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Abstract: Exponential integrator (EI) method based on Krylov subspace approximation is a promising
method for large-scale transient circuit simulation. However, it suffers from the singularity problem
and consumes large subspace dimensions for stiff circuits when using the ordinary Krylov subspace.
Restarting schemes are commonly applied to reduce the subspace dimension, but they also slow
down the convergence and degrade the overall computational efficiency. In this paper, we first
devise an implicit and sparsity-preserving regularization technique to tackle the singularity problem
facing EI in the ordinary Krylov subspace framework. Next, we analyze the root cause of the slow
convergence of the ordinary Krylov subspace methods when applied to stiff circuits. Based on
the analysis, we propose a deflated restarting scheme, compatible with the above regularization
technique, to accelerate the convergence of restarted Krylov subspace approximation for EI methods.
Numerical experiments demonstrate the effectiveness of the proposed regularization technique,
and up to 50% convergence improvements for Krylov subspace approximation compared to the
non-deflated version.

Keywords: transient circuit simulation; exponential integrator; Krylov subspace approximation;
regularization; deflated restarting

1. Introduction

High performance and full-accuracy transient circuit simulation has always been one
of the major demands in modern IC design industry. And its importance is increasing due to
the fast-growing design complexities with advanced technology nodes. Besides IC design,
SPICE-type simulators have also been widely used in some other scientific domains, such
as electric/thermal analysis [1], electric/magnetic analysis [2], and advection-diffusion
analysis [3], where the systems of interest can be described by differential algebraic equa-
tions (DAEs).

The essence of transient circuit simulation is to numerically solve a system of DAEs,
normally derived from Modified Nodal Analysis (MNA), by an explicit or implicit inte-
gration method. Being a category of implicit methods, Backward differentiation formula
(BDF) is widely adopted by existing SPICE simulators as it offers larger time steps and
better stability than explicit methods. It is also more suitable for handling stiff DAEs with
time constants differing by several orders of magnitude.

However, BDF is seeing elevated challenges in scalability, parallelizability and adap-
tivity as problem sizes grow into million-scale, or even billion-scale. The accuracy order
of BDF is typically no higher than 2, which limits the step sizes and demands a large
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number of time steps. Often, it requires in each time step a sparse LU decomposition,
which is known to be less scalable and parallelizable. Although considerable efforts have
been dedicated to accelerating BDF-based transient simulation, new integration methods
different from BDF might be needed to address the simulation capacity demands from the
scientific and industrial communities.

Exponential integrator (EI) method is one of the emerging simulation methodologies
to solve ordinary differential equations (ODEs) in a semi-analytical way, where the time
span is discretized but the equation is solved analytically in each time step by expressing
the solution in a matrix exponential form. For linear circuits, EI is in principle immune to
the local truncation error (LTE) of polynomial expansion approximation in BDF [1,2,4–7].
The error only exists in the Krylov subspace approximation of the matrix exponential
vector product; therefore, the accuracy order can be much higher than 2 without compro-
mising stability [7]. Besides, only sparse matrix-vector multiplications are needed in EI
method if the ordinary Krylov subspace is applied, which are highly scalable and paral-
lelizable [8–11]. These advantages make EI a promising alternative to BDF for large-scale
transient circuit simulation.

However, Krylov-subspace-based EI also has its own difficulties. One important
issue is the singularity problem caused by the singular dynamic matrix of the DAE, which
prohibits a straightforward conversion of the circuit DAE to an ODE required by EI. The
singularity is mainly due to the algebraic constraints that do not involve time derivatives
in the circuit, which leaves empty rows in the dynamic matrix. To solve the singularity
problem, Chen has proposed a two-step DAE-ODE transformation for circuit simulation [5].
First, a topology-based approach is applied to reduce the DAE index of the circuit from 2 to
1, which can be skipped if the circuit is already index-1. Second, row echelon reduction is
used to swap particular rows between the dynamic matrix and static matrix to eliminate the
singularity. The problem lies in that the row echelon reduction is computationally expensive
and tends to degrade the sparsity of the resulting matrices. Reference [4] proposed an
implicit and sparsity-preserving regularization technique for EI, which is for the rational
Krylov subspace only.

Another bottleneck lies in the large Krylov subspace that is needed for EI to handle
stiff circuits, if the ordinary Krylov subspace is adopted. To maintain sufficient accuracy,
the Krylov subspace dimension easily reaches several hundreds for intermediate stiffness.
Storing a number of dense basis vectors in memory and performing full orthogonalization
w.r.t. these vectors constitute substantial computational and memory challenges. One
solution to this challenge is to use other types of Krylov subspace, such as the rational [8]
or the extended Krylov subspace [12], which typically demands a much smaller subspace
dimension. The cost, however, is extra LU factorizations that to some extent reduces the
benefits of using EI. Another route, as motivated by the Krylov-subspace iterative solvers
for linear systems, is to resort to restarting. Weng proposed a restarted scheme for EI [6], in
which the Krylov subspace basis generation is restarted every m steps; thus, the memory
footprint and orthogonalization cost is limited to a m-dimensional subspace. The drawback
of such a simple restarting is that the convergence is slowed down. The total number
of subspace dimension of restarted EI is higher than that of the non-restarted version,
resulting in degraded performance.

In this paper, we aim to address the above two issues limiting the performance of EI for
large stiff circuit simulation. We restrict our focus to linear circuit simulation in this work,
though extension to nonlinear circuits is possible. Specifically, our main contributions are
two-fold:

1. We devise an implicit and algebraic regularization for EI based on the ordinary Krylov
subspace, as it works directly on the original sparse matrices in an implicit manner
without the row echelon reduction. This way the sparsity of the system matrices is
preserved and the computational efficiency is improved.

2. We propose a deflated restarting scheme for EI with the ordinary Krylov subspace.
The scheme extracts some useful information from the previous round of Arnoldi
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process and incorporates such information into the new round of process, so as to
accelerate the convergence of the Krylov subspace approximation. In other words,
the proposed method “deflates” a subspace from the search space, so that the new
search space is narrowed down and the convergence becomes faster compared to the
non-deflated version. Some preliminary results have been reported in Reference [13],
but an in-depth analysis of the root cause of the slow convergence and the optimal
selection of the eigenvalues to be deflated are still missing.

With the two techniques, we aim to make EI comparable in robustness and superior
in performance compared to BDF, rendering EI a practical alternative for future large-scale
transient circuit simulation.

The paper is organized as follows. Section 2 introduces the EI formulation for transient
circuit simulation. Section 3 presents the proposed regularization to tackle the singularity
problem. Section 4 reveals the causes of the convergence problem of EI methods and
proposes a deflated restarting scheme which is compatible with the above regularization to
accelerate the convergence. Section 5 shows the numerical results, and Section 6 concludes
the paper.

2. Background

In transient circuit simulation, a linear circuit is described by the following DAE:

Cẋ(t) + Gx(t) = Bu(t), (1)

where C and G represent the capacitance/inductance matrix and resistance/conductance
matrix, respectively, and the matrix B indicates the locations of independent sources. u(t)
denotes the input source term. x(t) is comprised of the unknown voltages and branch
currents at time t. Figure 1 shows an example of (1).

Figure 1. Typical RLC circuit and its MNA equations.

We assume C is non-singular, the above DAE (1) can be directly transformed into
an ODE:

ẋ(t) = Ax(t) + b(t), (2)

where A = −C−1G, b(t) = C−1Bu(t).



Electronics 2021, 10, 1124 4 of 20

Then, the analytical solution for xn+1 of the above ODE (2) can be solved with ma-
trix exponential:

xn+1 = eAhxn +

h∫
0

eA(h−τ)b(t + τ)dτ, (3)

where h is the time step size.
The integral term in (3) can be computed analytically by applying the second-order

piece-wise-linear (PWL) approximation b(t + τ) = b(t) + b(t+h)−b(t)
h τ [14], which turns the

solution into the sum of three matrix exponential functions.

xn+1 = eAhxn + hϕ1(Ah)ω1 + h2 ϕ2(Ah)ω2, (4)

where ω1 = C−1Bu(t), ω2 = C−1B( u(t+h)−u(t)
h ). And ω2 approximates the slope of in-

put waveform.
The analytical solution (4) has three matrix exponential functions, which are generally

referred as ϕ functions of the zero, first and second order.

ϕ0(x) = ex, ϕ1(x) =
ex − 1

x
, ϕ2(x) =

ex − x− 1
x2 .

Almohy [15] has shown that a series of ϕ functions can be calculated by computing
the exponential of a (n + p)× (n + p) matrix, where n and p describe the dimension of A
and the order of ϕ functions, respectively, which prevents from explicitly calculating each
ϕ function. Therefore, we can merge the sum of the three terms of ϕ functions (4) into the
exponential of an augmented matrix.

x̃n+1 = exp
([

A W
0 J2

]
h
)[

xn
e2

]
= exp

(
Ãh
)

x̃n, (5)

where

W =
[

w2 w1
]
, J2 =

[
0 1
0 0

]
, e2 =

[
0
1

]
.

Due to the large matrix size (on the order of millions), direct computation of matrix
exponential is prohibitive. However, the Krylov subspace approximation can be applied to
reduce the problem to the evaluation of a much smaller matrix exponential by projecting
the matrix exponential vector product (MEVP) in (5) onto a smaller Krylov subspace
Km(A, v) = span(v, Av, A2v, ..., Am−1v) with m� n [16].

It computes an orthogonal basis Vm of Km(A, v) from the Arnoldi process; see
Algorithm 1:

AVm = Vm Hm + hm+1,mvm+1eT
m, (6)

where Hm is the upper Hessenberg matrix, and em is the mth column of identity matrix Im.
Then, we project A onto the Krylov subspace and use (6) to derive an approximation

of eAhv:

eAhv ≈ VmVm
TeAhv = ‖v‖VmeHmhe1, (7)

where eHmh can be conveniently evaluated by a dense matrix approach, and Saad [16]
proposed a posteriori residue estimate applied to evaluate the approximation (7) quality.

res = ‖v‖hm+1,mCvm+1eT
m ϕ1(Hm)e1. (8)
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Algorithm 1: Arnoldi Process

Input: vector v ∈ Cn×1, matrix A ∈ Cn×n and m
Output: Vm = [v1, v2, ..., vm] ∈ Cn×m, Hm ∈ Cm×m

v1 = v/‖v‖;
for j = 1 to m do

w = A ∗ vj;
for i = 1 to j do

hi,j = wTvi;
w = w− hi,jvi;

end
hj+1,j = ‖w‖;
vj+1 = w/hj+1,j;

end

3. Implicit Regularization

Note that, in (2), we assume C is non-singular and transform the DAE (1) into the
ODE (2) directly. However, C is generally singular, since the algebraic constraints without
time derivatives result in empty rows or columns in C, which prevents the straightforward
multiplication of C−1 on both sides of the DAE (1). Higher-order singularity is also possible
due to irregular circuit topologies [17].

To eliminate the singularity, Reference [5] has proposed a two-step topology-based
regularization. The first step is to reduce the circuit to index-1 by breaking all C-V loops
and L-I cutsets [18] in the circuit. The second step is to apply the row echelon reduction to
eliminate the variables corresponding to the singular part of the system. However, such
row echelon reduction is computationally expensive and does not preserve the sparsity
of C and G (1). To enhance the efficiency of regularization for large-scale systems, in this
section, we devise a new regularization technique, which is implicit, algebraic, and sparsity
preserving. The regularization is applied to EI based on the ordinary Krylov subspace.

3.1. Partition

We firstly define semi-explicit DAEs as follows.

Definition 1. A semi-explicit DAEs of index-1 admits the following partition and conditions [19][
Cs

][
ẋ1(t)
ẋ2(t)

]
+

[
G11 G12
G21 G22

][
x1(t)
x2(t)

]
=

[
U1(t)
U2(t)

]
, (9)

with

1. a singular sparse matrix C,
2. a non-singular sub-matrix Cs,
3. non-singular sub-matrices G22.

The above partition can be obtained by re-arranging the nonzero part of C in (1) to the
upper left corner. If the above conditions do not hold, the DAE (9) is typically index-2 or
index-1 with floating capacitors. In such case, the topology-based method in Reference [5]
can be applied to break the C-V loops and/L-I cutsets and eliminate the floating capacitors,
rendering a system in the form of (9).

3.2. Regularization

From (9), we have the following formula.

Cs ẋ1(t) + G11x1(t) + G12x2(t) = U1(t), (10)

G21x1(t) + G22x2(t) = U2(t). (11)
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Next, we can eliminate x2 from (10) using (11), which yields

Cs ẋ1(t) + (G11 − G12G−1
22 G21)x1(t) = U1(t)− G12G−1

22 U2(t), (12)

x2(t) = G−1
22 (U2(t)− G21x1(t)). (13)

With (12), x1 can be solved normally with the EI method, while x2 is obtained by
solving the algebraic Equation (13) after x1 is solved. For simplicity, we denote

Gs = G11 − G12G−1
22 G21, (14)

bs(t) = U1(t)− G12G−1
22 U2(t), (15)

and we obtain the ODE we need to solve (12) as:

Cs ẋ1(t) + Gsx1(t) = bs(t). (16)

Then, we multiply C−1
s on both sides of (16) and transform the above DAE to an ODE.

And the ODE can be solved analytically by EI assuming PWL inputs:

x1,n+1 = x1,n + hϕ1(Ash)ωs,1 + h2 ϕ2(Ash)ωs,2, (17)

where As = −C−1
s Gs, ωs,1 = C−1

s bs(t), ωs,2 = C−1
s ∆bs(t).

eÃsh x̃1,n = exp
([
−C−1

s Gs C−1
s Ws

J2

]
h
)[

x1,n
e2

]
= exp

([
Cs/α

I2

]−1[ −Gs Ws
αJ2

]
h
α

)[
x1,n
e2

]
= exp

(([
Cs/α

I2

]−1[ −Gs − Cs/α Ws
αJ2 − I2

]
+

[
Is

I2

])
h
α

)[
x1,n
e2

]

= exp


[

Cs/α
I2

]−1

︸ ︷︷ ︸
Ĉ−1

s

[
−Gs − Cs/α Ws

αJ2 − I2

]
︸ ︷︷ ︸

Ĝs

h
α


[

x1,n
e2

]
exp

(
h
α

)
︸ ︷︷ ︸

x̂1,n

= eÂsh x̂1,n where Âs =
1
α Ĉ−1

s Ĝs

. (18)

Merging the three ϕ functions in (17) yields:

x1,n+1 =
[

In 0
]

exp
(

Ãsh
)
x̃1,n, (19)

where

Ãs = −
[

Cs
I2

]−1[Gs −Ws
−J2

]
=

[
−C−1

s Gs C−1
s Ws

J2

]

x̃1,n =

[
x1,n
e2

]
, C−1

s Ws =
[
ωs,2 ωs,1

]
.

Each Arnoldi step requires the computation:

Ãsṽs =

[
−C−1

s Gs C−1
s Ws

J2

][
v1
v2

]
=

[
C−1

s (−Gs + Ws)v1
J2v2

]
(20)

The parameter α in (18) is a scaling factor introduced to balance the quantities in Cs
and Gs. Besides, the augmented matrix Ãs is transformed into a nonsingular matrix Âs as
derived in (18).
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Then, the computation in each Arnoldi step requires solving:

Âsv̂s = κ

[
Cs/α

I2

]−1[−Gs − Cs/α Ws
αJ2 − I2

][
v1
v2

]
= κ

[
(Cs/α)−1[(−Gs − Cs/α)v1 + Wsv2]

(αJ2 − I2)v2

]
,

(21)

where κ is a scalar quantity, and κ = h
α exp

(
h
α

)
. Specifically, the core computation in

Equation (21) is:
ys = (Cs/α)−1[(−Gs − Cs/α)v1 + Wsv2], (22)

where
Ws = [bs,n, ∆bs], ∆bs = (bs,n+1 − bs,n)/h.

The main challenge in computing (22) lies in that the regularized matrices Gs and Ws
in (22) are rather expensive to compute and tend to have much worse sparsity compared to
the original matrices G and W, especially when G22 is large. Hence, it is not recommended
to explicitly form the matrices Gs and Ws for computing (22). Instead, we propose to
compute ys in the following implicit and sparsity-preserving manner.

Firstly, we partition the original W matrix following the partition in (9).

W = [U(t), ∆U(t)] =
[

U1(t) ∆U1(t)
U2(t) ∆U2(t)

]
=

[
W1
W2

]
. (23)

And we have Ws = W1 − G12G−1
22 W2.

Substituting the expressions of Gs (14) and Ws into (22) then yields:

ys = (Cs/α)−1[(−G11 + G12G−1
22 G21 − Cs/α)v1 + (W1 − G12G−1

22 W2)v2]

= (Cs/α)−1[G12G−1
22 (G21v1 −W2v2)︸ ︷︷ ︸

P1

+ (−G11 − Cs/α)v1 + W1v2︸ ︷︷ ︸
P2

] , (24)

i.e., ys = (Cs/α)−1(P1 + P2). P2 can be directly computed by matrix-vector multiplications
with the corresponding blocks. P1 can be solved by three steps:

1. Compute rhs1,2 = G21v1 −W2v2,
2. Solve x1,2 from G22x1,2 = rhs1,2,
3. Compute P1 = G12x1,2.

The starting vector vs is obtained as follows:

v =

[
vs
vp

]
⇒ vs, (25)

where vs has the same index as Cs. And to merge the three ϕ functions, we augment vs
in (25) with e2.

ṽs =

[
vs
e2

]
⇐ e2 =

[
0
1

]
. (26)

Given a solution v, we start the Arnoldi process with regularization. See Algorithm 2.
Once we obtain one part of the solution in (12), the other part is solved algebraically in (13).
The whole flow of our regularization is illustrated in Figure 2.
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Start with DAE system

𝐶 ሶ𝑥 + 𝐺𝑥 = 𝐵𝑢

𝐶 is 

singular?

Arrange and partition the system as

𝐶𝑠 ሶ𝑥1
ሶ𝑥2

+
𝐺11 𝐺12
𝐺21 𝐺22

𝑥1
𝑥2

=
U1
U2

𝐶𝑠 is

End with DAE system

𝐶 ሶ𝑥 + 𝐺𝑥 = 𝐵𝑢

Core in Arnoldi process

𝑦 = (𝐶/𝛼)−1[ −𝐺 − 𝐶/𝛼 𝑣1 +𝑊𝑣2]

Partition the input sources 𝑊
to obtain 𝑊1 and 𝑊2

(the same index as 𝑥1 and 𝑥2)

Transform the core as

𝑦𝑠 = 𝐶𝑠/𝛼
−1(𝑃1 + 𝑃2)

𝑃1 = 𝐺12𝐺22
−1 𝐺21𝑣1 −𝑊2𝑣2

𝑃2 = −𝐺11 − 𝐶𝑠/𝛼 𝑣1 +𝑊1𝑣2

Solve 𝑃1 implicitly

Compute 𝑃2 explicitly

Solve 𝑃1 implicitly

(1)compute 𝑟ℎ𝑠1,2 = 𝐺21𝑣1 −𝑊2𝑣2
(2)solve 𝑥1,2 from 𝐺22𝑥1,2 = 𝑟ℎ𝑠1,2
(3)compute 𝑃1 = 𝐺12𝑥1,2

N

Y

𝐺−

𝐺−

singular?

Y

Reduce the system to index-1

Apply LU decomposition to

𝐺22 for 𝑥1 and 𝑥2

Eliminate 𝑥2 in DAE system

𝐶𝑠𝑥ሶ1 + 𝐺𝑠𝑥1 = 𝑏𝑠

𝐺𝑠 = 𝐺11 − 𝐺12    22
1𝐺21

𝑏𝑠 = U1 − 𝐺12    22
1U2

Core in Arnoldi process for 𝑥1
𝑦𝑠 = (𝐶𝑠/𝛼)−1[ −𝐺𝑠 − 𝐶𝑠/𝛼 𝑣1 + 𝑊𝑠𝑣2]

N

Figure 2. Flow of the proposed regularization.

Two remarks are in order:

1. The proposed regularization technique is “algebraic” in the sense that it works directly
on the matrix level instead of the circuit topology level. It is “implicit” and “sparsity-
preserving” since we do not explicitly form Gs and Ws, but instead use the original
sparse matrices C, G, W and their blocks in the computation.

2. In Algorithm 2, each Arnoldi step involves two linear system solutions, one with
Cs and another with G22. The former is needed for any variation of EI using the
ordinary Krylov subspace approximation, while the latter is specifically associated to
the proposed regularization technique. Since both the two sub-matrices are constant
throughout the simulation, we only need to perform 1 sparse LU factorization for each
matrix at the beginning, then re-use the LU factors in all subsequent computations.
Thus, the overhead due to the proposed regularization is mild. In contrast, the rational
Krylov subspace approach requires to factorize C + G, which is generally much more
costly due to the enlarged size and a higher number of nonzeros.
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Algorithm 2: Arnoldi Process with Regularization

Input: C, G, W, J2, v, h, α, mmax;
Output: Vm = [v1, v2, . . . , vm], Hm;
Partition C, G by (9) for Cs, G11, G12, G21, G22;
Partition W by (23) for W1, W2;
Partition v by (25) for vs and Augment vs by (26) for ṽs;
(three partitions have the same index);
v1 = ṽs/‖ṽs‖;
for j = 1 to mmax do

Extract v1, v2 from vs,j by (21);
Compute rhs1,2 = G21v1 −W2v2;
Solve x1,2 from G22x1,2 = rhs1,2;
Compute P1 = G12x1,2;
Compute P2 = (−G11 − Cs/α)v1 + W1v2;
Compute w2 = (αJ2 − I2)v2;
Set P = P1 + P2;
Solve (Cs/α)w1 = P for w1;
Stack w1 and w2 for w:

w =

[
w1
w2

]
;

Set w = w ∗ (h/α)eh/α;
for i = 1 to j do

hi,j = wTvi;
w = w− hi,jvi;

end
hj+1,j = ‖w‖;
vj+1 = w/hj+1,j;
if residual PASS check then

m = j;
break;

end
end

4. Deflated Restarting of Exponential Integrator

Another challenge facing EI with ordinary Krylov subspace is the large subspace
dimension required for stiff circuits. The stiffness appears when the time constants of the
circuits differ by several orders of magnitudes. To guarantee the simulation accuracy of
stiff circuits, one needs to either use small step sizes or a large Krylov subspace dimension
m, with commonly m > 100. For large problems, storing and performing orthogonalization
with all the basis vectors can be highly memory and computation demanding. Moving big
chunks of data back and forth between memory and CPU also induces large overheads
and hampers parallelizability.

Therefore, there has been a strong desire to limit the subspace dimension for EI when
handling stiff circuits. Motivated by the restarting scheme for Krylov subspace iterative
solvers (such as GMRES), Reference [6] proposed a restarted Krylov subspace EI method in
which the generation of Krylov subspace is restarted after a moderate number of Arnoldi
steps, which reduces the memory and orthogonalization cost. However, simple restarting
typically results in slower convergence compared to the no-restarted version, consuming
more Arnoldi iterations and offsetting the benefit of restarting. In the next parts, we will
first analyze the cause of the slow convergence of the ordinary Krylov subspace for stiff
circuits, and then propose a deflated restarting scheme to accelerate the convergence by
“deflating” certain subspace in the new search space. The deflated restarting scheme is also
compatible with the implicit regularization technique described above.
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4.1. Slow Convergence in Krylov Subspace Approximation for Stiff Circuits

The dimension m required to accurately approximate eAv depends mainly on the
eigenvalue distribution of the original projected matrix A = −C−1G. The underlying
idea is that the eigenvalues of Hm in (6), or the Ritz values, gradually approximate the
eigenvalues of A, and the basis Vm gradually forms an orthogonal basis of the subspace
spanned by the approximate eigenvectors of A. Being a variant of power iteration, the
Arnoldi process is known to approximate large-magnitude (negative) eigenvalues with a
higher priority [20]. More specifically, the Arnoldi process spends most of its “dimension
resources” building a Krylov subspace spanned by the eigenvectors corresponding to those
large-magnitude eigenvalues in A, while leaving fewer “resources” to the subspace corre-
sponding to the small-magnitude eigenvalues. However, for transient circuit simulation,
the approximation quality of small (magnitude) eigenvalues is more important than that
of the larger ones in deciding the final accuracy. This can be explained by the fact that
e−λ ≈ 0 when λ� 1, which means an accurate capture of large-magnitude eigenvalues is
not necessary since their contributions to the solution are almost zero. On the other hand,
small eigenvalues have more tangible impacts on the approximation accuracy.

Consequently, the key problem with the ordinary Krylov subspace EI (6) is that it
oversamples the less important region but undersamples the more important region, in the
matrix spectrum, as illustrated in Figure 3. For stiff circuits, the gap between small and
large eigenvalues becomes more significant, thus demanding a larger subspace to ensure
adequate sampling in the critical part of the spectrum.

Re

Im
sample the eigenvalues

but oversample but undersample
less important more important

Figure 3. Sampling regions of spectrum in ordinary Krylov subspace methods.

4.2. Ordinary Restarted Krylov Subspace Method

To mitigate the large subspace dimension m required for stiff circuits, Reference [6]
proposed a restarted Krylov subspace method specific for EI [21]. The Arnoldi process is
restarted every m iterations, with the last basis vector vm+1 in (6) in the current run being
the initial vector v1 of the next m-step Arnoldi process.

AV(i)
m = V(i)

m H(i)
m + h(i)m+1,mv(i)m+1eT

m, (i = 1, 2, . . . , k), (27)

where
V(1)

m e1 = v/‖v‖ and v(i)1 = v(i−1)
m+1 , (28)

and k denotes the total number of restarts.
The restarting scheme effectively generates a sequence of k Krylov subspaces, each of m

dimensional. Concatenating the k sets of basis vectors, one could have the following relation

AVkm = Vkm Hkm + h(k)m+1,mv(k)m+1eT
km, (29)

where Vkm is defined as



Electronics 2021, 10, 1124 11 of 20

Vkm =
[

V(1)
m , V(2)

m , · · · , V(k)
m

]
∈ Cn×(km)

V(i)
m =

[
v(i)1 , v(i)2 , · · · , v(i)m

]
∈ Cn×m

(i = 1, 2, . . . , k)

, (30)

and Hkm as
Hkm = H(1)

m , (k = 1)

Hkm =

[
H(k−1)m

h(k−1)
m+1,me1eT

(k−1)m H(k)
m

]
, (k = 2, 3, . . .)

=


H(1)

m

h(1)m+1,me1eT
m H(2)

m
. . . . . .

h(k−1)
m+1,me1eT

m H(k)
m



. (31)

Note that the columns of Vkm form a basis of the km-dimensional Krylov subspace
Kkm(A, v), albeit not an orthogonal one. Similarly as (7), projecting eAv onto Kkm(A, v)
yields the approximation

eAv ≈ f (k) = ‖v‖VkmeHkm e1. (32)

It is shown in Reference [6] that the restarted Krylov subspace approximation (32) can
be obtained efficiently by k iterations, i.e.,

f (1) = ‖v‖V(1)
m eH(1)

m e1

f (k) = f (k−1) + ‖v‖V(k)
m
[
eHkm e1

]
(k−1)m:km

(k = 2, 3, . . .)

. (33)

Only a m-dimensional basis V(k)
m local to the current Krylov subspace is involved

in each iteration, instead of global basis Vkm, leading to substantial saving in memory
and orthogonalization.

However, this restarting scheme results in slower convergence than the version with-
out restarting. In other words, km is larger than m0, the subspace dimension in the non-
restarted version. This can be attributed partially to the fact that the global subspace basis
Vkm is not orthogonal; thus, with the same number of basis vectors, the subspace coverage
is smaller with that with orthogonal basis. A larger Krylov subspace is thereby needed to
ensure the important region of the spectrum is properly sampled.

4.3. Deflated Restarting Krylov Subspace Method

The analysis above reveals an important point that the ordinary Krylov subspace falls
short for stiff circuits because it does not capture, with priority, the subspace spanned by
the approximate eigenvectors associated to the small-magnitude eigenvalues (called the
rightmost eigenvectors as the eigenvalues are all negative) of A. The simple restarting
proposed in Reference [6], while mitigating the memory bottleneck, inherits and magnifies
this weakness by producing a non-orthogonal basis.

To address this challenge, we propose a new deflated restarting EI scheme, dubbed
EI-DR, for transient simulation of linear stiff circuits. Our rationale is that, if some “useful”
information from the current run of Arnoldi process can be extracted and added to the
new round of Arnoldi process, the convergence will be improved. In other words, certain
important-yet-hard-to-reach subspace from the previous computation can be maintained
and “deflated” from the search space of the new Arnoldi process. Consequently, the new
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search space is shrunk and fewer basis vectors are needed to approximately span the
reduced search space.

Based on the above analysis, it would be most effective to deflate the subspace spanned
by the rightmost eigenvectors of Hm [22]. To avoid confusion, we would like to stress again
that we actually want to maintain the information of this subspace in the next round of
Arnoldi process. And the term “deflation” means that, since this subspace has been used as
the initial subspace, the new Arnoldi process would not search this part again because any
newly generated basis vector is orthogonal to the previous subspace. In effect, the subspace
becomes “invisible” to the Arnoldi process and deflated from the entire vector space.

To facilitate the discussion of the deflated restarting, we first introduce the Krylov-
like decomposition.

Definition 2. Krylov-like decomposition [23]

AWm+l = Wm+lKm+l + ωkT
m+l , (34)

1. A ∈ Cn×n, Wm+l ∈ Cn×(m+l), range(Wm+l) ∈ Km,
2. Km+l ∈ C(m+l)×(m+l), km+l ∈ Cm+l , ω ∈ Km+1,
3. Wm+l are linearly dependent if and only if l > 0.

In particular, the Krylov-like decomposition turns into a Krylov decomposition as (6) if l = 0.

There are five steps in our proposed deflated restarting scheme. See Algorithm 3.

Algorithm 3: Krylov-like Approximation of EI with Deflated Restarting
Input: C, G, v, m, l, kmax
Output: f (k), k
Compute m Arnoldi steps to obtain (35);

Set E(1) = h(1)m+1,mel+1eT
m, f (1) = ‖v‖V(1)

m eH(1)
m e1;

for k = 2 to kmax do
Extract l eigenvectors by (36)(k = 2) or (42);
Set an orthogonal basis of the deflated subspace:
Y(k−1)

l = V(k−1)
m U(k−1)

l (k = 2) or

Y(k−1)
l = [Y(k−2)

l , V(k−1)
m ]U(k−1)

l ;
Compute m further Arnoldi steps to obtain (45);

Set Vkm+(k−1)l =

[
V(k−1)m+(k−2)l O
O · · ·OE(k−1) H̃(k)

]
;

Set E(k) = h(k)m+1,mel+1eT
l+m;

Compute a compensatory solution f (k) by (48);
if converge then

break;
end

end

Step 1: perform the 1st round of Arnoldi process (6) and obtain the relation below:

AV(1)
m = V(1)

m H(1)
m + h(1)m+1,mv(1)m+1eT

m; (35)
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Step 2: extract l eigenvectors from H(1)
m (more precisely a partial Schur decomposition):

H(1)
m U(1)

l = U(1)
l T(1)

l , (36)

where U(1)
l ∈ Cm×l , T(1)

l ∈ Cl×l . And the columns of U(1)
l form an orthogonal basis of the

subspace containing the l eigenvectors we extract from H(1)
m .

Step 3: multiply U(1)
l on both sides of (35) to generate a basis of the deflated sub-

space Y(1)
l :

AY(1)
l = Y(1)

l T(1)
l + h(1)m+1,mv(1)m+1u(1)

l , (37)

where Y(1)
l = V(1)

m U(1)
l ∈ Cn×l , u(1)

l = eT
mU(1)

l ∈ C1×l . And Y(1)
l forms the deflated

subspace spanned by the l approximate eigenvectors (Ritz vectors).
Step 4: apply another m-step Arnoldi process with respect to the new Krylov subspace

Km((I −Y(1)
l [Y(1)

l ]T)A, v(1)m+1) to obtain:

(I −Y(1)
l [Y(1)

l ]T)AV(2)
m = V(2)

m H(2)
m + h(2)m+1,mv(2)m+1eT

m. (38)

Note that columns of [Y(1)
l , V(2)

m , v(2)m+1] ∈ Cn×(l+m+1) are orthogonal. And V(2)
m e1 =

v(1)m+1,m, H(2)
m ∈ Cm×m.

Step 5: glue the basis Y(1)
l of the deflated subspace and the basis V(2)

m of the new
Krylov subspace.

A[Y(1)
l , V(2)

m ] = [Y(1)
l , V(2)

m ]H̃(2) + h(2)m+1,mv(2)m+1eT
l+m, (39)

where

H̃(2) =

[
T(1)

l S(1)

h(1)m+1,me1u(1)
l H(2)

m

]
∈ C(l+m)×(l+m),

and
S(1) = [Y(1)

l ]T AV(2)
m ∈ Cl×m.

After k− 1(k ≥ 2) cycles, we have:

AV(1)
m = V(1)

m H̃(1) + h(1)m+1,mv(1)m+1eT
m

A[Y(j−1)
l , V(j)

m ] = [Y(j−1)
l , V(j)

m ]H̃(j) + h(j)
m+1,mv(j)

m+1eT
l+m

with

Y(j−1)
l = [Y(j−2)

l , V(j−1)
m ]U(j−1)

l ∈ Cn×l

S(j−1) = [Y(j−1)
l ]T AV(j)

m ∈ Cl×m

(j = 2, 3, . . . , k− 1)

, (40)

where
H̃(1) = H(1)

m ∈ Cm×m

H̃(j) =

[
T(j−1)

l S(j−1)

h(j−1)
m+1,me1u(j−1)

l H(j)
m

]
∈ C(l+m)×(l+m)

(j = 2, 3, . . . , k− 1)

. (41)
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Similarly, [Y(j−1)
l , V(j)

m , v(j)
m+1] has orthogonal columns. And V(1)

m e1 = v/‖v‖,

[Y(j−1)
l , V(j)

m ]el+1 = V(j)
m e1 = v(j−1)

m+1 (j = 2, 3, . . . , k− 1).
At the beginning of the kth(k ≥ 2) cycle, we also extract l eigenvectors from H̃(k−1) by

a partial Schur decomposition.

H̃(k−1)U(k−1)
l = U(k−1)

l T(k−1)
l , (42)

where U(k−1)
l ∈ C(l+m)×l , T(k−1)

l ∈ Cl×l . And U(k−1)
l is an orthogonal basis of the par-

tial eigenspace of H̃(k−1). Similarly, we multiply [Y(k−2)
l , V(k−1)

m ] by U(k−1)
l to obtain an

orthogonal basis Y(k−1)
l of the deflated subspace.

AY(k−1)
l = Y(k−1)

l T(k−1)
l + h(k−1)

m+1,mv(k−1)
m+1 u(k−1)

l , (43)

where

Y(k−1)
l = [Y(k−2)

l , V(k−1)
m ]U(k−1)

l ∈ Cn×l , (44)

u(k−1)
l = eT

l+mU(k−1)
l ∈ C1×(l+m).

As (38) and (39), m further Arnoldi steps lead to

A[Y(k−1)
l , V(k)

m ] = [Y(k−1)
l , V(k)

m ]

[
T(k−1)

l S(k−1)

h(k−1)
m+1,me1u(k−1)

l H(k)
m

]
+ h(k)m+1,mv(k)m+1eT

l+m(k ≥ 2) , (45)

where S(k−1) = [Y(k−1)
l ]T AV(k)

m ∈ Cl×m. And we use H̃(k) to represent the partitioned
matrix with four blocks in (45).

Ultimately, we glue all the Y(j)
l (j = 1, 2, . . . , k− 1) and V(j)

m (j = 1, 2, . . . , k) together
to obtain:

AVkm+(k−1)l = Vkm+(k−1)l Hkm+(k−1)l + h(k)m+1,mv(k)m+1eT
km+(k−1)l , (46)

where

Vkm+(k−1)l = [V(1)
m , Y(1)

l , V(2)
m , Y(2)

l , . . . , Y(k−1)
l , V(k)

m ] ∈ Cn×(km+(k−1)l)

Hkm+(k−1)l =


H̃(1)

E(1) H̃(2)

. . . . . .
E(k−1) H̃(k)

 ∈ C(km+(k−1)l)×(km+(k−1)l)

with

E(1) = h(1)m+1,mel+1eT
m ∈ C(l+m)×m

E(j) = h(j)
m+1,mel+1eT

l+m ∈ C(l+m)×(l+m)(j = 2, 3, . . . , k− 1)

.
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Now, we obtain a Krylov-like decomposition (46) of A with regard to the Krylov
subspace Kkm(A, v). Then, the approximation of eAv based on the Krylov-like decomposi-
tion (46) is:

eAv ≈ f (k) = ‖v‖Vkm+(k−1)le
Hkm+(k−1)l e1 . (47)

Taking into account the special structure of Hkm+(k−1)l , the approximation (47) can be
retrieved by compensation [23].

f (1) = ‖v‖V(1)
m eH(1)

m e1

f (k) = f (k−1) + ‖v‖[Y(k−1)
l , V(k)

m ][eHkm+(k−1)l e1]i:j

with i = (k− 1)m + (k− 2)l + 1, j = km + (k− 1)l (k = 2, 3, . . .)

. (48)

Note that, with the above iterative updating scheme, it only requires to store m + l
basis vectors in each round of restart. The extra computational cost induced by the deflation
is mainly the eigenvalue decomposition of a (m + l)× (m + l) matrix. The computation
of S(j−1) in (41), while appearing to be expensive, can be performed with nearly zero
additional cost in a way outlined in Appendix A. Hence, the overhead arising from the
deflation is insignificant for reasonable m and l.

5. Numerical Results

All the numerical experiments are conducted on a computer with Intel Xeon(R) Golden
6140 processor 2.30 GHz × 72 and 128 GB memory under a Linux system. We implement
both the regularization technique and the deflated restarting scheme (EI-DR) in an open-
source Python circuit simulator Ahkab [24]. The LU factorizations for Cs and G22 are
performed by the SuperLU package of SciPY. For all EI-related simulation, we set the
scaling parameter α = 10−6 and the tolerance ABStol = 10−6 and RELtol = 10−3.

We test four cases of IBM P/G networks with the specifications shown in Table 1. Len(x1)
and Len(x2) denote the length of x1 and x2 in (9) due to the matrix partitioning, respectively.

Table 1. Specifications of benchmark circuits.

Design Category Nodes Len(x1) Len(x2)

D1 Power Grid 54.2 K 12.4 K 41.8 K
D2 Power Grid 164.9 K 55.3 K 109.6 K
D3 Power Grid 1.21 M 0.38 M 0.83 M
D4 Power Grid 2.09 M 0.71 M 1.38 M

5.1. Performance of Regularization

We first confirm the effectiveness of our regularization technique proposed in Section 3.
In Table 2, we test a simple RC circuit with 10 nodes in the first time point. The leftmost
column shows the generalized eigenvalues of the matrix pencil (−C, G). The system matrix
A = −C−1G has three infinite eigenvalues due to the fact that there are three empty rows
in C. The remaining columns show the eigenvalues of the Hessenberg matrix Hm in (6)
obtained using the proposed regularization algorithm. The data from the seven consecutive
Arnoldi steps demonstrate that the Ritz values gradually approximate the finite eigenvalues
of the original system in a stable manner. When m = 7, the Ritz values reproduces exactly
the original eigenvalues as expected, with no infinite eigenvalues included. This proves
that our regularization technique does not alter or miss any useful information contained
in the original system, except removing those infinite modes to ensure numerical stability.
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Table 2. Eigenvalues of the original and the regularized systems.

λ(A)
λ(Hm)

1 2 3 4 5 6 7

−2.050795 −0.912349 −1.988669 −2.007050 −2.040173 −2.053679 −2.051105 −2.051100
−1.787729 −0.067203 −1.226993 −1.581068 −1.701136 −1.780247 −1.788008
−1.491372 −0.058861 −0.431774 −1.314589 −1.471928 −1.491621
−0.865400 −0.034110 −0.388962 −0.447983 −0.865586
−0.404115 −0.033235 −0.215691 −0.404255
−0.189688 −0.034014 −0.189807
−0.042095 −0.042200

inf
inf
inf

In Figure 4, we compare the transient voltage waveforms simulated by the built-in
BE (Backward Euler) method and the EI-DR method combined with the regularization
technique. The D1 and D2 cases are used with a fixed time step size 1× 10−11 s. The over-
lapping agreements confirm that no accuracy loss is caused by the proposed regularization.

0 2×10 9 4×10 9 6×10 9 8×10 9 10 8
0.000

0.025

0.050

0.075

0.100

0 2×10 9 4×10 9 6×10 9 8×10 9 10 8

t
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0.10

0.15

v

v

Figure 4. Voltage waveform comparisons between BE and EI-DR for D1 and D2.

5.2. Deflated Restarting Scheme

In this section, we investigate the performance of the EI-DR method. As mentioned
in Section 4.1, the ordinary Arnoldi process (6) tends to oversample the large-magnitude
eigenvalues but undersample the small-magnitude ones that are more pertinent to the final
accuracy. Hence, the first question of EI-DR is how to choose the proper eigenvalues (or
eigenvectors) of the block Hessenberg matrix H̃ in (41) be to deflated. Below we compare
two different choices of the l eigenvalues for deflation. The D1 case in Table 1 is used with
a uniform time step size of 0.2 ns for convenience.

Figure 5 shows the convergence history for different settings, where m and l denote
the restarting length of the ordinary Krylov subspace and the number of eigenvectors
we extract from H̃ for deflation, respectively. The symbol (L) and (S) indicate whether
we deflate the eigenvectors corresponding to the l largest eigenvalues or the l smallest
eigenvalues. The figure plots how the error decreases with the number of restarts k. Note
that, when k differs by 1, the corresponding subspace dimension differs by m.
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Figure 5. Convergence comparison between two different selections of eigenvalues to be deflated in
EI-DR. (L) refers largest-magnitude eigenvalues, (S) refers to smallest-magnitude eigenvalues. The
D1 case is used with a fixed time step 0.2 ns.

When l = 0, our deflated restarting scheme coincides with the non-deflated version
(EI-R) proposed in Reference [6] and the two curves for (L) and (S) overlap in Figure 5
as expected. For nonzero l, however, deflation of the small-magnitude eigenvalues con-
sistently yields faster convergence than that of the large-magnitude eigenvalues, which
confirms the analysis in Section 4.1 that slow convergence is due to inadequate sampling of
the small eigenvalues. Comparing the curves of l = 2(S) and l = 5(S), one can see that the
convergence rates are similar, demonstrating a saturated improvement one could obtain
by increasing l. This again suggests that the accuracy is controlled by a fraction of small
eigenvalues, and further improvements would be limited if these set of eigenvalues have
already been deflated from the new search space. Only for a high accuracy requirement
below 10−9, deflating more small eigenvalues is beneficial as shown by the discrepancy at
the bottom part of the leftmost two lines.

Tables 3 and 4 tabulate the performance data of EI-DR for all the four testcases with
different combinations of m and l. spsolve denotes the number of triangular solves involved
in the Arnoldi process (=km), a main indicator of convergence speed and total runtime.
dim(Vkm+(k−1)l) is the effective total subspace dimension for EI-DR taking into account the
deflated vectors. The l smallest eigenvalues are chosen for deflation. Several observations
can be made:

1. A higher restarting length m in general leads to faster convergence and reduced run-
time, at the cost of a higher memory consumption. Comparing to EI without restarting,
EI-R and EI-DR both consume more spsolve, indicating a slower convergence.

2. For the same m, a higher l typically improves the convergence and reduces spsolve.
The improvements, however, tend to saturate after a certain value of l. For instance,
for the case D2 with m = 10, using l = 5 or l = 10 results in the same number of
restarting k, suggesting a higher l is not always optimal for a particular m.

3. Comparing to EI-R (l = 0), EI-DR reduces number of spsolve by ratios between 30%
to 50% across different cases and various m, confirming that the proposed EI-DR is an
effective acceleration scheme. The improvement is more significant for small m than
for large m.

Finally, we plot the 3D profiles of the number of spsolve with respect to different (m, l)
pairs for D1 and D4 in Figure 6a,b, respectively. m varies from 6 to 14, and l varies from
0 to m. In the two figures, the peaks are both at (6, 0), and the valleys are near (14, 14),
which is consistent with our analysis above. The optimal selection of m and l in practice is
generally a trade-off between runtime and memory.

1. extract l eigenvectors corresponding to the largest-magnitude eigenvalues of H̃.
2. extract l eigenvectors corresponding to the smallest-magnitude eigenvalues of H̃.
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Table 3. Performance data of D1 and D2.

Tstep = 2 × 10−10 s D1 (m0 = 95 for No-Restarting) D2 (m0 = 106 for No-Restarting)

m l k Spsolve dim(Vkm+(k−1)l) Time/s k Spsolve dim(Vkm+(k−1)l) Time/s

6
0 37 222 222 4.317771 35 210 210 18.117152
2 25 150 198 2.561108 26 156 206 13.040628
6 24 144 282 2.513732 22 132 258 10.957821

10
0 17 170 170 2.856241 17 170 170 14.299571
5 13 130 190 2.194715 12 120 175 10.334383

10 12 120 230 2.129521 12 120 230 10.400039

14
0 10 140 140 2.624997 11 154 154 12.873702
8 9 126 190 2.286199 9 126 190 10.665583

14 8 112 210 2.070850 8 112 210 9.731642

Table 4. Performance data of D3 and D4.

Tstep = 1 × 10−10 s D3 (m0 = 64 for No-Restarting) D4 (m0 = 73 for No-Restarting)

m l k Spsolve dim(Vkm+(k−1)l) Time/s k Spsolve dim(Vkm+(k−1)l) Time/s

6
0 27 162 162 111.346346 32 192 192 127.529831
2 20 120 158 84.746398 21 126 166 88.770843
6 13 78 150 52.377661 15 90 174 59.138819

10
0 12 120 120 80.759488 12 120 120 78.327367
5 8 80 115 58.257768 9 90 130 62.386851

10 7 70 130 49.326665 8 80 150 55.504061

14
0 6 84 84 59.579572 7 98 98 66.059572
8 5 70 102 49.267151 6 84 124 60.321333

14 5 70 126 49.801739 6 84 154 60.574075

m

6
8

10
12

14l
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spsolve
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220

(a) 3D profile of spsolve w.r.t. various m and l (D1, h = 0.2 ns)

m
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14l
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(b) 3D profile of spsolve w.r.t. various m and l (D4, h = 0.1 ns)

Figure 6. 3D profile.

6. Conclusions

In this paper, we proposed two techniques to improve EI based on the ordinary Krylov
subspace for linear circuits. We firstly propose an implicit regularization technique for
the ordinary Krylov subspace EI to solve the singular C problem. This regularization
is computationally efficient and sparsity preserving. Next, we analyze the convergence
problems with the ordinary Krylov subspace and the simple restarting scheme for stiff
circuits. Based on the analysis, we then develop a deflated restarting scheme that deflates a
carefully chosen region of the matrix spectrum to accelerate the convergence. Numerical
results demonstrate the effectiveness of our regularization technique, and the substantial
convergence improvement arising from the proposed deflated restarting scheme for stiff
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circuits. The optimal, even adaptive, selection of m and l in our deflated restarting scheme
will be a topic for future investigation.
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Appendix A

To compute m further Arnoldi steps (45), the V(k)
m and H(k)

m can be generated by
Arnoldi process with a new projector as:

(I −Y(k−1)
l [Y(k−1)

l ]T)AV(k)
m = V(k)

m H(k)
m + h(k)m+1,mv(k)m+1eT

m.

Evidently, it is prohibitive to compute the variable S(k−1) explicitly as it involves m full
matrix-vector multiplications. Instead, we obtain S(k−1) from the above equation implicitly
following Algorithm A1. Thus, our deflated restarting scheme induces negligible overhead
in comparison with the non-deflated restarting.

Algorithm A1: Compute m further Arnoldi steps

Input: A, v(k)1 , Y(k−1)
l , m, l

Output: V(k)
m = [v(k)1 , v(k)2 , . . . , v(k)m ], H(k)

m and

S(k−1) = [s(k−1)
1 , s(k−1)

2 , . . . , s(k−1)
m ]

for j = 1 to m do
w = A ∗ v(k)j ;

s(k−1)
j = [Y(k−1)

l ]T ∗ w;

w = w−Y(k−1)
l ∗ s(k−1)

j ;
for i = 1 to j do

h(k)i,j = wTv(k)i ;

w = w− h(k)i,j v(k)i ;
end

h(k)j+1,j = ‖w‖;

v(k)j+1 = w/h(k)j+1,j;
end
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