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Abstract: In this paper, we propose a viewpoint-aware action recognition method using skeleton-
based features from static images. Our method consists of three main steps. First, we categorize
the viewpoint from an input static image. Second, we extract 2D/3D joints using state-of-the-art
convolutional neural networks and analyze the geometric relationships of the joints for computing
2D and 3D skeleton features. Finally, we perform view-specific action classification per person,
based on viewpoint categorization and the extracted 2D and 3D skeleton features. We implement
two multi-view data acquisition systems and create a new action recognition dataset containing the
viewpoint labels, in order to train and validate our method. The robustness of the proposed method
to viewpoint changes was quantitatively confirmed using two multi-view datasets. A real-world
application for recognizing various actions was also qualitatively demonstrated.

Keywords: still image action recognition; skeleton-based action recognition; viewpoint estimation

1. Introduction

Human action recognition is useful in analyzing human behaviors and interactions
for intelligent surveillance, human–computer interaction, and many other practical user
interface/experience applications [1–3]. Robust representations and feature extraction for
a human model play an important role in robotics applications. Recently, deep features
extracted from a large amount of image data have shown impressive recognition results for
practical applications. Although their recent performance on several still-image databases
has almost been saturated, the real-world applications are still challenging, because of
intra-action variations due to different visual appearances, such as various backgrounds
and textures of foreground actors, and camera viewpoints.

To overcome these issues, we utilize a fine-tuned human body detector and pre-trained
Convolutional Neural Networks (CNNs) for building 2D/3D skeletons [4–8]. This is because
the visual variations of foreground actors and background texture can be simplified using
skeleton-based representations. Given a static RGB image as an input, we can detect human
bodies in 2D regions of interest (ROIs) and their main body orientation. Moreover, we
learn a relative camera viewpoint for each person, by using real and synthetic images.
After training the view-specific action classifiers, an action label is identified based on
the combination of 2D skeleton feature from a selected viewpoint and view-invariant 3D
skeleton feature in space.

Specifically, the contributions of our study are summarized as follows: First, we
introduce a viewpoint as a latent variable for an action label, which is learned in a super-
vised manner during the training of real/synthetic images. Our CNN-based detector is
fine-tuned with high-quality rendered images using reconstructed avatars. Second, we
utilize three different CNN architectures to localize a human body, its 2D/3D joints, and
connect them with our work together. Two skeleton features from view-dependent 2D and
view-invariant 3D joint sets are computed and concatenated for training and testing view-
specific Random Forest (RF) classifiers [9], by defining skeletal representations as Euclidean
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distances between every pair of joint positions [8]. Hence, the proposed approach is robust
to viewpoint changes and foreground/background texture, which is validated with the
Human3.6M dataset [10] (fifteen actions from four viewpoints) and a database collected
from our system (ten actions across eight viewpoints). Figure 1 shows two examples of the
input images and detected actions.

Raising One Hand (4)Sitting (1)

Figure 1. Examples of our view-specific action recognition.

2. Related Work

In this section, we discuss the previous studies related to skeleton-based action recog-
nition using single images, view-invariant action representation, and the generation of
synthetic human databases.

Still Image based Action Recognition: Existing methods for human action recogni-
tion typically exploit a large number of labeled action images on the web, and they often
require either image-level or video-level annotations as well [11,12]. Given image-level
training data, still image-based approaches identify the action or behavior of a person from
only a single test image [1]. In this case, only single images are sufficient to distinguish
some actions (e.g., smiling, sitting, and standing). For real-time applications, one/few-shot
action recognition aims at recognizing unseen action categories when a single reference or
a small amount of training examples is available (e.g., when the target action categories
are not present in the current publicly available datasets) [13,14]. In contrast to temporal
action recognition, this study focuses on the skeleton-based representation from a single
image to simplify the visual patterns of actions.

Skeleton based Action Recognition: Human action is produced by articulated body
movements. While some engineered features with RGB or RGB-D datasets often fail for
ambiguous images/videos, skeleton-based representations have become more popular
than traditional approaches, because of the development of cost-effective depth sensors
and pose estimation algorithms [3,15,16]. In particular, our representation is inspired by the
methods in [6,8], where a body pose appearing in an image is expressed by all the relative
distances between every pair of joint locations. By extending this metric, we develop a
skeleton-based action descriptor and train a classifier in the context of action recognition.

View-invariant Action Representation: In addition, the action can be simultaneously
captured as a set of snapshots from multiple viewpoints [17]. When actors are captured
by various cameras at different poses, view-invariant features can be used to classify
action descriptors effectively. Previous studies have proposed low-level feature based,
high-level model based methods, and mostly hybrid approaches for robust cross-view
action recognition [18,19]. Similar to the methods in [20,21], our work considers a 3D
skeleton feature to recognize human actions across different views. In addition, we learn
view-specific classifiers using 2D skeleton data and select them to improve the recognition
performance from several canonical viewpoints.

Generation of Synthetic Human Database: Several data augmentation techniques
have been utilized to improve the performance of action recognition [22,23]. We refer to
selected examples that are most relevant to a synthetic human database. For human 3D
pose estimation, Chen et al.rendered a parametric shape completion and animation of
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people (SCAPE) model with various viewpoints, clothing, and light sources, and then
composited it with real-world backgrounds [24]. Similarly, Varol et al.generated synthetic
training images from a 3D motion capture system. The synthetic bodies were parameterized
using the skinned multi-person linear (SMPL) model [25]. As a computer graphics pipeline
often causes a visual difference between the training and testing domains, we built a
multiple DSLR camera system to acquire realistic shapes and textures of actors from
arbitrary viewpoints [26] and utilized the Adobe Mixamo motion templates to retarget
reconstructed, rigged people for various actions [27].

3. Revisiting Monocular Joint Detectors

In computer vision, the human body is digitalized as quantitative parametric rep-
resentations from skeleton-based, contour-based, volume-based, and other approaches.
Contour-based or volume-based models usually focus on the silhouette of a person and
the boundaries in 2D or the geometric meshes and shapes captured from expensive depth-
aware devices. In contrast, a skeleton model consists of a set of joints (keypoints), such as
ankles, knees, shoulders, elbows, wrists, and limb orientations, comprising the skeletal
structure of the human body. Owing to the relatively low dimensional parameters, this
model is widely used in both 2D and 3D human pose estimation, which is also related to
markerless motion capture techniques.

Human pose estimation refers to the problem of localization of human joints in images
or videos. For example, it estimate a pixel location (x,y) for each joint from a RGB image.
Most pose estimation methods have been greatly reshaped by CNNs, by replacing hand-
crafted features and graphical models. Hence, recent methods require a huge amount
of body parts (also known as keypoints) annotations and learn to associate body parts
with individuals in an image. The process of monocular 3D pose estimation also involves
the prediction and analysis of keypoints. Given a single image, most monocular joint
detectors determine the keypoint locations of a 3D human body, based on well-developed
deep learning frameworks. For example, we can directly regress the joint locations of a
body model in a data-driven manner. In addition to learning 3D joint annotations, state-
of-the-art methods exploit parametric human models, such as SMPL, extended SMPL,
and Adam, to fit the predefined 3D body representation iteratively. To reconstruct 3D
joint angles, several types of inputs, such as 2D keypoint score maps, depth heat maps,
body part segmentation, and DensePose maps, can be considered. This optimization
step is particularly important when pure 3D annotations are not sufficient to train deep
representations or mixed annotations are available instead. One example of monocular 3D
joint detectors is shown in Figure 2.

Figure 2. Example of monocular 3D joint detector (Adapted from ref [7]).

On top of this, our approach for viewpoint invariant action recognition consists of
three main parts. As described in Algorithm 1, we first categorize a viewpoint from an
input static image. Then, we extract 2D/3D joints using the state-of-the-art CNNs and
analyze the geometric relationship of the joints for computing 2D and 3D skeleton features.
Finally, we perform view-specific action classification per person based on viewpoint
categorization and extracted 2D and 3D skeleton features. To train and validate our
method, we implemented two multi-view data acquisition systems and created a new
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action recognition dataset with the main body orientations of actors (viewpoint labels). An
overview of the proposed method is presented in Figure 3.

For skeletal analysis in this study, we adopt existing, pre-trained deep networks for
predicting and optimizing 2D and 3D joint location. For example, the well-known 3D joint
detector, Monocular Total Capture (MTC) [7], inputs an image into regression networks. In
the subsequent phase, the outputs of the network, namely joint confidence maps and 3D
part orientation fields (similar to the 2D part affinity fields in OpenPose [6]), are used to
reconstruct the initial parameters of the Adam model. The joint locations are optimized by
fitting a deformable human model with the image measurements processed by the CNNs.
However, the accuracy is severely affected by the 2D heatmap detection. As the observed
data-driven results are not consistent with viewing angles, we mainly focus on applying
the detected joint locations for action classification.

3D Joint Locations

2D-to-3D

Lifting

Adam model

…

View-specific Action Classification

𝑣∗

𝑣∗

Viewpoint 

Categorization

Viewpoint Awareness

Collected DB (8 Viewpoints)

2D Joint Locations

Skeletal Analysis

Pose 

estimator

View-specific

Action Classification

Output

Static Images

Input

Virtual Avatars Simulated DB

Training

Skeleton Feature 

(2D/3D EDMs)

Annotations

(Actions in 8 views)

Multi-view Systems

Figure 3. Algorithm overview.

Algorithm 1 Still image based classification

Require: Static image-level viewpoint and action annotations: (vgt, Lgt)
1: Synthetic data augmentation for viewpoint awareness (using virtual avatars)
2: Train view-specific RF classifiers with action and viewpoint annotations: RF v
3: for snapshots = 1, 2, . . . do
4: 1) Viewpoint classification for each actor [5]: v∗

5: for detected actors = 1, 2, . . . , N do
6: 2) 2D, 3D joint estimation [6,7]: (p2D

i , p3D
i ) (i = joint locations)

7: Skeleton representation [8]: (E2D
v∗ , E3D)

8: 3) View-specific action classification [9]: L∗
9: end for

10: end for

4. Viewpoint-Aware Action Recognition

Human body orientation (i.e., human viewpoint with respect to a camera) is an
important attribute for resolving the view-specific ambiguity of projected body parts.
Depending on the viewpoint, an action of the same person can be projected differently.
The performance of action recognition is affected by the viewpoint between the camera
and the object. Therefore, considering the viewpoint as a latent variable for the action
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label could be a promising solution. For viewpoint awareness, our method contains
multiple view-specific action classifiers for each viewpoint. Given an input image, our
viewpoint categorization network predicts the viewpoint for choosing the proper the action
classifier. Each action classifier uses the 2D/3D skeleton-based features as inputs. As the
2D skeleton-based features are different for each viewpoint, they are trained separately
according to the viewpoints. Both 2D/3D skeleton-based features are computed from the
2D/3D joint locations estimated using a human pose estimation algorithm. Finally, the
selected skeleton-based features are passed to the selected action classifier to predict the
action label.

4.1. Network Architecture for Viewpoint Categorization

For simplicity, we assume that the candidate viewpoint angles are eight bins at 45◦.
Our viewpoint categorization network is based on YOLO [5], already pre-trained over
a large scale image collection. This is because the backbone network is one of the state-
of-the-art CNN architectures for image classification, which can be easily replaced by
deeper architectures together with increasing RGB image datasets for a better recognition
performance. The pre-trained CNN model handles 80 categories for cross-subject object
detection; hence, we changed the last loss layer to map linearly to the PERSON category
with eight viewpoint labels. Subsequently, the modified YOLO network with a new loss
layer is fine-tuned with viewpoint annotation, and the remainder of the post-processing is
the same as in [5]. The estimated viewpoint, v∗, from the categorization network is used
to select a view-specific action classifier with view-dependent 2D skeleton-based features.
The output of our viewpoint categorization network is the detection of human actors from
the estimated viewpoint, v∗.

4.2. Avatar-Based Data Augmentation

In general, data augmentation has been proven to benefit the training of deep archi-
tectures. It typically consists of applying a set of transformations in either data or feature
spaces, or even both. In the proposed framework, we further improve the viewpoint
categorization performance by adding an adequate number of viewpoint samples from
a virtual avatar-based simulation. To the best of our knowledge, this study is the first
attempt to use synthetic human samples of DSLR-quality for viewpoint categorization and
action recognition; thus, there is a smaller synthetic–real domain gap than the existing
dataset. With data augmentation by other standard transformations, new samples are
added to pre-existing real data. The most common augmentations generate new samples
by applying certain transformations to the pre-existing data, and synthetically producing
new samples and annotation data at hand. As a regularizer, the proposed framework
avoids overfitting and increases generalization capabilities. It is well-known that deep
learning can benefit from a large amount of annotated data. The problem of learning a
categorical camera viewpoint is not an exception.

4.3. Skeleton-Based Features from Still Images

As our view-specific action classifiers take 2D skeleton-based features as input, we
first compute 2D body skeleton joints from a static RGB image. The skeleton information
in single RGB images is extracted from human pose estimators based on deep learning
techniques [6]. After deriving view-dependent 2D joint positions, we exploited another
third-party software package and its 2D-to-3D database to derive its corresponding 3D
joint positions [7]. In practice, our system integrates two submodules for efficient and
simple inference. Using the spatial coordinates of the selected 15 joints, we calculated the
Euclidean distances between the 2D or 3D joint locations pi and pj to consider the 15 × 15
Euclidean Distance Matrix (EDM) as a relationship of the body parts [8].

EDMU
i,j =

√
(pi − pj)2, s.t. 1 ≤ i < j ≤ 15. (1)
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Only the non-diagonal, upper triangular elements in this affinity matrix are expressed
as a 105-dimensional skeleton feature, E . Depending on the extracted 2D or 3D joints, we
can compute the 2D and 3D skeleton features for a specific spatial structure of the human
body. All the skeleton features were normalized with the total length of all the relative
distances between the visible joints. The distance involving a non-visible joint was zero.
The 2D skeleton-based features and 3D skeleton-based features are denoted as E2D

v and
E3D, respectively. Note that v is a viewpoint, and that the 2D skeleton features are affected
by viewpoints. The set of viewpoints that we consider as human body orientations for
view-specific feature fusion consists of eight angles, v = {0◦,±45◦,±90◦,±135◦, 180◦}.
Figure 4 shows an example of the visualization of skeleton-based features.

0-0 0-1 0-2 0-3 0-4
…

0-N

1-1 1-2 1-3 1-4
…

1-N

2-2 2-3 2-4
…

2-N

3-3 3-4
…

3-N

4-4
…

4-N

… …

N-N
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9 12
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14
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1

Adam model

Viewpoint 

Estimation

(a) (b)

Vectorized 2D EDM,  Vectorized 3D EDM, 

Selected N Joints from 

OpenPose BODY_25 (N=15)

2D Euclidian Distance Matrix (EDM)

Figure 4. Skeletal representation: (a) skeletal representations derived from [6,7]; and (b) example of
skeleton-based features. The vectorized EDMs were concatenated to form an action descriptor. Note
that 2D EDM is highly affected by the camera viewpoint.

4.4. View-Specific Action Classification

Our view-specific action descriptor is defined as differently concatenated 2D and
3D skeleton features. Given a viewpoint v∗ estimated via viewpoint categorization, we
consider a 2D skeleton-based feature E2D

v∗ . Here, the viewpoint for encoding the action
descriptor is a latent variable for an action label. Our action classifiers RFv∗ are based on
the Random Forest classifier trained over images in the viewpoint, respectively, and the
selected classifier predicts the final action label as

L∗ = RFv∗
(
E2D

v∗ , E3D), (2)

where L∗ is the predicted action label. As the 2D skeleton features are heavily affected by
viewpoints v (0◦,±45◦,±90◦,±135◦, 180◦), RF classifiers RFv are trained and tested with
the concatenated 2D/3D skeleton feature E2D

v , E3D, according to the five body orientations.
Here, the viewpoint for encoding a skeleton feature is a latent variable for our action label
(0◦,±45◦,±90◦,±135◦, 180◦). Through cross-entropy loss, L∗ is compared with the human
annotated ground truth action label Lgt for training. Each view-specific action classifier
was trained separately for each view.

5. Experimental Results

In this section, we describe the procedures and results of our experiments, and discuss
the benefits of the skeleton-based feature with viewpoint categorization, the lifted 3D skele-
ton feature, and our viewpoint-aware representation for view-invariant action recognition.
A practical application of a mobile platform is also demonstrated.

5.1. System Setup

As few multi-view datasets with static image-level action annotations are currently
available, we built our experimental setup using synchronized eight RGB cameras (2048 ×
1536 pixels, The Imaging Source) and nine LED lighting sources. For each camera viewpoint,
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we manually confirmed image-level action annotations. We also utilized synthetic human
models reconstructed using 80 Nikon DSLR cameras and eight additional strobe lighting
sources, to improve the performance of viewpoint categorization. With synchronization
hardware, the first system provides an adequate amount of training and testing data for
still image action recognition, and the second system accumulates realistic body templates
with different body orientations for view-invariant action recognition. Figure 5 shows our
avatar-based data augmentation for viewpoint categorization.

(a) (b)

Figure 5. Avatar-based data augmentation: (a) example of a reconstructed, and rigged virtual avatar;
and (b) motion retargeting for viewpoint simulation

5.2. Data Collection

We captured eight human subjects and simulated ten virtual avatars to collect training
and testing samples from eight camera viewpoints. During acquisition, all subjects were
asked to perform ten types of static postures (a state of doing something). The categories
of actions L are STANDING (0), SITTING (1), BOWING (2), HOLDING (3), RAISING ONE

HAND (4), ONE HAND ON FACE (5), RAISING TWO HANDS (6), TWO HANDS ON HEAD

(7), LEFT POINTING (8) and RIGHT POINTING (9). Figure 6 shows the examples of captured
images. For these postures, a single static image is sufficient to distinguish the pre-defined
actions. Note that there are eight body orientation annotations, according to the cam-
era viewpoints, v = {0◦,±45◦,±90◦,±135◦, 180◦}. However, the information for action
recognition, according to each viewpoint, is not identical.

The Human3.6M (H3.6M) dataset consists of videos containing 3.6 million images, and
they were recorded from four camera viewpoints [10]. Each video shows a human subject
performing a target action without setting the exact action time. For the evaluation in Table
1, we collected video-level samples without image-level action annotations. Among the
11 subjects with 15 actions, we used five subjects (S5–S9) for the training and two subjects
(S1 and S11) for the testing. We selected seven video samples to obtain a balanced number
of images for fifteen static postures, but randomly split the train and test samples for
evaluation. Manual viewpoint annotations are required for randomly selected frames for
training and testing. In contrast, our database using eight cameras provides not only static
image-level action annotation but also eight groups of viewpoint annotations. We were
able to train eight viewpoint-specific classifiers with all the action descriptors according to
the annotated main orientations.

In addition, Figure 5a shows our multi-view camera system that takes synchronized,
high-resolution images from 80 DSLR cameras. From the captured DSLR images, we
acquired high-quality human avatar templates using the multi-view stereo reconstruction
software (e.g., Reality Capture), as shown in Figure 5b. We automatically performed
rigging (Figure 5c) and retargeting (Figure 5d) by using free action templates from the
Adobe Mixamo for reconstructed avatar model. In the retargeting stage, we gathered more
than 50,000 backgrounds by excluding images in the PERSON category. Then, we randomly
rotated the animated actors by 45◦ and composited multiple actors over one of the collected
background images. Our annotation for the categorical viewpoints and bounding boxes
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of actions can be automatically computed. In Figure 5d, two examples and viewpoint
annotations are provided with random backgrounds.

5.3. Quantitative Comparison

Our focus in this paper is to combine viewpoint categorization and 2D/3D skeleton-
based features for action recognition. Hence, we evaluated the quantitative performance of
our feature representations with ten different configurations using two multi-view datasets.
For the comparison in Table 1, the skeleton features can be obtained via two methods:
EDM and EigenJoint. We report the results from two different baseline methods and three
view-invariant skeleton feature combinations. For viewpoint invariance, one method is
to utilize a 3D skeleton instead of directly using the detected 2D joints, and the other is
to combine viewpoint-specific 2D and view-invariant 3D skeleton features. In the last
method, we further scale up the volume of training datasets by adding the synthetic data.
In our experiment, the proposed design choices were effective for skeleton-based action
recognition.

Standing (0), d000 Sitting (1), d045 Bowing (2), d090 Raising One Hand (4), d135

One Hand on Face (5), d180 Raising Two Hands (6), d45 Two Hands on Head (7), d90 Left Pointing (9), d135

Subject 1 (Test) Subject 2 (Test) Subject 3 (Train) Subject 4 (Train)

Subject 5 (Train) Subject 6 (Train) Subject 7 (Train) Subject 8 (Train)

Figure 6. Data collection. Ten action categories from eight viewpoints were defined in the database.

Table 1. Quantitative comparisons.

Feature Representations Human3.6M
[10]

8-View DB
(Ours)

k-
N

N

2D Skeleton [6] & EDM [8] 25.97% 72.14%

EigenJoint [16] 26.13% 72.29%

3D Skeleton EDM [7] 31.8% 74.35%

View specific 2D + 3D EDMs (No sim.) 43.56% 81.01%

View specific 2D + 3D EDMs (Ours) 47.32% 85.57%

R
F

2D Skeleton [6] & EDM [8] 25.63% 75.08%

EigenJoint [16] 25.52% 74.79%

3D Skeleton EDM [7] 32.75% 78.63%

View specific 2D + 3D EDMs (No sim.) 45.44% 86.21%

View specific 2D + 3D EDMs (Ours) 50.91% 89.67%

Specifically, the first experiment for factor analysis was to share a common classifier
for the detected 2D features across all the viewpoints. As shown in Table 1, the dimension-
reduced action descriptor in [16] for the predicted 2D skeleton is similar to the EDM
method for measuring the position differences of the joints of interest. There was only a
marginal difference between our EDM feature and the PCA-based feature, particularly
when handling single frames. The third experiment utilized a 3D skeleton instead of simply
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using the detected 2D joints. The benefit of 3D information was confirmed, as observing
the result obtained using 3D skeleton feature was better than the obtained using the 2D
skeleton only. Our method for skeleton representation combines viewpoint categorization
with a fine-tuned human body detector and 2D/3D skeleton-based feature fusion. Not
surprisingly, all the 2D-based approaches with viewpoint categorization and viewpoint-
specific classifiers were better than the cases with only one common appearance model.

In practice, the extracted skeleton features can be classified using any other machine
learning methods, e.g., k-Nearest Neighbors (kNN) and Random Forest (RF). In general, the
RF classifier handles the missing values and maintains the accuracy of a large proportion
of data with higher dimensions. On top of that, the benefit of using simulated images for
data augmentation is also observed. The use of synthetic training images increases the
diversity in terms of visual appearance of viewpoints, and achieves a better performance in
action recognition for both classifiers. As long as the interpolated simulation was bounded
to real-world samples, we verified the improved performances in both datasets. Based on
view-specific 2D and view-invariant 3D skeleton representations, the proposed method
outperformed all the other methods under all conditions. We compared the performance
of the proposed methods using two multi-view datasets, respectively.

5.4. Application

The proposed skeleton-based action recognition with viewpoint categorization was
effective even in a new real-world situation. We define the action of a person using only a
single RGB image and predict an action label at every input frame, which is suitable for low-
cost, real-time applications. Using collected viewpoint annotation from real and synthetic
data and still-image action labels, we implemented our software for a GPU server, a mobile
app for any device with the Android platform, and a communication module with the TCP
socket interface. As shown in Figure 7, we demonstrated the effectiveness of our system
for real-world applications. With multi-threading in the GPU server, we also estimated the
viewpoint of the camera relative to an actor and view-specific 2D skeleton feature at 10–15
frames per second. For this operation mode, our system worked well in the real-world and
real-time. This was sufficiently good for our mobile app to perform skeleton-based action
recognition using viewpoint categorization. Our viewpoint-aware method qualitatively
shows better action classification performances for all eight viewpoints than that without
viewpoint categorization.

GPU 

Server

Snapshot 

(TCP packet)

Prediction (action label)Android

Processing

(a)

(b)

Figure 7. Application: (a) an example of inputs for mobile applications; and (b) our qualitative
results.

6. Discussion

Currently, no other multi-view action databases such as NTU-RGB+D [28], IXMAS
[29], and i3DPost multi-view human action and interaction datasets [30] have viewpoint
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labels for actors. Thus, we chose the Human3.6M dataset, action videos collected from
different viewpoints, and manually obtained image-level action and viewpoint labels with
five annotators. In a video sample, the actors can freely rotate their main direction and often
show various undefined actions. In contrast, our system using eight synchronized cameras
carefully captures static-image-level actions and eight groups of viewpoint annotations. By
digging camera viewpoints, our study validates the importance of a viewpoint to clarify
human actions better.

The use of skeleton data is intended for robustness to illumination and visual appear-
ance in solving the action classification problem. Several skeleton-based methods that use
graph convolutional networks to benefit from the graph structure of the skeleton data have
been proposed. In the proposed method, all 2D/3D joint features, which are the Euclidean
distances between body joints, are concatenated and a feature vector is used for action
classification. As a practical application, this method using simple (dis-)similarities to
represent actions was successfully demonstrated on a mobile platform.

However, it is not sufficient to use only one input image for some actions. In addition,
images presented from different perspectives can be often different owing to other optical
factors. To this end, we also observed some failure cases when a target person was
significantly occluded (self-occlusion due to their pose, occlusion by other people or
objects, etc.). In practice, an additional viewpoint is required when crucial joints are not
visible from the input viewpoint. Solving this problem with image-based representation
and a proper mode selection scheme that cannot be handled by our current skeleton-based
representation is an interesting research direction in the future. For example, image-based
deep features from multiple viewpoints can be combined to handle occluded joints [17].
Since we use a 2D detector, action-annotated images can also be used to directly fine-tune
2D CNNs for a deep feature. Combined with our 2D skeleton feature, it may show better
performance than the current approach.

The key idea of the proposed skeleton-based action recognition approach is to consider
a viewpoint as a latent variable for an action label. Hence, we first categorized the viewpoint
of the input image, then extracted the 2D/3D joints using the CNN methods, and finally
built the skeleton data considering the relationship of the joints. Performing skeleton-
based action recognition through viewpoint classification is a practical, effective, and
pragmatic problem-solving strategy. We used simulated images to categorize the main
body orientations as well. Based on the improved viewpoint categorization, we performed
viewpoint-specific action classification in a test image. The robustness of our system to
viewpoint changes was quantitatively validated using two multi-view datasets. Overall,
we think the proposed method is a standard, practical approach for using CNN/RFs. With
more large-scale datasets in the future, we expect to utilize the viewpoints implicitly in
their higher layers in larger and deeper networks for action classification. All types of
human analyses, including 2D/3D joint feature extraction, can be improved by adopting a
concept of viewpoints.

7. Conclusions

In this paper, we propose an approach for static-image action recognition using human
body viewpoint categorization and skeleton-based features. During the training stage, we
utilize a virtual avatar-based simulation to create new human samples of DSLR-quality to
improve the performance of viewpoint categorization. In addition, based on the Euclidean
distances of the detected 2D and 3D joint locations, the proposed method combines view-
specific 2D skeleton features and lifted 3D skeleton features for view invariance. We
evaluated our algorithm using the public dataset Human3.6M and our own database
from eight synchronized RGB cameras. The concatenated action descriptor of the selected
2D EDM and 3D EDM features showed a better performance compared with the two
separate features independently. The proposed method outperformed all other methods
by combining viewpoint-specific RF classifiers. Based on real/simulated DBs, our results
indicate that the simulated data with viewpoint labels gave a boost in action recognition
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accuracy. Finally, a real-world application for practical action recognition was successfully
demonstrated.
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