
electronics

Article

High-Q Slot Resonator Used in Chipless Tag Design

Nengyu Huang 1 , Jiaxiang Chen 2 and Zhonghua Ma 2,*

����������
�������

Citation: Huang, N.; Chen, J.; Ma, Z.

High-Q Slot Resonator Used in

Chipless Tag Design. Electronics 2021,

10, 1119. https://doi.org/

10.3390/electronics10091119

Academic Editors: Milan Švanda and

Jan Kracek

Received: 5 April 2021

Accepted: 5 May 2021

Published: 9 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Navigation, Jimei University, Xiamen 361021, China; 201912852004@jmu.edu.cn
2 School of Information Engineering, Jimei University, Xiamen 361021, China; chenjx7335@jmu.edu.cn
* Correspondence: mzhxm@jmu.edu.cn

Abstract: A retransmission chipless tag with multiple U-shaped slot resonators is proposed to cut
down the cost of traditional tags with chips. Multiple side-by-side U-shaped slot structures of
different lengths are printed on the microstrip line, and the two terminals of the microstrip line are
connected correspondingly with two orthogonal ultra-wideband (UWB) transceiver antennas to
form the retransmission chipless tag. The U-shaped slot resonator has high Q values and narrow
impedance bandwidth. The bandwidth that each resonator adds to the protection bandwidth is
300 MHz. Several 6-bit coding U-shaped slot resonator chipless tags are designed and fabricated
for comparison and measurement. Results show that the simulation and the measurement are in
agreement. The slot width of the U-shaped slot resonator and the distance between the resonators
are reduced, resulting in deepened spectrum notch depth of the resonator. Decreasing the dielectric
constant of the substrate or increasing the thickness of the substrate increases the spectrum notch
depth of the resonator.

Keywords: radio frequency identification; chipless tag; resonator; frequency position coding;
encoding capacity

1. Introduction

Radio frequency identification (RFID), a wireless communication technology for non-
contact automatic identification and tracking, identifies remote tags by using radio fre-
quency (RF) wave and extracts the encoded data from the backscatter wave. The system
is composed of a reader, RFID tags, and a data processing system. The working principle
of the RFID system is shown in Figure 1. A continuous wave interrogation signal is trans-
mitted to the tag through the reader antenna. The antenna of the chipped tag receives the
interrogation signal and generates an induced current to obtain energy. In this way, the tag
is awakened to work. The modulated coded information of the chipped tag is transmitted
to the reader with backscatter wave, which decodes the modulated information of the tag.
Finally, the encoded data of the tag is obtained by the system [1,2].
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Figure 1. Working principle of the RFID system.

RFID systems do not require manual intervention and have the advantages of non-
line-of-sight (NLOS) reading and high data capacity. Therefore, chipless tags have the
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potential to replace barcodes [3,4]. However, the high cost of traditional RFID systems
hinders their application in the market for low-value commodities (such as stamps, tickets,
and envelopes). The cost of barcodes is very low, about USD $0.005, while the cost of
RFID tags is about USD $0.3 [5]. The price of RFID tags is much higher than barcodes, so
barcodes still have a greater price advantage. The cost of the entire RFID system depends
on the cost of the tag, because the reader has a one-time cost, and there is no need to replace
it after it is put to use. The tag needs to be attached to the item and the quantity is huge.
The traditional chip tag needs to be made of Silicon chips, the cost of which cannot be
further reduced due to indispensable materials and manufacturing processes [6]. Therefore,
a chipless tag is proposed. The cost of the chipless tag is mainly determined by the cost of
the conductive material constituting its resonant circuit. In the chipless tag, the cost has
been greatly reduced due to the removal of the silicon chip of the tag. Moreover, it also has
the advantages of the traditional chip tag. However, chipless tags have shortcomings in
terms of data capacity and tag size [7].

In recent decades, many researchers have proposed various types of chipless tags,
which are divided into two categories: time-domain (TD) [8–13], and frequency-domain
(FD) chipless tags [14–28]

The Ref. [8] proposed a near-field chipless tag system with sequential reading in
the time domain. It is realized by multiple linear half-wavelength microstrip resonators
which excited in the direction of a vertical straight line. The encoding capacity can reach
100 bits. The density per surface is 4.9 bit/cm2. A series of rectangular patches etching
on a dielectric substrate constitute the chipless tag. A pair of rectangular complementary
resonators (CSRR) is loaded on a microstrip line to move on the chipless tag printed on the
substrate, with rectangular patches of different sizes to generate time-domain codes [9].
The density per surface is 1.15 bit/cm2. However, the moving speed of the chipless tag
proposed in the literature [8,9] must be constant. The reader and the tag must be aligned,
which is a requirement that is difficult to meet in practical applications.

Chipless tags based on TD also include SAW [10] and transmission delay line chipless
tags [11–13]. Hartmann et al. [10] have proposed a new modulation method of time
overlapped pulse position with simultaneous phase offset modulation. This method has an
encoding capacity of up to 256 bits, reaching the encoding capacity of traditional chip tags
because the traditional tag-equipped chips have 64-bit, 96-bit, 128-bit and 256-bit RFID
standards [29] However, the SAW tag’s nonprintable and high-cost characteristic limits its
application in the market. Chipless tags based on the transmission delay line are printable
TD tags. The literature [11] has proposed a transmission delay line-based identification
(ID) generation circuit, which only realizes four bits of encoding capacity. If the number of
encoding bits is increased, the corresponding dimension increases rapidly.

Chipless tags based on the FD are divided into the backscattered [14–19] and the
retransmitted chipless tags [20–28]. The backscattering chipless tag depends on the self-
resonance of its multi-resonator to generate spectral characteristics for encoding. The tag
does not need a Tx/RX antenna, which is an advantage of its small size and long reading
distance. However, a complex algorithm is required to separate the radar cross-section
(RCS) signal of the tag before it can be decoded in the actual environment [30–32]. The
retransmission chipless tag consists of two cross-polarized antennas and a multi-resonator
that stores data. The two orthogonally polarized antennas can remarkably decrease the
interference between the transmitting and the receiving signals [33]. The system has a
low reading error rate and a long reading distance. The tag coding capacity is increased
by adding more resonators. The distance between resonators can be adjusted to reduce
the coupling effect [34–36]. The literature [20,21] first proposed a retransmission chipless
tag composed of 6-bit spiral resonators. In order to increase the encoding capacity of
the tag, the spiral resonator was increased to 35, the encoding capacity was increased to
35 bits, and the tag size was 88 mm × 65 mm. Although, in order to reduce the size of the
tag, the microstrip line was bent and the spiral resonator was placed on both sides of the
microstrip line. The tag size was correspondingly increased, and there was a small amount
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of coupling between the resonators. Retransmissible tags require orthogonal polarization
antennas to retransmit information to the orthogonal polarization antennas of the reader.
The polarization fields of the reader and the tag must be aligned, otherwise the system
sensitivity will be reduced and the error code rate will rise.

It is unrealistic to fully align the orthogonal antennas in practical applications. This sit-
uation has promoted the search for chipless tags that are insensitive to polarization [17–19].
Current research is based on backscatter chipless tags.

The inherent low isolation between the transmitter and receiver in a chipless tag reader
greatly reduces the dynamic range and sensitivity of the reader. The strong excitation signal
leaking to the receiver will reduce the sensitivity of the reader to detect weak backscattered
signals and reduce the reading range.

This paper has designed a retransmission chipless tag with multiple U-shaped slot
bandstop resonators. The U-shaped slot bandstop resonator unit used in the tag has a
high Q-value, low coupling effect, high spectrum efficiency, and high encoding capacity.
The high isolation of the receiving and the transmitting signals of the tag are due to the
orthogonal transceiver antenna. Furthermore, the tag uses transmitting and receiving
antennas, resulting in prolonged reading distance.

2. Working Principle
2.1. Working Principle of a Retransmission RFID System Chipless Tag

Figure 2 shows the working principle diagram of multiple U-shaped slot resonators
with retransmitting chipless tags. First, the reader sends a UWB interrogation signal with a
uniform spectrum. Afterward, the receiving antenna of the tag receives the interrogation
signal, which is transferred through the resonance circuits to the tag’s transmitting antenna.
During the transmission process, the uniformly UWB spectrum structure is changed by
the U-shaped slot resonators, and the encoding information on the tag is loaded into the
spectrum of the UWB interrogation signal. The UWB signal loaded with encoded informa-
tion is retransmitted back to the RFID reader by the tag. Then, the data information can be
demodulated through the decoding algorithm. The spectral signature of the multiple U-
shaped slot resonators has band-stop characteristics at the different resonance frequencies.
The resonant frequency point and the data bit are in a 1:1 correspondence (n resonators = n
bits), which appears as a notch in the spectrum. When the reader recognizes that the
spectrum-characteristic notch exists, the logic state is “1”, and the absence of the spectrum
characteristic notch is represented by the logic state of “0”. The polarization characteristics
of the reader transmitting antenna and the tag receiving antenna are consistent, and the
reader receiving antenna’s polarization characteristic is consistent with the tag transmitting
antenna. The transceiver antennas of the reader have orthogonally polarized to each other
to maximize the isolation from the continuous interrogation and the encoded modulation
signals and avoid mutual interference in the antennas [22]. The polarization characteristics
of the tag transceiver antenna are also the same.

According to the Friis transmission formula [37], when the distance between the
antennas meets the far-field conditions, and without environmental interference, the power
density of the receiving antenna of the RFID system reader is

s =
PT,reader × Gtag

4πR2 (1)

where PT,reader is the power of the tag-transmitting antenna, Gtag is the gain of the tag-
transmitting antenna, and R is the distance between the transmitting and the receiving
antennas.
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The effective area of the receiving antenna of the RFID system is

Ar =
λ2

4π
(2)

The power of the receiving antenna of the RFID system reader is

Rr = PT,readerGreaderLPGtag

(
λ

4πR

)2
(3)

where Greader is the gain of the reader-receiving antenna, Lp is the power transmission
coefficient, and λ is the wavelength.

The Q-value can be calculated by Equation (4)

Q =
f
B

(4)

where B is defined as the −10 dB impedance bandwidth of the U-shaped slot resonator; f
is the center frequency of U-shaped slot resonators.

2.2. U-Shaped Slot

The U-shaped slot is widely used in the patch antenna design [38,39]. The structural
parameters of a U-shaped slot of chipless tag are shown in Figure 3, where Lt is the width
of the microstrip line, Wt is the length of the microstrip line, and Lu is the length of the
U-shaped slot. Wm is the slot width of the U-shaped slot, wu is the length of the bottom
side of the U-shaped slot, Ht is the distance from the U-shaped slot in the microstrip line,
and h is the thickness of the substrate.
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3. Design and Simulation of the Chipless Tag for U-Shaped Slot Resonators

Multiple side-by-side U-shaped slot resonators placed parallel to each other are etched
on the microstrip line to form a multi-bit chipless tag, visible in Figure 4, where the L1 is
the width of the microstrip line, W1 is the length of the microstrip line, L is the length of
the shortest U-shaped slot resonator, and m is the side length difference between adjacent
U-shaped slots. w is the slot width of the U-shaped slot resonator, and all U-shaped slot
resonators have the same slot width. g is the length of the bottom side of the U-shaped slot
resonator and is fixed and consistent with the length of the microstrip line. The distance
between adjacent U-shaped slot resonators is b. Different resonance frequencies can be
obtained by changing the length of a U-shaped slot resonator. A trapezoidal microstrip is
used as a transition belt for impedance matching between the microstrip transmission line
and the 50-ohm feeder, which plays the role of a gradual transition to impedance, and the
reflection will be suppressed.
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Figure 4. Electric field distribution of a single U-shaped slot resonator.

U-shaped slot resonators are designed on the F4BM substrate. The relative dielectric
constant, loss tangent, and substrate thickness are 2.2, 0.0007, and 1.00 mm, respectively.
The High-Frequency Structure Simulator (HFSS) is used for the modeling and the simula-
tion of a single U-shaped slot resonator. Figure 5 shows a schematic of the electric field
distribution of a single U-shaped slot resonator. The electric field is strongest near the
U-shaped slot, indicating that the U-shaped slot has resonated.
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The transmission characteristic curve of the single U-shaped slot resonator S21 is
shown in Figure 6. When the side length of the single U-shaped slot resonator is 7 mm, the
fundamental frequency of the resonator is 8.28 GHz, and the notch depth of the spectrum
characteristic achieves−22 dB. Moreover, the impedance bandwidth B is 0.04 GHz. Q-value
is about 207.

Electronics 2021, 10, x FOR PEER REVIEW 6 of 16 
 

 

5 10 15 20 25 30 35
-25

-20

-15

-10

-5

0

M
ag

ni
tu

de
/d

B

Freq/GHz  
Figure 6. Spectrum curve of a single U-shaped slot resonator. 

According to the literature [40], for very thin conductors (that is, thickness→0), the 
expression of the characteristic impedance Z0 is as follows: 

𝑍଴ = 𝜂2𝜋ඥ𝜀௥௘ ln ቎𝐹𝑢 + ඨ1 + ൬2𝑢൰ଶ቏ (5)

where ɛre is the effective dielectric constant, η = 120π Ω is the wave impedance in free 
space, u = L2 / h, and  𝜀௥௘ = 𝜀௥ + 12 + 𝜀௥ − 12 ൬1 + 10𝑢 ൰ି௔௕

 (6)

𝑎 = 1 + 149 𝑙𝑛 ቌ𝑢ସ + ቀ 𝑢52ቁଶ𝑢ସ + 0.432ቍ + 118.7 𝑙𝑛 ൬1 + ቀ 𝑢18.1ቁଷ൰ (7)

𝑏 = 0.564 ൬𝜀௥ − 0.9𝜀௥ + 3 ൰଴.଴ହଷ
 (8)

𝐹 = 6 + (2𝜋 − 6)𝑒𝑥𝑝 ቈ− ൬30.666𝑢 ൰଴.଻ହଶ଼቉ (9)

The accuracy of this expression applies to εr ≤ 128 and 0.01 ≤ u ≤ 10. 
From Equation (11), the width L2 of the Z0 = 50 Ω trapezoidal microstrip can be ob-

tained. Due to the limitation of processing accuracy, the size adjustment step length of 
numerical simulation cannot be lower than the process requirements of chipless tag 
manufacturing. According to the relevant theoretical formula of the U-shaped slot 
[38,39], after the HFSS software simulation and design, the structural parameters of the 
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Figure 6. Spectrum curve of a single U-shaped slot resonator.

Considering that this structure generates second harmonics at 17.67 GHz, the fun-
damental frequency of the shortest U-shaped slot cannot exceed 17.67 GHz. Otherwise,
the second harmonic of the longest slot interferes with the encoded data onto the shortest
slot and eventually causes bit errors. Therefore, the available coding frequency band is
8.28 GHz to 17.67 GHz. The bandwidth occupied by a single resonator is 40 MHz. If the
guard band of the spectrum-characteristic notches of adjacent resonators is 260 MHz, the
31-bit frequency position code can be formed in the available frequency band, and the
largest code states can reach 231.
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According to the literature [40], for very thin conductors (that is, thickness→0), the
expression of the characteristic impedance Z0 is as follows:

Z0 =
η

2π
√

εre
ln

 F
u
+

√
1 +

(
2
u

)2
 (5)

where εre is the effective dielectric constant, η = 120π Ω is the wave impedance in free
space, u = L2 / h, and

εre =
εr + 1

2
+

εr − 1
2

(
1 +

10
u

)−ab
(6)

a = 1 +
1
49

ln

(
u4 +

( u
52
)2

u4 + 0.432

)
+

1
18.7

ln
(

1 +
( u

18.1

)3
)

(7)

b = 0.564
(

εr − 0.9
εr + 3

)0.053
(8)

F = 6 + (2π − 6)exp

[
−
(

30.666
u

)0.7528
]

(9)

The accuracy of this expression applies to εr ≤ 128 and 0.01 ≤ u ≤ 10.
From Equation (11), the width L2 of the Z0 = 50 Ω trapezoidal microstrip can be

obtained. Due to the limitation of processing accuracy, the size adjustment step length
of numerical simulation cannot be lower than the process requirements of chipless tag
manufacturing. According to the relevant theoretical formula of the U-shaped slot [38,39],
after the HFSS software simulation and design, the structural parameters of the 6-bits
U-shaped slot resonator are finally determined in Table 1.

Table 1. The 6-bits U-shaped slot resonator structural parameters values (unit: mm).

L1 W1 L2 W2 L w g b m p

10.5 16.7 3.06 6.62 7 0.3 0.9 0.7 0.5 0.5

Figures 7 and 8 show the resonance curves of the 4-bits coding tags, namely ID111111,
ID111000, ID101010, and ID010101. The ID111111 tag is considered the reference tag. The
six resonance spectral notches of the reference tag ID111111 are 6.09, 6.37, 6.76, 7.21, 7.79,
and 8.30 GHz, respectively. The notch depth of the spectrum characteristic is between
−19 dB and −32 dB. The corresponding spectrum width of each resonator is narrow. The
spectrum notch is deep, and the spectrum utilization rate is high.
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4. Experimental Results

Figure 9 is the test system of a retransmission chipless tag based on multi-state
resonators. The experimental setup architecture was composed of a UWB reader, Tx/Rx
antennas and a chipless tag. A Ceyear vector network analyzer 3672D was used as an
alternative to the UWB reader. The two ports of the network analyzer were, respectively,
connected to the L-shaped slot-loaded stepped-impedance UWB antennas [41], which
were orthogonal to each other to improve the transceiver isolation of the reader. The
tag was connected to two orthogonal L-shaped slot-loaded stepped-impedance UWB
antennas through two microwave adapters. In order to prevent the received signal and
the transmitted signal of the tag from interfering with each other, the two-sided UWB
antennas of the tag were also orthogonal to each other. Both the reader antennas and
the tag antennas were fixed on the foam, 10 cm apart. The gain of the L-shaped slot-
loaded stepped-impedance UWB antenna was 4 dBi to 8.54 dBi in the range of 2.39 GHz to
13.78 GHz.
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The experimental setup architecture was composed of a UWB reader and a chipless
tag. The two ports of the network analyzer were, respectively, connected to the UWB
antennas, which were orthogonal to each other to improve the transceiver isolation of
the reader. The chipless tag needed two orthogonal transceiver antennas; similarly, the
chipless reader also needed two orthogonal transceiver antennas which would not affect
each other. The polarization characteristics of the transmitting antenna of the reader and
the receiving antenna of the tag were the same. The polarization characteristics of the
receiving antenna of the reader and the transmitting antenna of the tag were the same.
The receiving antenna of the reader received the signal that was transmitting from the tag;
however, the transmitting antenna of the reader would not receive any signal from the tag.

In accordance with the simulated U-shaped resonator chipless tag structure, sev-
eral typical coded chipless tags with a coding capacity of 6 bits were produced, namely
ID111111, ID010101, ID101010, ID111000, and the photo is shown in Figure 10. A simulated
current vector of the U-shaped slot resonator is shown in Figure 11.
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The simulation and the measurement results of the 6-bit U-shaped slot resonators are
shown in Figure 12. Figure 12a shows that the six U-shaped slot resonators correspond to six
resonance points. The simulation and the measurement results are consistent. A 100 MHz
frequency deviation appeared at the 5th resonance point. The value is within the allowable
resonator bandwidth, so it does not affect the encoding state of the tag. Figure 12b–d
show that, after removing the U-shaped slot, the corresponding simulated and measured
resonance points also disappeared, and that the simulation and measurement results are
the same. Figure 12 illustrates that the bandwidth of each resonator in the measurement
result is broadened compared to that of the simulation result, and the simulation result
of the lost arm is larger than the measurement result. The UWB antenna is connected to
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the resonant circuits by the connector. Although the connector can produce the insertion
loss during the measurement, the spectral characteristics of the measured tag can correctly
reflect the coding data of the tag, which does not affect the use of the tag.
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5. Discussion

The U-shaped slot resonator is used in retransmission chipless tag RFID systems. It
brings a lot of advantages to this design. To compare it to other similar work, Figure 13
shows the schematic diagrams of our design and the other U-shaped slot chipless tag [34].
Our work is shown in Figure 13a. Md Aminul Islam et al. [34] used embedded U-shaped
slots based on self-resonance. The electric field must be excited along the direction of the
U-shaped slot opening. In our work, the Rx UWB antenna received the interrogation signal
and the cascade U-shaped slot resonators changed the structure of the UWB spectrum.
Then, the Tx UWB antenna transmitted them to the reader. For our design, the strength of
retransmission signal is much greater than the comparison tag in Figure 13b. The coupling
effect between the resonators is weak. The chipless tag in our design has high sensitivity, is
long in distance, is omnidirectional, etc.
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Figure 13. (a) Schematic of the designed tag based on the retransmission chipless tag; (b) the structure proposed by Islam
which used embedded U-shaped slots based on self-resonance.

The resonance frequency of a U-shaped slot resonator is determined by the length of
the slot and the influence of other parameters, such as the slot width (w) of the U-shaped slot
and the distance (b) between the resonators, which are shown in Figures 14 and 15. When
the length of the U-shaped slot resonator is 7 mm, the resonance curves corresponding to
the change in w from 0.1 mm to 0.7 mm in steps of 0.1 mm is shown in Figure 14. When the
slot w changes, the width of the resonance point is unchanged. As the w of the slot narrows,
the resonance frequency decreases, and the notch corresponding to the resonance point
deepens. The resonance characteristics of b are adjusted to study the coupling effect of
U-shaped slot resonators (Figure 15). The b decreases and the notch depth of the resonators
deepens, but the resonance frequency is almost unchanged, indicating that U-shaped slot
resonators are minimally affected by the coupling effect.
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The resonance characteristics of tags with different dielectric constants (Figure 16)
and dielectric thicknesses (Figure 17) are studied to directly print the chipless tag of the
U-shaped slot resonator structure on materials of different thicknesses, like a barcode.
Figure 16 shows that, when the dielectric constant of the medium is 2.2, 2.55, 2.65, and
3.0, the resonance frequency decreases with increasing dielectric constant εr. When the
printed materials are different, the frequency position needs to be re-encoded, and the
frequency position code of the reference tag needs to be re-encoded. Figure 17 illustrates
the tag resonance curve obtained by changing the substrate thickness from 0.5 mm to 2 mm
in steps of 0.5 mm. The resonance frequency corresponding to the U-shaped slot resonator
changes slightly when the thickness is changed, but the resonance frequency increases as
the thickness increases.
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Figures 18 and 19 show the resonance curves of the resonator with the longest side
length and the resonator with the shortest side length, as the number of resonators constitut-
ing the chipless tag is increased to 31 bits. Through HFSS software simulation, it was found
that the side length of the U-shaped slot resonator with the shortest side length and the
longest side length is 2.9 mm and 11 mm, respectively. The side length difference between
adjacent resonators is 0.27 mm. At the same time, the width of all U-shaped slot resonators
is the same, at 2.9 mm. The dimension of the 31-bits chipless tag is 113.94 mm × 21.2 mm.
The cascades of the U-shaped resonators are arranged side by side. The resonant frequency
of the shortest resonator in the 31-bits chipless tag is 13.88 GHz. Meanwhile, the longest
resonator corresponds to a resonant frequency of 4.7 GHz.

Capacity
(

bits/cm2
)
=

number of bits
size(cm2)

(10)

Spectral capacity (bits/GHz) =
number of bits

frequency bandwith(GHz)
(11)
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Table 2 lists the performance comparisons of various types of retransmission chipless
tags. The U-shaped slot resonator chipless tags proposed in this paper are simple in design,
with high Q-value and small size. The capacity is 1.03 bits/cm2. The spectral capacity
is 2.71 bits/GHz. Compared to other retransmission chipless tags, such as ref. [21], the
designed 6-bit U-shaped slot resonator has insufficient spectral capacity. However, due
to the high Q value of the U-shaped slot resonator, the spectrum utilization rate is high.
The substrate size of the 6-bit tag is designed to be 30 × 19.5 mm2. Adding a resonator
can increase the encoding capacity of the tag. However, the tag size of the U-shaped
slot resonator will not be too large. The tag performance designed in this paper can be
expanded.

Table 2. Comparison of different types of retransmitted chipless tags.

Resonator Type Frequency Band
(GHz) Q-Value Capacity (bits/cm2)

Spectral Capacity
(bits/GHz) Size (mm ×mm)

Spiral [21] 3–7 - 0.61 8.75 88 × 65
Open stubs [23] 1.9–4.5 8 0.17 3.08 80 × 60
Open stubs [24] 4–9 13 0.24 3.2 110 × 60

Microstrip coupled
spiral [25] 5–10.7 - 0.09 1.05 107 × 65

Modified
complementary split

ring [26]
6.8–11.2 - 0.07 1.82 140 × 80

Open loop [27] 3–6 30 0.25 2.67 85 × 38
CPW [28] 3.3–5.5 11 0.09 3.64 154 × 55

U-shaped slot
(Proposed) 6.09–8.30 207 1.03 2.71 30 × 19.5

6. Conclusions

In this paper, a compact U-shaped slot resonator chipless tag based on a retransmission
structure is proposed. The resonance unit uses a U-shaped slot resonator with a high Q-
value. This type of resonator has a weak mutual coupling effect and is suitable for multi-bit
chipless tag design. Given the influence of the second harmonic of the U-shaped slot
resonator, this tag can only work in the 8.28–17.67 GHz frequency bands. Finally, 6 bits
of U-shaped slot resonators are produced for testing, and results have fully verified the
feasibility of this type of chipless tag. Considering that the chipless tag does not need to
use any silicon-based circuit or semiconductor device groups, the cost of the tag is low.
Moreover, the tag has the same printable characteristics as the barcode, thereby presenting
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its potential to replace the barcode and be put to wide use in logistics, supermarkets, and
other fields.
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