10, 990 7 of 16

Figure 2. A tree representing all possible paths satisfying a Kleene Star RPQ.

Here, how to specify the upper bound of γ for a given RPQ is non-trivial. Fortunately,
we can estimate γ by using USCM. Obviously, to obtain the paths with γ labels ai, the
number of path with γ− 1 labels ai need to be greater than or equal to one. Accordingly,
we have the equation

Pi+γ−1 = Pi ×ωγ−1 (6)

Then, Pi+γ−1 ≥ 1 means that

γ ≤ logω(1/Pi) + 1 (7)

Example 4. Let us consider an RPQ Q(R), where R = isLeaderO f ◦ f ollows∗ ◦
purchased. The result size in this example is P = PO + PK, where

PO = µ(isLeader, purchased) = 1, γ ≤ log(1/3)(1/2) + 1 ≈ 2, and

PK = µ(isLeader, f ollows)× (1 + ω + ω2)× µ( f ollows, purchased)
δ( f ollows)

=

2× (1 + 1/3 + 1/9)× 1/3 = 26/27 ≈ 1

Hence, we have P = 2, which also equals the number of true paths to this query on
the graph, which are:

v1
isLeaderO f−−−−−−→ v4

purchased−−−−−→ v8

and v12
isLeaderO f−−−−−−→ v13

f ollows−−−−→ v14
purchased−−−−−→ v15.

(4) Highly Complex RPQ. Similar to the result size of an RPQ in case of Kleene Star
operator, the result size of a highly complex RPQ is the summation of all paths that satisfy
one of all possible paths from start-label a0 to end-label an. However, in the case of a highly
complex RPQ, there are multiple stop-points and terminal-points, as shown in Figure 3,
so it is difficult to formalize the estimated result size by using equations. To estimate the
result size of the highly complex RPQ, Q(R), with R = a0a1 · · · ai−1(ai|ai+1)

∗ai+2 · · · an,
we propose an algorithm that is shown in Algorithm 1. Here, the input arguments (e.g.,
pre, a, etc.) of the function EstimateAlterStar are extracted from the highly complex RPQ.
Initially, we estimate the result size of the concatenation RPQ (a0a1ai−1ai+2 · · · an) whose
answers have the smallest path length and have not included the alternate labels of the
complex RPQ (line 1), by using estimation function EstimateConcat (not shown). The result
is added to variable P, which is the number of paths satisfying R (line 2). Note that the
value of P would be increased after calling the recursive function EstimateAlterStar. We



Electronics 2021, 10, 990 8 of 16

then perform estimating the result size of concatenation RPQs having longer path length
by adding alternate labels one by one and re-calling EstimateAlterStar procedure (line 3–4).
The estimation of concatenation RPQs having a longer path length is repeated until the
estimated number of paths of every concatenation RPQ is smaller than one (lines 5–8).

Figure 3. A tree representing possible paths satisfying a complex Regular Path Queries (RPQ).

Algorithm 1 EstimateAlterStar

Require: pre: string before alternation operator, a: the first label in group of alternation
operator, b: the second label in group of alternation operator, suf : string after alternation
operator, and USCM

Ensure: P: the number of paths satisfying R
1: PO ← EstimateConcat(pre + suf, USCM);
2: P← P + PO;
3: P1 ← EstimateConcat(pre + a, USCM);
4: P2 ← EstimateConcat(pre + b, USCM);
5: if P1 ≥ 1 then
6: EstimateAlterStar(pre + a, a, b, suf, USCM);
7: if P2 ≥ 1 then
8: EstimateAlterStar(pre + b, a, b, suf, USCM);

4.2. Parallel Evaluation of RPQs by Exploiting Joining Cost

We first describe how to estimate a parallel evaluation cost of an RPQ with a com-
bination of the searching and joining cost. We then present how to split the RPQs into
subqueries based on the estimated parallel evaluation cost, and finally how to evaluate the
subqueries in a parallel manner.

4.2.1. Estimating Parallel Evaluation Cost

Let us consider an RPQ, Q(R), which is split into k subqueries. The estimated parallel
evaluation cost of Q(R) consists of the estimated searching cost and the estimated joining
cost of its subqueries. First, the estimated searching cost CS of Q(R) can be computed using
Equation (8):

CS = max[Cq1 , Cq2 , .., Cqk ] (8)



Electronics 2021, 10, 990 9 of 16

where Cqi is the estimated searching cost of subquery qi, 0 < i ≤ k, which is estimated by
using the method in the previous work [11].

Next, we estimate the joining cost of the subqueries. Here, we do not consider methods
for optimizing the joining cost, such as multiway joins [30] or top-k join queries [31].
Therefore, we use a join sequence for subqueries’ results. That is, the two first partial
answers will be joined, and then the result will be used to join with the third partial answer,
and so on. In our implementation, a merge-join is used to match two partial answers.
Thus, a O(M× N) merge-like step is performed to determine the matching paths, where
M, N are the result sizes of two partial answers. Let us assume that Pqi is the result size
of subquery qi, and CJ is the estimated joining cost, so we can formalize CJ by using the
equation below:

CJ = Pq1 × Pq2 + η(q1,q2)
× Pq3 + · · ·+ η(q1,q2,··· ,qk−1)

× Pqk (9)

where η is the function for estimating the result size of the query that is established by
concatenation of subqueries.

Finally, we need to sum up the searching cost CS and the joining cost CJ to obtain
the parallel evaluation cost, CPE. However, they are not represented by the same unit, in
which the unit of the searching cost is the number of traversed edges; meanwhile, the unit
of the joining cost is the number of operations (merge-like). Therefore, we need to use a
conversion to make the units be uniform. To do this, we analyze the searching cost and
try to represent it in the number of operations. In practice, in order to find the nodes for
the next searching step, each traversed edge is checked whether there exists a matched
label with any label of transitions from a current state in the query automaton. We assume
that the cost of an operation of matching two labels in the searching step is similar to the
one in the joining step. By specifying the searching cost likes this way, we can use the
number of operations as the unit of the searching cost (from now on). Let us assume that β
is the average degree of the query automaton, and it can be obtained after reading query.
Accordingly, we can estimate the parallel evaluation cost in the number of operations by
using the equation below.

CPE = CS × β + CJ (10)

In the next subsection, we will describe how to use the estimated cost for splitting the
original query into small subqueries in an efficient way.

4.2.2. Parallel Evaluation of RPQs based on Minimum Estimated Evaluation Cost

We consider reducing the cost of parallel evaluation of an RPQ Q(R) on multiple CPU
cores. Let us assume that k is a given number of CPU cores, which can be used to evaluate
Q(R). That means the maximum number of subqueries, which we can split, is not exceed
by k. Our algorithm is done in five steps, as the following:

Step 1: Split R into every possible set of subqueries, so that the number of subqueries
in each set is less than or equal to k. To do this, we find all possible combinations of
sequenced labels.

Step 2: Estimate the evaluation cost of every set of subquery by using our idea in
the previous section, in which both the searching cost and joining cost are considered.
Subsequently, we only select one set of subquery, Sbest, which has a minimum estimated
evaluation cost for parallel processing in the next step.

Step 3: Evaluate Sbest in a parallel manner, in which each subquery is separately
searched under a CPU core. If no path can be found in any of these search processes, a
message is issued to stop the search at every process, and then an empty result is returned.
Otherwise, this step will be done when every search process completes the searching.

Step 4: If each search process found at least one path, using the results from Step 2,
find all of the paths by merging the result of first subquery and the second subquery, and
remove all outgoing nodes at split labels that are on no path, as these cannot be on a path



Electronics 2021, 10, 990 10 of 16

in the final result. This step will be done after |Sbest| − 1 merging times, where |Sbest| is the
number of subqueries of Sbest.

Step 5: Finally, gather all of the paths satisfying the query and return the final result.
Note that, the searching technique for each subquery in Step 3 above are recorded

from Step 2. In which, we will use a backward search algorithm for the subqueries if their
estimated searching cost in case of inverse less than the one in normal case. Otherwise, a
forward search algorithm is used for evaluating them.

5. Experimental Evaluation

In this section, we conducted two experiments for evaluating the effectiveness of our
proposed method. The first one compares the performance of our USCM-Join approach
with the USCM-Basic approach (without the consideration of joining cost) and other
approaches, including the automata-based approach (AUT) [6] and the threshold rare label
based approach (TRL) [10]. The other one is used to assess the accuracy of estimating the
result size using our proposed method.

5.1. Evaluation Settings

Environments. We implemented all of the algorithms in Java. The eperiments are
conducted on a single personal computer, which has 3.60 GHz Intel Core i7, 4 CPU cores,
and 8.0 GB of RAM.

Datasets. We used three real-world graphs: the first one is Yago dataset that is a
semantic knowledge-based, derived from Wikipedia, WordNet, and GeoNames [32]; the
second one is Freebase dataset that is also a knowledge graph representing the fact around
the world [33]; the third one is from biology field (named Alibaba). We also generated an
IoT graph dataset (named Smart Building dataset). For deep evaluation, we generated
synthetic graphs with a varied graph size as well as the average degree of graph for the
evaluation. The usage of datasets is described as the following.

Yago dataset: To verify the adaptability of the proposed method, we used another
real-world dataset, Yago, for evaluation. Yago is a huge semantic knowledge base, which
extracted and combined entities and facts from 10 Wikipedias in different languages.
Currently, to provide knowledge that is based on user’s demand, Yago3 dataset (version
3 of Yago) is divided into different portions, and each portion is called a theme [34]. For
example, the GEONAMES theme contains data of geographical entities and classes taken
from GeoNames; meanwhile, the CORE theme has the main entities of Yago and the facts
between entities. We extracted a knowledge graph from CORE theme of Yago to evaluate
our proposed method. This graph has 1,756,958 nodes, 3,615,249 edges, and 13 labels.
Each node represents an entity, such as a person, an organization, or a city; while, an edge
represents the relationship between two entities, and it is assigned by a label as a fact (e.g.,
hasChild, isLeaderOf, isLocatedIn, etc.). Thus, the Yago dataset is fused by a social graph
and a spatial graph, but not things graph.

Freebase dataset: This is a large knowledge graph of the facts around the world,
which was developed by Metaweb Technologies company in 2007 and it was acquired by
Google Inc. in 2010 [33]. It contains multiple entities, including famous places, people,
factories, devices, and so on. The original dataset provides raw data that were dumped
in RDF (Resource Description Framework) triples and it has several issues, like name
disambiguation and duplicate entities. Therefore, we sought to find a different version
of Freebase dataset that had solved the known major issues of the original one. This
new dataset is available to download from http://freebase-easy.cs.uni-freiburg.de/dump
(accessed on 1 August 2020) [35]. In this dataset, each triple is a fact in the form of
< subject >< predicate >< object >. It corresponds to an edge on the knowledge graph,
in which a < predicate > is considered to be an edge-label. We extracted all if the triples
that have predicates representing the relationship between two entities and ignored other
ones. For instance, we used a triple < Ann Taylor > < Has Child > < Christian Noel

http://freebase-easy.cs.uni-freiburg.de/dump


Electronics 2021, 10, 990 11 of 16

Davis >, but did not use < Ann Taylor > < Weight >< 57.2 >. Finally, we obtained a
Freebase graph with 2,303,121 nodes, 3,224,470 edges, and 16 labels.

Alibaba dataset: The Alibaba graph is given by previous research [10]. The graph
is a network of protein–protein interactions, which is regularly used in biology systems,
for instance, to discover protein functions and pathways in biological processes [36]. This
graph has 52,050 nodes, 340,775 edges, and 649 labels.

Smart Building Dataset: For testing with an IoT graph that is fused by all three types
of graphs, including things graph, spatial graph, and social graph, we used gMark [37] to
generate an edge-labeled graph that represents data objects (e.g., person, device, room)
and their relationships in a smart building. Specifically, the graph has 36,000 nodes with
nine node types, 273,610 edges, and 19 edge labels [38]. The occurrence of labels follows
the given Zipfian or uniform distributions.

Synthetic graphs: To systematically study the adaptability of our proposed method
on various parameters, such as graph size (|V| + |E|) or the average degree of the graph
(|E|/|V|), we generated the synthetic graphs with different size by using Gephi [39]. Specif-
ically, we varied the graph size from 40 K to 1280 K. In which, the smallest graph has
around 2 K nodes and 38 K edges, and the largest one has 64 K of nodes and 1216 K of
edges. We used 15 distinct labels to annotate edges for these graphs. The occurrence of
labels follows the Zipfian distribution.

Query Sets. For Yago and Freebase graphs, we generated two query sets, each has a
set of 40 RPQs with length varying from 4 to 8. The query sets have 10 queries for each
type of RPQs in Section 3.1.

For Alibaba graph, we used the queries set that was given by previous research [10].
We analyzed ten thousand queries and found that approximately 87% proportion are
simple RPQs, 3% and 10% proportion contain nested RPQs with and without recursive
modifiers, respectively. With experiments on the Smart Building dataset, we also created
40 RPQs with length varying from 4 to 8. For the synthetic graphs, we mainly used 1000
random RPQs with 80% proportion of having concatenation and alternation RPQs, 15%
proportion of having Kleene Star RPQs, and 5% proportion of having complex RPQs with
recursive modifiers.

5.2. Experimental Results

Exp-1: Efficiency of USCM-Join Approach
Figure 4 illustrates the average response times of four different approaches on both

real-world graphs and synthetic graphs. Here, we used the synthetic graph with around
16 K nodes and 304 K edges. We observed that the USCM-Join approach outperforms other
approaches in all cases. It reduces the response time around 20% on average as compared to
the USCM-Basic approach. Especially, we observed that the USCM-Basic, which considers
estimating only the searching cost, reduces the average response time approximately 13%,
56%, 17%, 25%, and 60% when compared to TRL approach with Yago, Freebase, Alibaba,
Smart Building, and the synthetic graph 320 K, respectively.

While our approach USCM-Join, which considers both the searching cost and the
joining cost, obtained a better performance when this reduction is around 30%, 98%, 50%,
80%, and 110%, respectively.

To explain how our proposed method reduces response time significantly in detail,
we chose 10 queries randomly on Yago graph and show their evaluation cost in Figure 5.
We observed that the AUT approach without separating RPQs has no joining cost, but high
searching cost. TRL and UCSM-Basic approaches separating RPQs without joining cost
consideration sometimes have a high joining cost. Meanwhile, USCM-Join separating RPQs
with a combination of joining and searching cost achieved the minimum evaluation cost.



Electronics 2021, 10, 990 12 of 16

Figure 4. Response time comparison on different graphs.

Figure 5. Evaluation cost comparison in detail on Yago graph.

To evaluate the impact of the different number of subqueries on our USCM-Join
approach, we created a query set of 1000 queries, each has smallest path length at 5, so that
it can be split into four subqueries. Figure 6 shows that a fixed number of subqueries for
splitting is not efficient for optimizing RPQs evaluation. Here, splitting RPQs for evaluating
them is necessary for reducing the response time, in which the case of splitting an RPQ into
two subqueries can reduce the response time significantly, while the best case is the usage
of a dynamic number of subqueries by using our estimation method. We can see that a
high fixed number of subqueries causes very high joining cost. For example, in the case of
four subqueries, the joining cost is twelve times higher than the searching cost on average.

Exp-2: Accuracy of Result Size Estimation
The impact of estimating joining cost to USCM-based RPQs evaluation is related to

the accuracy of result size estimation. To understand the accuracy of the proposed method
in different situations, we extensively evaluated the accuracy of result size estimation



Electronics 2021, 10, 990 13 of 16

with various graph parameters (e.g., the size of graph (|V| + |E|), average degree of graph
(|E|/|V|)), and query parameters (e.g., length of query, type of query), as shown in Figure 7.

Figure 6. Comparison of response time with varied number of subqueries.

(a) varying graph size with fixed average degree of 19 (b) varying average degree with fixed 16 K of nodes

(c) varying length of Concat. RPQs on graph 320 K (d) various query types on different graphs

Figure 7. Accuracy of result size estimation with various parameters.



Electronics 2021, 10, 990 14 of 16

To do this, we defined the accuracy of result size estimation by the closeness between
the estimated result size and the actual result size, which is calculated by the fraction
Ce

R/Ct
R in the case of Ce

R ≤ Ct
R, otherwise it is Ct

R/Ce
R, where Ce

R is the average estimated
result size and Ct

R is the average actual result size.
Firstly, we evaluate the accuracy of our estimation method on six synthetic graphs

with different sizes that vary from 40 K to 1280 K, but the same average degree of 19.
The results are illustrated, as in Figure 7a. From the result, we can see that the accuracy
that is brought by our estimating proposal is high, which is, at most, 92% with different
graphs’ size.

Secondly, in order to evaluate the impact of the average degree of graph on the
estimation accuracy, we generated five synthetic graphs whose number of nodes is kept
at 16 K and number of edges is varied in the range between 64 K and 1024 K. As a result,
the average degree of the graphs is varied between 4 and 64, corresponding to the graph
size. From the result in Figure 7b, we observed that the accuracy of result size estimation
for the graphs having average degree less than or equal to 16, which is mostly around
90%, are higher than those in the cases having an average degree of 32 and 64. Specifically,
the estimation accuracy of result size estimation is reduced around 5% and 15% when we
increase the average degree of graph from 16 to 32 and 64, respectively.

Thirdly, we evaluate the impact of query path length on the estimation accuracy. We
randomly generate 1200 RPQs with only concatenations operator. The length of RPQs
(query path length) is varied from 3 to 8. Accordingly, we have six subsets of queries with a
different path length, and each has 200 queries. Figure 7c shows that the accuracy of result
size estimation slightly decreases from 87% to 85% when we increase the length of query
from 3 to 4, but the accuracy is increased if the length of query greater than or equal to 5.
Especially, in the case of the length of query being greater than or equal to 6, the accuracy
obtained is, at most, 98%. The results are reasonable because almost all of the long queries
have no path on the graph satisfying them. Therefore, it is easy to correctly estimate the
result size of such queries by exploiting our proposal.

Last but not least, we evaluate the impact of query types (concatenation, alternation,
Kleene Star, and complex RPQs) on the accuracy of result size estimation. We use two
synthetic graphs: 160 K and 320 K of nodes and edges. For the queries set, we generate
1000 queries, where each type of query has 250 queries. The queries are defined by format:
abc, a(b|c)d, ab*c, and a(b|c)*d corresponding to four types of query above, respectively;
where a,b,c, and d are labels in the graph. Figure 7d illustrates the estimation accuracy of
result size, in which all types of query have accuracy over 85%, and the estimation accuracy
of Kleene Star RPQs is the highest one, around 90%.

In short, from the results shown in Figure 7, we observed that the accuracy of our
proposed estimating method is mostly over 85%. Especially, the accuracy is over 90% in
the cases of graphs with 16 average degree or less (Figure 7b) or queries with length more
than 6 (Figure 7c).

6. Conclusions

This paper proposed a method of estimating the joining cost of subqueries in order
to accelerate the USCM based parallel evaluation of regular path queries (RPQs), namely
USCM-Join. The proposed method is realized by estimating the result size of subqueries,
which are used to estimate the joining cost of the subqueries. Subsequently, the evaluation
performance of RPQs is improved by splitting them with a combination of the estimated
joining and searching cost. To evaluate the effectiveness of the proposed method, we
conducted experiments: (1) comparison of the average response times of RPQs among four
methods and (2) the impact of query types (concatenation, alternation, Kleene Star, and
complex RPQs) on the accuracy of result size estimation and on our USCM-Join approach.
Through the experimental results upon real-world datasets and synthetic datasets, we
found that our USCM-Join approach outperformed others and estimating the joining cost
enhances the USCM based approach up to around 20% in terms of response time.



Electronics 2021, 10, 990 15 of 16

Author Contributions: Conceptualization, V.-Q.N. and K.K.; methodology, formal analysis, and
writing—original draft preparation, V.-Q.N.; resources, visualization, writing—review, and editing,
V.-H.N., Q.-T.H. and M.-Q.N.; supervision, project administration, and funding acquisition, V.-Q.N.
and K.K. All authors have read and agreed to the published version of the manuscript.

Funding: This research is funded by Hung Yen University of Technology and Education under
the grant number UTEHY.L.2020.07. This research was supported by the MSIT(Ministry of Science
and ICT), Korea, under the ITRC(Information Technology Research Center) support program(IITP-
2021-2016-0-00314) supervised by the IITP(Institute for Information & Communications Technology
Planning & Evaluation).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Libkin, L.; Vrgoč, D. Regular path queries on graphs with data. In Proceedings of the 15th International Conference on Database

Theory, Berlin, Germany, 26–28 March 2012; pp. 74–85.
2. Barceló Baeza, P. Querying graph databases. In Proceedings of the 32nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles

of Database Systems, New York, NY, USA, 22–27 June 2013; pp. 175–188.
3. Yakovets, N.; Godfrey, P.; Gryz, J. Query planning for evaluating SPARQL property paths. In Proceedings of the 2016 International

Conference on Management of Data, San Francisco, CA, USA, 26 June–1 July 2016; pp. 1875–1889.
4. Scott, J.; Ideker, T.; Karp, R.M.; Sharan, R. Efficient algorithms for detecting signaling pathways in protein interaction networks. J.

Comput. Biol. 2006, 13, 133–144. [CrossRef] [PubMed]
5. Konstas, I.; Stathopoulos, V.; Jose, J.M. On social networks and collaborative recommendation. In Proceedings of the 32nd

International ACM SIGIR Conference on Research and Development in Information Retrieval, Boston, FL, USA, 19–23 July 2009;
pp. 195–202.

6. Goldman, R.; Widom, J. DataGuides: Enabling Query Formulation and Optimization in Semistructured Databases. In Proceedings
of the 23rd International Conference on Very Large Data Bases, VLDB’97, Athens, Greece, 25–29 August 1997; pp. 436–445.

7. Fernandez, M.; Suciu, D. Optimizing regular path expressions using graph schemas. In Proceedings of the 14th International
Conference on Data Engineering, Orlando, FL, USA, 23–27 February 1998; pp. 14–23.

8. Calvanese, D.; De Giacomo, G.; Lenzerini, M.; Vardi, M.Y. Rewriting of regular expressions and regular path queries. In
Proceedings of the Eighteenth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, Philadelphia,
PA, USA, 31 May–2 June 1999; pp. 194–204.

9. Calvanese, D.; De Giacomo, G.; Lenzerini, M.; Vardi, M.Y. Rewriting of regular expressions and regular path queries. J. Comput.
Syst. Sci. 2002, 64, 443–465. [CrossRef]

10. Koschmieder, A.; Leser, U. Regular path queries on large graphs. In Scientific and Statistical Database Management; Springer:
Chania, Greece, 2012; pp. 177–194.

11. Nguyen, V.Q.; Huynh, Q.T.; Kim, K. Estimating searching cost of regular path queries on large graphs by exploiting unit-
subqueries. J. Heuristics 2018. [CrossRef]

12. Nguyen, V.Q.; Nguyen, V.H.; Nguyen, H.-T.; Nguyen Nguyen, M.Q.; Huynh, Q.T.; Kim, K. Accelerating Parallel Evaluation
of Regular Path Queries on Large Graphs by Estimating Joining Cost of Subqueries. In Proceedings of the Ninth International
Conference on Smart Media and Applications, Jeju Island, Korea, 17–19 September 2020.

13. Pacaci, A.; Bonifati, A.; Özsu, M.T. Regular path query evaluation on streaming graphs. In Proceedings of the 2020 ACM
SIGMOD International Conference on Management of Data, Portland, OR, USA, 14–19 June 2020; pp. 1415–1430.

14. Wadhwa, S.; Prasad, A.; Ranu, S.; Bagchi, A.; Bedathur, S. Efficiently answering regular simple path queries on large labeled
networks. In Proceedings of the 2019 International Conference on Management of Data, Hong Kong, China, 10–13 June 2019;
pp. 1463–1480.

15. Trißl, S. Cost-based optimization of graph queries. In Proceedings of the SIGMOD/PODS PhD Workshop on Innovative Database
Research (IDAR), Beijing, China, 10 June 2007.

16. Grahne, G.; Thomo, A. Query containment and rewriting using views for regular path queries under constraints. In Proceedings
of the Twenty-Second ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, San Diego, CA, USA,
9–12 June 2003; pp. 111–122.

17. Liu, T.; Liu, A.X.; Shi, J.; Sun, Y.; Guo, L. Towards fast and optimal grouping of regular expressions via DFA size estimation. IEEE
J. Sel. Areas Commun. 2014, 32, 1797–1809. [CrossRef]

18. Almeida, J.; Zeitoun, M. Description and analysis of a bottom-up DFA minimization algorithm. Inf. Process. Lett. 2008, 107, 52–59.
[CrossRef]

19. Liu, D.; Huang, Z.; Zhang, Y.; Guo, X.; Su, S. Efficient Deterministic Finite Automata Minimization Based on Backward Depth
Information. PLoS ONE 2016, 11, e0165864.

20. Kossmann, D. The state of the art in distributed query processing. ACM Comput. Surv. (CSUR) 2000, 32, 422–469. [CrossRef]
21. Suciu, D. Distributed query evaluation on semistructured data. ACM Trans. Database Syst. (TODS) 2002, 27, 1–62. [CrossRef]

http://doi.org/10.1089/cmb.2006.13.133
http://www.ncbi.nlm.nih.gov/pubmed/16597231
http://dx.doi.org/10.1006/jcss.2001.1805
http://dx.doi.org/10.1007/s10732-018-9402-0
http://dx.doi.org/10.1109/JSAC.2014.2358839
http://dx.doi.org/10.1016/j.ipl.2008.01.003
http://dx.doi.org/10.1145/371578.371598
http://dx.doi.org/10.1145/507234.507235


Electronics 2021, 10, 990 16 of 16

22. Fan, W.; Wang, X.; Wu, Y. Performance guarantees for distributed reachability queries. Proc. VLDB Endow. 2012, 5, 1304–1316.
[CrossRef]

23. Nguyen, V.Q.; Tung, L.D.; Hu, Z. Minimizing data transfers for regular reachability queries on distributed graphs. In Proceedings
of the Fourth Symposium on Information and Communication Technology, Da Nang, Vietnam, 5–6 December 2013; pp. 325–334.

24. Tung, L.D.; Nguyen, V.Q.; Hu, Z. Efficient query evaluation on distributed graphs with Hadoop environment. In Proceedings of
the Fourth Symposium on Information and Communication Technology, Da Nang, Vietnam, 5–6 December 2013; pp. 311–319.

25. Martens, W.; Trautner, T. Evaluation and Enumeration Problems for Regular Path Queries. In Proceedings of the 21st
International Conference on Database Theory (ICDT 2018), Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, Vienna, Austria,
26–29 March 2018.

26. Abul-Basher, Z.; Yakovets, N.; Godfrey, P.; Ghajar-Khosravi, S.; Chignell, M.H. TASWEET: Optimizing disjunctive regular path
queries in graph databases. In Proceedings of the EDBT/ICDT 2017 Joint Conference 20th International Conference on Extending
Database Technology, Venice, Italy, 21–24 March 2017.

27. Fletcher, G.H.; Peters, J.; Poulovassilis, A. Efficient regular path query evaluation using path indexes. In Proceedings of the 19th
International Conference on Extending Database Technology, Bordeaux, France, 15–16 March 2016; pp. 636–639. [CrossRef]

28. Trißl, S.; Leser, U. Estimating Result Size and Execution Times for Graph Queries. In Proceedings of the ADBIS (Local
Proceedings), Novi Sad, Serbia, 20–24 September 2010; pp. 11–20.

29. Davoust, A.; Esfandiari, B. Processing Regular Path Queries on Arbitrarily Distributed Data. In OTM Confederated International
Conferences On the Move to Meaningful Internet Systems; Springer: Rhodes, Greece, 2016, pp. 844–861.

30. Afrati, F.N.; Ullman, J.D. Optimizing multiway joins in a map-reduce environment. IEEE Trans. Knowl. Data Eng. 2011,
23, 1282–1298. [CrossRef]

31. Wu, M.; Berti-Equille, L.; Marian, A.; Procopiuc, C.M.; Srivastava, D. Processing top-k join queries. Proc. VLDB Endow. 2010,
3, 860–870. [CrossRef]

32. Suchanek, F.M.; Kasneci, G.; Weikum, G. Yago: A core of semantic knowledge. In Proceedings of the 16th International
Conference on World Wide Web, Banff, AB, Canada, 8–12 May 2007; pp. 697–706.

33. Bollacker, K.; Evans, C.; Paritosh, P.; Sturge, T.; Taylor, J. Freebase: A collaboratively created graph database for structuring
human knowledge. In Proceedings of the 2008 ACM SIGMOD International Conference on Management of Data, Vancouver, BC,
Canada, 9–12 June 2008; pp. 1247–1250.

34. Mahdisoltani, F.; Biega, J.; Suchanek, F.M. Yago3: A knowledge base from multilingual wikipedias. In Proceedings of the CIDR,
Asilomar, CA, USA, 6–9 January 2013.

35. Bast, H.; Bäurle, F.; Buchhold, B.; Haußmann, E. Easy access to the freebase dataset. In Proceedings of the 23rd International
Conference on World Wide Web, Seoul, Korea, 7–11 April 2014; pp. 95–98.

36. Zahiri, J.; Hannon Bozorgmehr, J.; Masoudi-Nejad, A. Computational prediction of protein–protein interaction networks:
Algorithms and resources. Curr. Genom. 2013, 14, 397–414. [CrossRef] [PubMed]

37. Bagan, G.; Bonifati, A.; Ciucanu, R.; Fletcher, G.H.; Lemay, A.; Advokaat, N. gMark: Schema-driven generation of graphs and
queries. IEEE Trans. Knowl. Data Eng. 2017, 29, 856–869. [CrossRef]

38. Nguyen, V.Q.; Bui, T.X.L.; Nguyen, V.H. An efficient graph modeling approach for storing and analyzing heterogeneous IoT data.
UTEHY J. Sci. Technol. 2020, 27, 21–27.

39. Bastian, M.; Heymann, S.; Jacomy, M. Gephi: An open source software for exploring and manipulating networks. ICWSM 2009,
8, 361–362.

http://dx.doi.org/10.14778/2350229.2350248
http://dx.doi.org/10.5441/002/edbt.2016.67
http://dx.doi.org/10.1109/TKDE.2011.47
http://dx.doi.org/10.14778/1920841.1920951
http://dx.doi.org/10.2174/1389202911314060004
http://www.ncbi.nlm.nih.gov/pubmed/24396273
http://dx.doi.org/10.1109/TKDE.2016.2633993

	Introduction
	Related Work
	Preliminaries
	Graph Data and Regular Path Queries
	Uscm-Based Splitting Rpqs for Parallel Evaluation

	USCM-Based Parallel Evaluation of RPQs by Estimating Joining Cost
	Estimating Result Size of RPQs with USCM
	Parallel Evaluation of RPQs by Exploiting Joining Cost
	Estimating Parallel Evaluation Cost
	Parallel Evaluation of RPQs based on Minimum Estimated Evaluation Cost


	Experimental Evaluation
	Evaluation Settings
	Experimental Results

	Conclusions
	References

