
electronics

Article

Revisiting Dropout: Escaping Pressure for Training Neural
Networks with Multiple Costs

Sangmin Woo 1 , Kangil Kim 1,* , Junhyug Noh 2 , Jong-Hun Shin 3 and Seung-Hoon Na 4,*

����������
�������

Citation: Woo, S.; Kim, K.; Noh, J.;

Shin, J.-H.; Na, S.-H. Revisiting

Dropout: Escaping Pressure for

Training Neural Networks with

Multiple Costs. Electronics 2021, 10,

989. https://doi.org/10.3390/

electronics10090989

Academic Editor: Daniel Gutierrez

Reina

Received: 17 March 2021

Accepted: 19 April 2021

Published: 21 April 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: c© 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Electrical Engineering and Computer Science Department & Artificial Intelligence Graduate School,
Gwangju Institute of Science and Technology (GIST), 123, Cheomdangwagi-ro, Buk-gu,
Gwangju 61005, Korea; shmwoo9395@gmail.com

2 Lawrence Livermore National Laboratory, 7000 East Avenue, Livermore, CA 94550, USA; noh1@llnl.gov
3 Electronics and Telecommunications Research Institute (ETRI), 218, Gajeong-ro, Yuseong-gu,

Daejeon 34129, Korea; jhshin82@etri.re.kr
4 Computer Science and Engineering Department, Jeonbuk National University, Baekje-daero, Deokjin-gu,

Jeonju 54896, Korea
* Correspondence: kangil.kim.01@gmail.com (K.K.); nash@jbnu.ac.kr (S.-H.N.)

Abstract: A common approach to jointly learn multiple tasks with a shared structure is to optimize
the model with a combined landscape of multiple sub-costs. However, gradients derived from each
sub-cost often conflicts in cost plateaus, resulting in a subpar optimum. In this work, we shed light
on such gradient conflict challenges and suggest a solution named Cost-Out, which randomly drops
the sub-costs for each iteration. We provide the theoretical and empirical evidence of the existence of
escaping pressure induced by the Cost-Out mechanism. While simple, the empirical results indicate
that the proposed method can enhance the performance of multi-task learning problems, including
two-digit image classification sampled from MNIST dataset and machine translation tasks for English
from and to French, Spanish, and German WMT14 datasets.

Keywords: multitask learning; gradient conflict; Cost-Out; escaping pressure; dropout

1. Introduction

A primary goal of multi-task learning is to obtain a versatile and generalized model
by effectively learning the shared portion of multiple objectives [1,2]. The growing number
of models that perform well on a single task naturally increased interest in models that
can simultaneously perform multiple tasks [3–7]. In computer vision, for example, object
detection aims to predict bounding box localizations and their corresponding object cate-
gories simultaneously [8,9]. In natural language processing, we predict multiple classes
and additional costs at the same time to refine the prediction [10–12], which is then used in
sophisticated methods such as hierarchical softmax [13].

Despite the progress of such multi-tasking models, there was less attention on how to
properly learn the multiple objectives with a unified structure. Summing multiple sub-costs
with balancing hyperparameters [14–16] is a de facto standard of defining the total cost
of multi-task learning. However, this strategy yields optimization difficulties because
gradients of overlapped sub-cost landscapes often interfere with each other, resulting in a
pseudo optimum of the total cost landscape. The reason we call it pseudo optimum is that
although it is a mixture of landscapes representing the actual optimum of each sub-cost, it
does not correspond to any single actual optimum. In other words, optimizing via total
cost locates the optimum on a nearly flat landscape (i.e., zero gradient) which is far from
the true optimum since gradients are drawn from each sub-cost are likely to conflict near
the true optimum (See Figure 1). We now end up with a question—is this the best optimum
we can achieve?

To answer the question, we shed light on the effect of gradient conflict—especially
on cost plateaus—in multi-task learning. We usually stop training when the total cost

Electronics 2021, 10, 989. https://doi.org/10.3390/electronics10090989 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-4451-9675
https://orcid.org/0000-0003-3220-6401
https://orcid.org/0000-0003-1239-8178
https://orcid.org/0000-0002-4764-9371
https://orcid.org/0000-0002-4372-7125
https://doi.org/10.3390/electronics10090989
https://doi.org/10.3390/electronics10090989
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10090989
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10090989?type=check_update&version=1

Electronics 2021, 10, 989 2 of 15

converges. However, since multi-task learning basically combines multiple sub-costs to
form a total cost, there is a high chance that plateaus will be created via this process. In
this respect, we can at least presume that the true optimum is somewhere on the plateau,
or worse, it could be located outside the plateau and even not close to it. As reaching
the plateau does not mean reaching the true optimum, we see room for improvement.
Concretely, we can even reach the above par result if we can resolve gradient conflict.

Figure 1. Cost landscape for combined and decomposed costs. (top) gradient conflict in cost per-
spective. (bottom) gradient conflict in gradient perspective. (cost1: a normal distribution N(0.3, 0.3),
cost2: N(−0.3, 0.3), total cost: sum of cost1 and cost2, max: sum of optima of cost1 and cost2, costout:
the expected gradient calculated in Equation (3)).

Motivated by the insight that conflicts between gradients lead to pseudo optimum, we
propose a method called Cost-Out, a dropout-like [17] random selection mechanism of sub-
costs. This mechanism stochastically samples the sub-costs to be learned at every gradient
step. In a forward-backward perspective, it only backpropagates gradients of selected
sub-costs. Leveraging randomness improves performance by overcoming cost plateau,
which is not feasible with conventional multi-task learning methods. In this paper, we
coin the induced effect of randomness as escaping pressure. We first theoretically convince
its existence and analyze its properties. Empirical results demonstrates the effectiveness
of Cost-Out mechanism in several multi-task learning problems such as two-digit image
classification (TDS-same, TDC-disjoint) and machine translation (MT-hsoftmax, MT-sum).
The performance gain is especially noticeable when the regularization effect on the model
is not too strong. As the mechanism only considers how to sample sub-costs, we assert that
it can be generally applicable to all multi-task learning frameworks.

The contributions of this paper are threefold: (1) To the best of our knowledge, our
work is the first attempt to characterize the challenges of multi-task learning in terms of
conflicts between gradients of sub-costs. (2) We propose a dropout-like mechanism called
Cost-Out, and theoretically confirm its effect on inducing escaping pressure out of plateau
on the total cost landscape. (3) Extensive and comprehensive experiments demonstrate
that the Cost-Out mechanism is effective in several multi-task learning settings.

The rest of the paper can be break down into the following sections:

Electronics 2021, 10, 989 3 of 15

• Section 2 explains the related work.
• Section 3 analyzes details of escaping pressure and describes our proposed method,

Cost-Out.
• Section 4 includes experimental settings and results.
• Section 5 thoroughly discusses the results and the core findings.
• Section 6 makes a conclusion and future work.

2. Related Work

The mechanism of Cost-Out is exactly the same as dropout [17], except that the
switching mechanism applies to the final layer. However, this approach does not improve
performance in general cases, so we introduce problem conditions and applications that
Cost-Out can help.

The cause and benefit of Cost-Out can be seen as Bayesian model averaging [17–19],
a general issue in statistical modeling. Unlike averaging many ensemble models, the
advantage of Cost-Out is to select only the parameters needed to split automatically.

Training neural networks with multiple sub-costs is a common form of multi-task
learning [20], generalizes neural networks by allowing parameters to operate for multiple
purposes, and regularizes models by increasing the required model capacity. The regular-
ization effects typically decrease training accuracy by trade-offs, but the amount of training
loss that occurs redundantly is not investigated in depth. The proposed method, Cost-Out,
is expected to reduce the unnecessary inefficiency of regularization of multi-task learning.

3. Cost-Out: Sub-Cost Dropout Inducing Escaping Pressure
3.1. Motivation
3.1.1. Performance Limit Caused by Multiple Sub-Costs

In neural network training, adding sub-costs to the total cost often limits accuracy [21].
This phenomenon can be easily observed by comparing the accuracy of simultaneously
predicting two identical examples—data samples satisfy the independent and identically
distributed (i.i.d.) assumption—with the accuracy of predicting each example.

In preliminary experiments, we train multi-layer perceptron (MLP) [22] with MNIST
training dataset for digit image classification (http://www.iro.umontreal.ca/~lisa/deep/
data/mnist/mnist.pkl.gz, accessed on 21 April 2021). This network is set to the state-of-
the-art MLP for MNIST [22], using 512 hidden nodes, hyperbolic tangent (tanh) activation,
stochastic gradient descent (SGD) optimizer, and 10−3 L2-regularization. We then copy
one image of size 28× 28 to create two identical images, concatenate them into a single
image of size 28× 56, and train MLP to predict two digits. The results of the preliminary
experiments are shown in Table 1.

Table 1. Preliminary experiments of digit image classification using MLP trained with MNIST dataset.
We verify the accuracy decrease of MLP by task extension. (single input: 28 × 28, dual input 28 × 56,
single output: 1 digit, dual output: 2 digits).

Input Image Output Class Test Precision

single single 97.99
dual single 97.57
dual dual 97.17

In the results, concatenating two images and predicting only one class (dual–single)
decreases test accuracy. This phenomenon is natural because the network cannot clearly
distinguish which input dimensions are responsible for which classes. Therefore, single-
digit predictions are easily interfered with by other predictions. More importantly, when the
network is trained to predict two-digit classes at the same time (dual–dual), performance
decreases again. One may think this may be due to limited model capacity, but in fact, the
abstract features required for both digits are exactly the same. Therefore, we can presume

http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz
http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz

Electronics 2021, 10, 989 4 of 15

that the network has a model capacity to show at least as much performance as a single
task model. This argument is supported by preliminary results that even increasing the
hidden nodes does not restore performance.

3.1.2. Gradient Conflict between Sub-Costs

We posit gradient conflict between sub-costs as a cause of the accuracy limitation to
learning the additive total cost. As shown in Figure 1-top, summing two distinct optimal
values for each sub-cost shows a higher cost than the optimum for the total cost in a simple
maximization problem. This degradation of summing sub-costs is due to gradient conflict
shown in the Figure 1-bottom, which cancels each other and results in a zero gradient
plateau at subpar optimum. Splitting the network into a completely separate model for
each sub-cost is undesirable because it loses the benefits of using multiple sub-costs for
training. The purpose of Cost-Out is to take advantage of multi-task learning and reduce
accuracy limits.

3.2. Method: Stochastic Switching of Sub-Costs

Unlike a typical multi-task learning scheme (see Figure 2-left), Cost-Out stochastically
excludes a subset of sub-costs at each parameter update in the training phase, as illustrated
in Figure 2-right. In this paper, we describe approaches of Cost-Out that attempt to
incorporate “dropout” mechanism with two variants: a soft Cost-Out (sCO) and a hard
Cost-Out (hCO). It is the same as dropout applied on the final layer if we apply this method
with a given probability p for each sub-cost drop. However, adopting the original dropout
mechanism for cost drop, which is a soft Cost-Out, is not suitable to cause escaping pressure
since there is a chance of all sub-costs being selected for an update. If, then, the model
again moves toward the optimum of the total cost. Therefore, we also adopt a method,
updating only one sub-cost at a time, which is a hard Cost-Out.

Figure 2. A schematic illustration of the Cost-Out mechanism. (left) Typical multi-task learning
scheme learns all sub-costs per each update. (right) Cost-Out randomly drops the sub-costs with a
given probability and learns only the remaining sub-costs per each update. The dotted line and solid
line indicates dropped sub-cost and remaining sub-cost respectively.

3.3. Estimation of Escaping Pressure

Cost-Out derives the gradients using only the sampled sub-costs at every update. We
can obtain a series of sub-costs by iterating updates, and we can observe several patterns
by examining their gradients. It can be largely divided into two cases depending on the
direction of the generated gradients. The first case is that a series of gradients repeat
updates in a similar direction, which implies that local optima of a set of sub-costs exist
in roughly the same location. In this case, repeating the probabilistic selection helps the
movement to the optimum. The second case is that the gradients repeat the update in
the opposite direction, resulting in conflicts between sub-costs near the local optimum of
the total cost. In the latter case, Cost-Out leads to a drift effect by introducing additional
non-zero gradients. We will show the existence of the drift and estimate their amount

Electronics 2021, 10, 989 5 of 15

in the following derivation. We call the parameter range that causes cancellation as the
conflict region.

Assume a simple case that the combined cost is the sum of two sub-cost c1 and c2.
Then, c1 is used for updating a value set θ0 for parameters of a neural network. θ1 indicates
the changed parameter values after the update. The canceling case occurs when c2 is
selected near the local optimum of the combined cost. In this case, gradient c2 at θ1 is

∇c2
θ1
= ∇c2

θ0
+ λHc2

θ0
∇c1

θ0
, (1)

where λ is a learning rate and ∇c1
θ0

is the gradient calculated from the previous update step.
∇c2

θ0
is the gradient and Hc2

θ0
is the main diagonal values of Hessian matrix of c2 at θ0. Then,

the result gradient τc1 of selecting c1 and c2 sequentially is derived as

τc1 = ∇c1
θ0
+∇c2

θ1

= ∇c1
θ0
+∇c2

θ0
+ λHc2

θ0
∇c1

θ0

= ∇c
θ0
+ λHc2

θ0
∇c1

θ0
(2)

If the probabilities to select c1 and c2 are equal, expected gradient τ is

τ =
1
2
(τc1 + τc2)

= ∇c
θ0
+

λ

2
(Hc2

θ0
∇c1

θ0
+ Hc1

θ0
∇c2

θ0
). (3)

Here, we can confirm that the gradient of sequential canceling updates of Cost-Out is
not equal to that of total cost c. If the network is near an optimum,

∇c
θ0
= ∇c1

θ0
+∇c2

θ0
∼ 0. (4)

This relation converts the expected total gradient to

τ ∼ λ(Hc2
θ0
∇c1

θ0
+ Hc1

θ0
∇c2

θ0
). (5)

This result is drawn in the Figure 1 bottom for comparison with the original gradient
of the combined cost.

The simple case can be generalized to complex cost functions by extending the results
to a set of selected sub-costs Ci and its complement Cc

i . The gradient ∇θ1 Ci at θ1 is

∇θ1 Ci = ∑
c∈Ci

∇θ0 c + λ ∑
c∈Ci

Hc
θ0 ∑

d∈Ci
c
∇d

θ0
(6)

and the gradient τCi after an update with selected Ci is

τCi = ∇θ0 C + λ ∑
c∈Ci

Hc
θ0 ∑

d∈Ci
c
∇d

θ0
. (7)

Then, we can derive the expected gradient τ overall possible combinations for Ci
whose sub-costs are selected by Bernoulli distribution with respect to p.

τ = ∑
Ci

p(Ci)τCi = ∇θ0 C + λδθ0 , (8)

δθ0 = ∑
Ci

p|Ci |(1− p)N−|Ci | ∑
c∈Ci

Hc
θ0 ∑

d∈Ci
c
∇d

θ0

Electronics 2021, 10, 989 6 of 15

The pressure δθ0 can be simplified as follows:

δθ0 = p(1− p) ∑
(c,d)s.t.c 6=d

Hc
θ0
∇d

θ0
. (9)

As the result of this derivation, the escaping pressure is determined by p(1− p), the
amount of Hessian diagonal and gradient multiples for all combinations of two different
sub-costs.

3.4. Convergence of Cost-Out Compared to Other Optimization Methods

To see the effect of the escaping pressure on optimization, we show the convergence
simulation of SGD with the estimated escaping pressure in Figure 3. For comparison,
we also plot the simulation of two popular momentum-based optimizers: Adam [23]
and AdaDelta [24]. In the landscape, there are three optima: optimum at center x = 0
(oc), optima at left and right boundary of conflict region (ol and or, respectively). If the
probability of sub-cost selection is assumed as even, the use of Cost-Out forces gradient-
based stochastic optimizer to move toward the two candidate optima ol and or with an
equal chance. This causes stochastic perturbation since small movements by update within
the conflict region diverge to the boundaries, as summarized in Table 2.

Figure 3. Comparison of convergence patterns between SGD + Cost-Out and other optimization
methods. While there is only one optimum for Adam and AdaDelta, three possible optima exist for
Cost-Out (i.e., gradient = 0): left (ol), center (oc), and right (or).

Table 2. Convergence to optima in conflict region.

Gradient Sign

Near ol Near oc Near or
Left Right Left Right Left Right

w/Cost-Out + - - + + -
w/o Cost-Out + + + - - -

Convergence to Optimum

w/Cost-Out converge diverge converge
w/o Cost-Out pass converge pass

By the effect of escaping pressure, the model parameters are updated repeatedly until
they meet the regularities of two optima ol and or. This phenomenon is only observable
when the optimization procedure is affected by the escaping pressure but not momentum

Electronics 2021, 10, 989 7 of 15

(e.g., Adam, AdaDelta). Those momentum-based optimizers are designed to correctly
find the optimum of the total cost rather than changing the cost landscape. While both
dropout and Cost-Out induce escaping pressure, only Cost-Out reduces the gradient
conflict between sub-costs since the original dropout applied to the internal layers only
decreases the total cost via parameter update.

4. Experiments and Results

Cost-Out is a generic yet straightforward mechanism that drops gradients of partial
tasks rather than simultaneously learning the entire gradients of every task. To verify the
effectiveness of Cost-Out, we adopt two representative tasks in the field of vision and
language—image classification and machine translation.

4.1. Classifying Two-Digit Images Sampled from the Same Set (TDC-Same)

The goal of this problem is to predict two digits with a neural network from a concate-
nated two 28× 28 input images of MNIST dataset [25]. Compared to separately classifying
each digit from its corresponding image, this problem is more complex because of the
interaction between features of two different images in a single network. The cost function
is defined as below:

fsub(o, y) = ∑d
i=1(y)i ln e(o)i

∑d
j e(o)j

(10)

fTDC(D) = E[fsub(o1, y1) + fsub(o2, y2)], (11)

where d is the length of output vector o. The partial output vector o1 and o2 are generated
from two input images. y1 and y2 are one-hot vectors to indicate correct digit label index.
The data set D is composed of inputs generating o1 and o2, and corresponding y1 and y2.
The fTDC is the expectation of the two sub-costs over all data samples in D.

We use pre-split 50,000 training, 10,000 validation, and 10,000 test set as a publically
released setting (http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz, ac-
cessed on 21 April 2021). Samples in each set are copied once, randomly shuffled, and then
concatenated with the original set. Final data have the same sample size as the MNIST
data, but each sample has twice a larger input dimension and output class size.

The impact of Cost-Out is likely to be affected by the other regularization techniques
since it also has a regularization effect. For example, if regularization is too strong com-
pared to the given model capacity, Cost-Out may decrease performance. To evaluate the
performance of Cost-Out under this regularization-sensitive condition, we select combi-
nations of typical regularization methods such as L2 penalization, batch normalization
(BN) [26], dropout, and model size changing. The detailed combination settings are shown
in the Table 3.

Table 3. Hyper-parameter settings for TDC-same task.

Hyper-Parameter Value

Dropout Probability 0.1, 0.5, 0.9
Batch Normalization decaying
· Decaying Rate 0.99 per epoch

L2 scale 0, 10−5, 5× 10−5,
10−4, 5× 10−4, 10−3

Cost-Out Type soft, hard
Optimizer SGD, Adam
· SGD Learning Rate 10−2, 10−3

· Adam Learning Rate 10−4

· Adam (β1, β2) (0.9, 0.999)
Hidden Layer Size 512, 2048
Batch Size 32
Activation tanh

http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz

Electronics 2021, 10, 989 8 of 15

BN is decayed by gradually reducing the interpolation rate between normalized and
original activations. The optimal number of hidden nodes of the layers reported in the
original MNIST challenge is near 800 [27], so we test one smaller model and the one larger
model than the reported model. Model parameters are initialized by randomly selecting a
real value in [− 1√

n , 1√
n] where n is the number of parameters of a layer [28].

4.1.1. Performance Recovery under Various Regularization Effects

We plot the maximum performance of TDC-same in the Figure 4. This result is
collected from various combinations of regularization methods and hyper-parameters.
The optimal L2 is 10−5 for all settings. The ensemble shows the best performance among
the overall regularization settings. TDC-same problem has no advantage from resource
sharing so that only the negative effect of gradient conflict occurs. Thus, the ensemble
completely removes the conflict issue, and its result is the upper bound of the performance
of multi-task learning. Both Cost-Out versions have improved performance compared to
an ordinary case and even the case using dropout, which implies that the model averaging
and regularization effects of dropout are orthogonal to the sub-cost switching.

Figure 4. Achievable best performance of Cost-Out under L2 regularization and batch normalization.
(sCO: soft Cost-Out, hCO: hard Cost-Out, DO: dropout, noCO: without Cost-Out).

In Table 4, detailed numerical results are shown. This ensemble result is higher than
the case of not using Cost-Out by 0.12% at the best cases. Applying Cost-Out improves
performance compared to the best result of not using the Cost-Out method by 0.04%
precision, which is 29% recovery of the performance decrease by using multiple sub-costs.
In the case of dropout, it seriously decreases the best performance in large L2 scales, and its
maximum was lower than the Cost-Out methods. This evaluation confirms that applying
Cost-Out can recover the decreased best performance by using multiple sub-costs. In
Table 5, more detailed performance changes are plotted.

With stochastic gradient descent, the performance gain from Cost-Out is much more
significant than the standard model. Regularization does not entirely explain this gain be-
cause the effect is consistently observed under various regularization strength—L2 penalty
scales and dropout. Even when using Adam, the gain is smaller, but the performance is
not the same as in the typical case, which implies the effect of escaping pressure. When ap-
plying batch normalization, the gain in the SGD case almost disappears. In overall results,

Electronics 2021, 10, 989 9 of 15

we can see that there is some evidence that escaping pressure affects the performance, but
it can be easily hidden by batch normalization or optimizer.

Table 4. Best performance in the test set of TDC-same task. Common best configuration: Adam, no
dropout, 2048 hidden nodes, 10−4 L2 scale (P.: precision, p: recovery rate =

error by multiple sub-costs
error after applying Cost-Out).

Input Output Method Best P. p BN

dual single ensemble 97.96 – o
dual dual without Cost-Out 97.84 0.00 x

dual dual with hard Cost-Out 97.87 0.21 x
dual dual with soft Cost-Out 97.88 0.29 x

Table 5. Detailed performance change by applying Cost-Out or dropout in TDC-same with various
settings. (d: dimension of the hidden layer, y-axis: average precision, x-axis: scale of L2 penalty).

d = 512 d = 2048 d = 512 d = 2048

SGD Adam

SGD + batch norm Adam + batch norm

4.1.2. Relaxation of Gradient Conflict

To investigate the impact of Cost-Out on optimization, we investigate the mean and
max absolute values of all gradient elements with respect to the total cost, called gradient
scale, in this section. This metric represents the steepness near the optima in the convex
rather than the gradient values for various sub-cost combinations.

In Figure 5, we see that Cost-Out vastly increases gradient scale. This phenomenon
supports that adopting Cost-Out causes escaping pressure. When applying Cost-Out, the
gradient scale with respect to the total cost is the sum of the values in convex landscapes of
its sub-costs, which is not affected by the gradient canceling. Therefore, applying Cost-Out
can increase the gradient scale by the canceled amount, consistent with the result.

4.2. Classifying Two-Digit Images Sampled from the Two Disjoint Sets (TDC-Disjoint)

In TDC-same task, parameters of all layers except the final fully-connected layer
are shared with all sub-costs. Therefore, the optima for two sub-costs using the copied
data may be similar, even if not the same, by random initialization on the final layer. To
prepare a more practical environment generating different optima for sub-costs, we set a
new problem TDC-disjoint using two different disjoint image sets for 0 to 4 and 5 to 9 of
MNIST data. Cost is calculated as the Equation (10), but the used data set D is composed of
concatenated vectors of two disjoint sets. Training, validation, and test sample sizes are half
of the TDC-same task. Practical networks are usually very deep, so we focus on evaluating
the effect change by the depth increase. In this experiment, we use batch normalization
with decaying, Adam optimizer with learning rate 1 × 10−4, 2000 hidden nodes per layer,
tanh activation, hard Cost-Out, and no penalization. In the setting, we vary the number of
layers from 1 to 10.

Electronics 2021, 10, 989 10 of 15

Figure 5. The change in precision-gradient scale in the training phase of the TDC-same task. (sCO:
soft Cost-Out, hCO: hard Cost-Out, noCO: without Cost-Out).

Performance Change by Deep Structuring

The impact of the escaping pressure is amplified by increasing the number of layers.
Figure 6 shows the best precision in training data averaged over a total of five runs. There
is no difference between using Cost-Out and not using it in the first to fifth layers, but
using Cost-Out shows better results from the sixth layers. However, neither model found
the optimum when they reached a depth of 9 to 10.

0.00

0.20

0.40

0.60

0.80

1.00

1 2 3 4 5 6 7 8 9 10

layer stacks

Cost-Out

no Cost-Out

a
v
e

ra
g

e
 p

re
c

is
io

n

Figure 6. Best precision averaged over five models by the number of stacked layers with or without
Cost-Out in TDC-disjoint task.

4.3. Machine Translation with Hierarchical Softmax (MT-Hsoftmax)

For machine translation tasks with hierarchical softmax, we combine two data sets,
Europarl-v7 and CommonCrawl data provided from WMT 2014 (http://www.statmt.
org/wmt14/, accessed on 21 April 2021). Tokenizing, lower-casing and cutting off with
40 tokens are applied via tools provided by MOSES [29] (http://www.statmt.org/moses/,
accessed on 21 April 2021). We have set up six tasks from French, Spanish, and German to
English translation and vice versa. Each training set has 1.5 million sentence pairs and its
10% is used as a validation set. The test sets are the Newstest set consisting of 3000 sentences

http://www.statmt.org/wmt14/
http://www.statmt.org/wmt14/
http://www.statmt.org/moses/

Electronics 2021, 10, 989 11 of 15

and the News-Commentary set consisting of 150,000 sentences. To set sufficient model
capacity, we use four stacks of 1000 LSTM cells for the encoder and the same size for a
decoder. Word vectors are explicitly trained by word2vec [30] and imported in training
and translation phases (https://code.google.com/archive/p/word2vec/, accessed on 21
April 2021). Detailed model parameters are shown in Table 6.

Table 6. Hyper-parameter settings for machine translation tasks.

Hyper-Parameter Parameter Size

LSTM Stacks 4 Encoder 3.05 M
Cells per Stacks 1000 Decoder 3.10 M

dim. of Word 50 Output 11 M
dim. of Attention 250 Interface 0.19 M

Batch Size 128

We use a bidirectional recurrent neural network with global attention [31,32]. BN is
applied to all net values for gate and cell vectors. The weight of normalization is decayed
and converged to near 0 after about 20 epochs. Cost-Out is applied only in the training
phase. We use Adam optimizer, which showed better results than SGD and AdaDelta in
preliminary experiments.

To create a simple combined cost, we design a k-expansion softmax function defined
as follows:

fMT-hsoftmax(D) = E
[
∑K−1

i=0 fsub((o)
k(i+1)
ki , (yk)i)

]
(12)

where y is a one-hot vector to indicate a correct class index y and yk is the k-expansion
of y. The constant K is the number of sub-tasks equal to dlogk ye. The vector (o)j

i is the
segment of o from the i-th to the (j− 1)-th element. Thus, each segment of the output
vector represents the probability of selecting a correct class index at each position in the
k-expansion of y. In our experiments, we set k as 1024 and the length K as 2 to cover
vocabulary size more than one million.

Effect of Cost-Out in MT-hsoftmax

In MT-hsoftmax task, we validate the benefits of using Cost-Out by predicting a correct
word and position of the target sentences with mean precision and BLEU metrics. The
results are shown in the Table 7. Since the achievable translation quality largely varies
in translation tasks, we measure the performance change by applying Cost-Out. In the
results, the performance gain (δ) in mean precision and BLEU (δ) are almost positive when
using Cost-Out, implying that Cost-Out improves translation quality. While dropout is not
recommended to use in NMT because of its high sensitivity [33], Cost-Out can improve the
performance without largely destroying the trained internal information.

4.4. Machine Translation Summing Costs of All Target Words (MT-Sum)

In Neural Machine Translation, summing cross-entropy values for classifying each
word in the target sentence is a common approach which is also regarded as multi-task
learning approach. To evaluate the impact of the escaping pressure, we set all the environ-
ment same as the MT-hsoftmax configuration except using hierarchical softmax. The cost
function is defined as follows:

fMT-sum(D) = E
[
∑L

i=0 fsub(oi, yi)
]
, (13)

where L is the length of tokens of a target sentence. Hard Cost-Out is applied to turn on
and off of randomly selected half of the total words in a sentence.

https://code.google.com/archive/p/word2vec/

Electronics 2021, 10, 989 12 of 15

Table 7. Performance change by using Cost-Out in MT-hsoftmax. (CO: Cost-Out, S− T: source-target, P.: precision, B.:
BLEU, w and w/o: with and without Cost-Out, δ: performance gain when using Cost-Out (score of w − score of w/o), µ(δ):
mean of δ, σ(δ): standard deviation of δ).

Best Performance in Each Set Performance of Selected Model

Valid Test1 Test2 Train Test1 Test2

CO S − T P. B. P. B. P. B. P. P. B. P. B.

w En-Fr 15.59 20.23 15.05 16.40 12.33 16.84 57.43 14.81 16.26 12.33 16.65
w/o 15.20 19.86 14.73 15.65 12.06 16.15 57.41 14.64 15.65 11.97 16.15

w Fr-En 19.99 27.25 13.35 12.34 12.76 14.58 56.41 13.04 12.34 12.64 14.58
w/o 18.48 26.08 12.16 11.23 11.52 13.52 55.04 12.16 10.67 11.52 13.26

w En-Es 16.07 16.50 14.75 13.38 14.50 16.27 48.84 14.75 12.37 14.50 15.05
w/o 16.14 16.24 14.71 13.33 14.81 16.23 47.03 14.71 12.43 14.76 14.80

w Es-En 17.87 17.68 15.79 13.65 15.24 15.60 23.48 15.79 13.65 15.24 15.60
w/o 17.21 17.33 15.27 13.21 14.72 15.43 20.70 15.27 13.21 14.72 15.43

w En-De 15.57 10.12 13.31 6.51 10.77 5.78 41.12 13.00 5.25 10.59 4.67
w/o 15.62 10.05 13.47 6.50 10.66 5.72 43.00 13.47 6.24 10.66 5.21

w De-En 14.60 12.93 13.24 8.79 10.83 8.29 45.41 13.24 8.79 10.83 8.29
w/o 14.54 12.60 13.19 8.34 10.67 7.89 47.02 12.93 8.00 10.67 7.81

µ(δ) 0.42 0.43 0.33 0.47 0.33 0.40 0.42 0.24 0.41 0.30 0.36
σ(δ) 0.61 0.38 0.49 0.42 0.52 0.40 1.90 0.46 0.89 0.49 0.60

Effect of Cost-Out in MT-Sum

The results of MT-sum task are shown in the Table 8. As with the previous results,
we can see the effectiveness of Cost-Out by comparing the with and without Cost-Out.
Although some of the results showed rather poor performance, they generally achieved
positive performance gain. Through two experiments, MT-hsoftmax and MT-sum, we
empirically demonstrate that applying Cost-Out when learning multiple sub-costs can
bring the effect of finding a better optimum regardless of the sub-cost setting.

Table 8. Performance change by using Cost-Out in MT-sum.

Best Performance in Each Set Performance of Selected Model

Valid Test1 Test2 Train Test1 Test2

CO S − T P. B. P. B. P. B. P. P. B. P. B.

w En-Fr 19.43 26.60 18.92 22.52 15.73 22.88 65.30 18.59 22.28 15.51 22.77
w/o 20.48 31.74 13.99 15.69 13.72 18.77 68.46 13.99 15.69 13.61 18.77

w Fr-En 21.45 32.11 14.15 15.54 13.92 18.98 70.41 14.15 15.54 13.92 18.98
w/o 20.21 31.44 13.27 15.08 13.36 18.64 69.94 13.22 15.05 13.36 18.64

w En-Es 19.98 23.24 17.35 19.87 18.77 24.77 59.50 17.31 19.87 18.77 24.77
w/o 19.71 22.73 17.20 19.48 18.53 24.49 57.37 17.07 19.26 18.53 24.49

w Es-En 21.95 24.62 18.76 19.52 19.66 24.24 59.36 18.53 19.27 19.66 24.24
w/o 21.73 24.67 18.38 19.73 19.45 24.29 59.69 18.21 19.5 19.45 24.29

w En-De 18.28 14.47 15.46 10.46 12.52 9.54 51.18 15.26 10.39 12.51 9.40
w/o 18.24 14.52 15.60 10.65 13.01 10.09 48.96 15.40 10.65 12.58 9.45

w De-En 17.30 17.74 15.53 13.63 13.27 13.29 50.07 15.39 13.48 13.27 13.29
w/o 16.96 17.38 15.28 13.30 12.85 12.75 49.22 14.98 13.13 12.70 12.56

µ(δ) 0.18 −0.62 1.08 1.27 0.49 0.78 0.36 1.06 1.26 0.57 0.88
σ(δ) 0.73 2.24 1.92 2.74 0.83 1.68 1.99 1.77 2.64 0.70 1.56

Electronics 2021, 10, 989 13 of 15

5. Discussion

We believe the main reason for the improved test performance in overall experiments is
the escaping pressure induced by the Cost-Out mechanism (see Tables 4, 7 and 8). Another
possible reason for performance improvement may be due to other regularization methods.
To find the setting that has little interference from regularization as possible and to verify the
consistent effectiveness of Cost-Out in a various environment (i.e., different hyperparameter
settings), we perform a grid search of hyperparameters, including batch normalization,
drop-out, L2-regularization, model capacity (i.e., dimension of the hidden layer), and
gradient-based optimization methods (e.g., SGD, Adam) (see Figure 4, Table 5). Although
using both Cost-Out and regularization can affect performance, using Cost-Out achieved
the best results under most settings, implying that Cost-Out can generate orthogonal effects
to the other regularization methods—we see this as an escaping pressure. Moreover, the
plateau in the cost landscape, where the escaping pressure can improve the performance,
is also observed in the results of gradient scale evaluation (see Figure 5). The change of
gradient scale after applying for Cost-Out shows that the model converges to an optimum
whose surrounding area has a steeper landscape. This observation supports that (1) the
sum of training sub-costs for multitask learning can flatten optima and (2) Cost-Out causes
escaping pressure to move the converging point to the boundary of the flattened area.

This escaping effect helps training in deep structures. As in Figure 6, stacking neural
network layers gradually decreases training accuracy by gradient vanishing and probably
landscape flattening by using more model parameters. Applying Cost-Out to this model
improves the precision when the precision suffers from the negative effects by scaling up
the model.

We conduct two experiments in different domains—vision and language—to show
that the proposed methodology is domain- and structure-agnostic. We believe that it is
not limited to these two tasks and can apply to more diverse multi-task learning problems
since the approach itself can be applied if the total cost is defined as the summation of
sub-costs.

6. Conclusions and Future Work

In this paper, we address the gradient conflict problem that arises during multi-
task learning of neural networks. We postulate that this common problem in optimizing
parameterized models can be solved with the escaping pressure induced in neural networks
by applying Cost-Out, a dropout-like random selection mechanism. In the experiments, we
empirically confirm the existence of escaping pressure that automatically selects gradients
responsible for each task and forces them to learn the optimums for each sub-cost and its
impact on two-digit image classifications and machine translation. Finally, we observe from
the results that deep structured and insufficiently regularized models improve performance
when using Cost-Out.

This work can be extended to demonstrate the benefits of using mini-batch-based
training since the random selection of mini-batch for each update is identical to selecting a
sub-cost for each mini-batch.

Author Contributions: Conceptualization, K.K. and S.W.; methodology, K.K. and S.W.; software, K.K.
and S.W.; validation, K.K., S.W., J.N., J.-H.S. and S.-H.N.; formal analysis, K.K. and S.W.; investigation,
K.K. and S.W.; resources, K.K. and S.W.; data curation, K.K. and S.W.; writing—original draft
preparation, K.K. and S.W.; writing—review and editing, K.K., J.N., J.-H.S. and S.W.; visualization,
S.W.; supervision, K.K.; project administration, K.K.; funding acquisition, K.K. All authors have read
and agreed to the published version of the manuscript.

Electronics 2021, 10, 989 14 of 15

Funding: This work was supported by an Institute of Information and Communications Technology
Planning and Evaluation (IITP) grant funded by the Korean government (MSIT) (R7119-16-1001,
Core technology development of the real-time simultaneous speech translation based on knowledge
enhancement), by the MSIT (Ministry of Science, ICT), Korea, under the ITRC (InformationTechnology
Research Center) support program (IITP-2018-2016-0-00465) supervised by the IITP (Institute for
Information and Communications Technology Promotion, and by the National Research Foundation
of Korea (NRF) grant funded by the Korean government (MSIT). (2019R1A2C109107712).

Data Availability Statement: Data available in a publicly accessible repository The data presented
in this study—MNIST, WMT14, MOSES and word2vec—are openly available at http://www.iro.
umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz accessed on 21 April 2021, http://www.statmt.
org/wmt14/ accessed on 21 April 2021, http://www.statmt.org/moses/ accessed on 21 April 2021
and https://code.google.com/archive/p/word2vec/ accessed on 21 April 2021, respectively.

Conflicts of Interest: The funders had no role in the design of the study; in the collection, analyses,
or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.

References
1. Caruana, R. Multitask Learning. Mach. Learn. 1997, 28, 41–75. [CrossRef]
2. Sener, O.; Koltun, V. Multi-Task Learning As Multi-Objective Optimization. In Proceedings of the Advances in Neural Information

Processing Systems (NeurIPS), Montreal, QC, Canada, 3–8 December 2018; pp. 527–538.
3. Kokkinos, I. Ubernet: Training a Universal Convolutional Neural Network for Low-, Mid-, and High-Level Vision Using Diverse

Datasets and Limited Memory. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
Honolulu, HI, USA, 21–26 July 2017; pp. 6129–6138.

4. Zamir, A.R.; Sax, A.; Shen, W.; Guibas, L.J.; Malik, J.; Savarese, S. Taskonomy: Disentangling Task Transfer Learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 3712–3722.

5. Liu, X.; He, P.; Chen, W.; Gao, J. Multi-Task Deep Neural Networks for Natural Language Understanding. arXiv 2019,
arXiv:1901.11504.

6. Clark, K.; Luong, M.T.; Khandelwal, U.; Manning, C.D.; Le, Q. BAM! Born-Again Multi-Task Networks for Natural Language
Understanding. In Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics (ACL), Florence,
Italy, 28 July–2 August 2019; pp. 5931–5937.

7. Lu, J.; Goswami, V.; Rohrbach, M.; Parikh, D.; Lee, S. 12-in-1: Multi-Task Vision and Language Representation Learning. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020;
pp. 10437–10446.

8. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster r-cnn: Towards real-time object detection with region proposal networks. In Proceedings
of the Advances in Neural Information Processing Systems (NeurIPS), Montreal, QC, Canada, 7–12 December 2015; pp. 91–99.

9. Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You Only Look Once: Unified, Real-Time Object Detection. In Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788.

10. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv 2014, arXiv:1409.1556.
11. Mi, H.; Sankaran, B.; Wang, Z.; Ittycheriah, A. Coverage Embedding Models for Neural Machine Translation. In Proceedings of

the 2016 Conference on Empirical Methods in Natural Language Processing, Austin, TX, USA, 1–4 November 2016; pp. 955–960.
12. See, A.; Liu, P.J.; Manning, C.D. Get To The Point: Summarization with Pointer-Generator Networks. In Proceedings of the 55th

Annual Meeting of the Association for Computational Linguistics (ACL) (Volume 1: Long Papers), Vancouver, BC, Canada, 30
July–4 August 2017; Volume 1, pp. 1073–1083.

13. Mikolov, T.; Sutskever, I.; Chen, K.; Corrado, G.S.; Dean, J. Distributed representations of words and phrases and their
compositionality. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), Lake Tahoe, NV, USA,
5–8 December 2013; pp. 3111–3119.

14. Baxter, J. A Model of Inductive Bias Learning. J. Artif. Intell. Res. 2000, 12, 149–198. [CrossRef]
15. Fliege, J.; Svaiter, B.F. Steepest Descent Methods for Multicriteria Optimization. Math. Methods Oper. Res. 2000, 51, 479–494.

[CrossRef]
16. Kendall, A.; Gal, Y.; Cipolla, R. Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics. In

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June
2018; pp. 7482–7491.

17. Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks
from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

18. Hinton, G.E.; Srivastava, N.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R.R. Improving neural networks by preventing
co-adaptation of feature detectors. arXiv 2012, arXiv:1207.0580.

19. Baldi, P.; Sadowski, P.J. Understanding dropout. In Proceedings of the Advances in Neural Information Processing Systems
(NeurIPS), Lake Tahoe, NV, USA, 5–8 December 2013; pp. 2814–2822.

http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz
http://www.iro.umontreal.ca/~lisa/deep/data/mnist/mnist.pkl.gz
http://www.statmt.org/wmt14/
http://www.statmt.org/wmt14/
http://www.statmt.org/moses/
https://code.google.com/archive/p/word2vec/
http://doi.org/10.1023/A:1007379606734
http://dx.doi.org/10.1613/jair.731
http://dx.doi.org/10.1007/s001860000043

Electronics 2021, 10, 989 15 of 15

20. Collobert, R.; Weston, J. A unified architecture for natural language processing: Deep neural networks with multitask learning.
In Proceedings of the 25th International Conference on Machine Learning (ICML), Helsinki, Finland, 5–9 July 2008; pp. 160–167.

21. Oda, Y.; Arthur, P.; Neubig, G.; Yoshino, K.; Nakamura, S. Neural Machine Translation via Binary Code Prediction. arXiv 2017,
arXiv:1704.06918.

22. Sivaram, G.S.; Hermansky, H. Sparse multilayer perceptron for phoneme recognition. IEEE Trans. Audio Speech Lang. Process.
2012, 20, 23–29. [CrossRef]

23. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
24. Zeiler, M.D. ADADELTA: An adaptive learning rate method. arXiv 2012, arXiv:1212.5701.
25. LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998,

86, 2278–2324. [CrossRef]
26. Ioffe, S.; Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. In Proceedings

of the International Conference on Machine Learning, Lille, France, 6–11 July 2015; pp. 448–456.
27. Simard, P.Y.; Steinkraus, D.; Platt, J.C. Best practices for convolutional neural networks applied to visual document analysis.

In Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR), 2003, Proceedings,
Edinburgh, UK, 6 August 2003; p. 958.

28. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Proceedings of the Thirteenth
International Conference on Artificial Intelligence and Statistics, Sardinia, Italy, 13–15 May 2010; pp. 249–256.

29. Koehn, P.; Hoang, H.; Birch, A.; Callison-Burch, C.; Federico, M.; Bertoldi, N.; Cowan, B.; Shen, W.; Moran, C.; Zens, R.; et al.
Moses: Open source toolkit for statistical machine translation. In Proceedings of the 45th Annual Meeting of the ACL on
Interactive Poster and Demonstration Sessions, Prague, Czech Republic, 23–30 June 2007; pp. 177–180.

30. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,
arXiv:1301.3781.

31. Bahdanau, D.; Cho, K.; Bengio, Y. Neural machine translation by jointly learning to align and translate. arXiv 2014, arXiv:1409.0473.
32. Luong, M.T.; Pham, H.; Manning, C.D. Effective approaches to attention-based neural machine translation. arXiv 2015,

arXiv:1508.04025.
33. Zaremba, W.; Sutskever, I.; Vinyals, O. Recurrent neural network regularization. arXiv 2014, arXiv:1409.2329.

http://dx.doi.org/10.1109/TASL.2011.2129510
http://dx.doi.org/10.1109/5.726791

	Introduction
	Related Work
	Cost-Out: Sub-Cost Dropout Inducing Escaping Pressure
	Motivation
	Performance Limit Caused by Multiple Sub-Costs
	Gradient Conflict Between Sub-Costs

	Method: Stochastic Switching of Sub-Costs
	Estimation of Escaping Pressure
	Convergence of Cost-Out Compared to Other Optimization Methods

	Experiments and Results
	Classifying Two-Digit Images Sampled from the Same Set (TDC-Same)
	Performance Recovery under Various Regularization Effects
	Relaxation of Gradient Conflict

	Classifying Two-Digit Images Sampled from the Two Disjoint Sets (TDC-Disjoint)
	Machine Translation with Hierarchical Softmax (MT-Hsoftmax)
	Machine Translation Summing Costs of All Target Words (MT-Sum)

	Discussion
	Conclusions and Future Work
	References

