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Abstract: The Residue Number System (RNS) is a non-weighted number system. Benefiting from
its inherent parallelism, RNS has been widely studied and used in Digital Signal Processing (DSP)
systems and cryptography. However, since the dynamic range in RNS has been fixed by its moduli
set, it is hard to solve the overflow problem, which can be easily solved in Two’s Complement
System (TCS) by expanding the bit-width of it. For the multiplication in RNS, the traditional way
to deal with overflow is to scale down the inputs so that the result can fall in its dynamic range.
However, it leads to a loss of precision. In this paper, we propose a high-precision RNS multiplier for
three-moduli set {2n − 1, 2n, 2n + 1}, which is the most used moduli set. The proposed multiplier
effectively improves the calculation precision by adding several compensatory items to the result.
The compensatory items can be obtained directly from preceding scalers with little extra effort. To the
best of our knowledge, we are the first one to propose a high-precision RNS multiplier for the moduli
set {2n − 1, 2n, 2n + 1}. Simulation results show that the proposed RNS multiplier can get almost
the same calculation precision as the TCS multiplier with respect to Mean Square Error (MSE) and
Signal-to-Noise Ratio(SNR), which outperforms the basic scaling RNS multiplier about 2.6–3 times
with respect to SNR.

Keywords: residue number system; scaler; multiplier; Chinese remainder theorem; very large scale
integration circuits

1. Introduction

The Residue Number System (RNS) is a non-weighted parallel numerical representa-
tion system, which divides the integers into multiple independent ones through modular
operations. Thus, the bit-width of each channel is greatly reduced. As a result, RNS-based
systems have the potential to achieve high calculation speed and low complexity. RNS is
very suitable to process large integer numbers, which makes it extremely useful in cryptog-
raphy [1], such as Elliptic Curve Cryptography (ECC) [2] and Lattice-based Cryptography
(LBC) [3]. RNS has also been widely used in DSP units, such as digital Finite Impulse
Response (FIR) filter in [4,5], adaptive filter in [6], 8-point [7,8], and 16-point [8] Discrete
Cosine Transforms (DCT) and Discrete Fourier Transforms (DFT) [9]. However, since the
calculation of RNS is defined on the modular operations, there are challenges in some basic
operations, such as sign detection [10,11], magnitude comparison [12], residue-to-binary
(R/B) conversion [13], and scaling [14,15], which limits the wide application of RNS.

In DSP application, overflow in fixed point representation is a common issue when
the dynamic range is limited. It mostly happens in multiplication and addition operations,
especially in applications with cascaded architecture, such as Fast Fourier Transform (FFT).
For TCS, this issue can be easily addressed by expanding the bit-width of intermediate
computation results and then converting it back to the original bit-width. This means
that the precision of input operands will not lose, and the computation accuracy is only
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determined by the last conversion step. Meanwhile, the bit-width expansion step is
very simple. In a word, the overflow can be solved simply and accurately by TCS fixed-
point calculation.

However, since the dynamic range of the RNS is determined by its moduli set and
the dynamic expanding in RNS is difficult, it is much more complicated to avoid overflow
compared to TCS. Usually, there are three approaches to handle the overflow problem in
RNS. Figure 1 gives the basic structure of these three approaches in a three-moduli RNS,
for example.

(1) The first approach is based on scaling, as shown in Figure 1a. The input operands
are firstly scaled down to ensure the product result falls in the dynamic range of the
RNS [16]. We call this multiplier a basic scaling RNS multiplier. Unfortunately, the scaling
operation definitely reduces the precision of the input, resulting in a loss of precision of the
product result.

(2) The second approach is based on base conversion, as shown in Figure 1b. The
input operands are firstly converted to a new RNS with larger dynamic range to avoid the
overflow problem, the multiplication results are then scaled down to the original RNS. This
approach will be helpful in some applications, such as the FIR filter. However, in some DSP
algorithms with cascaded multiplication or feedback structure, such as FFT computation
and IIR filter, the overall dynamic range can vary significantly. Thus, the overhead of base
conversion will become unacceptable.

(3) The last approach is based on base extension, as shown in Figure 1c. When the
dynamic range is not enough, one or more bases will be added to extend the dynamic range
of original RNS. The base extension operation is still too complicated to be acceptable.

Figure 1. Three traditional overflow-free RNS multipliers. (a) Scaling-based scheme, (b) Base
Conversion-based scheme, (c) Base Extension-based scheme

All of the above approaches cannot achieve similar performance to that in TCS. The
first will lose accuracy, while the latter two will require complex algorithms and huge
hardware resources.

In the RNS multiplier research, previous work mainly focuses on the efficient imple-
mentation of specific moduli. Chen [17] proposed an efficient modulo 2n + 1 multiplier.
Muralidharan [18] proposed a high dynamic range modulo 2n − 1 multiplier. Zimmer-
mann [19] proposed a joint implementation of the modulo (2n ± 1) multiplier. Hiasat [20]
proposed a generic multiplier for any modulo. Although these implementations can ef-
ficiently and accurately calculate the modular multiplication in each RNS channel, the
precision loss caused by scaling before modular multiplier is ignored. These designs didn’t
consider the overflow problem caused by multipliers in specific DSP applications.

In this paper, we propose a high precision overflow-free RNS multiplier design method.
The proposed RNS multiplier uses a similar idea of avoiding overflow in TCS to get high
computation accuracy and low complexity. Throughout this paper, we choose the common
used high precision RNS multiplier for three-moduli set {2n − 1, 2n, 2n + 1}, which is
widely used in RNS, to illustrate our idea for RNS multiplier design. The proposed
multiplier improves the calculation precision by adding several compensation items to
improve the precision of the result calculated by the scaled inputs. The compensation
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items can be obtained directly from preceding RNS scalers with little extra effort. Figure 2
illustrates the concise structure of the proposed RNS multiplier.

Figure 2. The proposed high precision overflow-free RNS multiplier structure.

The rest of this paper is arranged as follows. In Section 2, we introduce the basic
theory of RNS. In Section 3, we propose two joint scalers and two high precision RNS
multipliers. In Section 4, we explore the structure of proposed multipliers and scalers. In
Section 5, we analyze the calculation performance of the proposed RNS multiplier and
implement the multiplier in Very Large Scale Integration circuits (VLSI) to explore its
hardware performance. Finally, the paper is summarized in Section 6.

2. Introduction of RNS

RNS is defined by a moduli set {m1, m2, . . . , mL}, where mi and mj (i, j = 1, 2, ..., L) are
coprime when i 6= j. An integer X can be represented as

X , {x1, x2, . . . , xL}, (1)

where xi is the residue of X mod mi, we denote it as xi = 〈X〉mi
. Let M = ∏n

i=1 mi, then M
is called as the dynamic range of the RNS, that is, X ∈ [0, M− 1]. According to the rules of
modular operation [21], for operands X and Y, we have

〈X±Y〉m =
〈
〈X〉m ± 〈Y〉m

〉
m

〈X •Y〉m =
〈
〈X〉m • 〈Y〉m

〉
m

〈kX〉km = k〈X〉m

. (2)

For two coprime moduli, m1 and m2, the modular operation has properties as〈
〈X〉m1m2

〉
m1

= 〈X〉m1 . (3)

The Chinese Remainder Theorem (CRT) is one of the fundamental theorems of RNS,
which is common used in scaling, Residue to Binary (R/B) conversion, and so on. If an
integer X ∈ [0, M− 1], then

X =

〈
n

∑
i=1

xi Mi〈Mi
−1〉mi

〉
M

, (4)

where Mi = M/mi, and 〈Mi
−1〉mi is the multiplicative inverse of Mi for mi, that is,〈

Mi〈Mi
−1〉mi

〉
mi

= 1.
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In this paper, our proposed scalers and multipliers are dedicated to the RNS {2n − 1, 2n,
2n + 1}. For ease of notation, we let m1 = 2n − 1, m2 = 2n and m3 = 2n + 1 so that the
residues x1 = 〈X〉m1 , x2 = 〈X〉m2 and x3 = 〈X〉m3 .

Scaling is actually a constant division operation and the divisor is called the scaling
factor. The format of the moduli set and the scaling factor are the two main factors in the
complexity of the scaler. For an integer X, if scaling factor is K, the scaling result can be
computed by

Y =

⌊
X
K

⌋
=

X− 〈X〉K
K

, (5)

where b·c represents floor operation. Different from TCS, the operand X in RNS is rep-
resented by multiple residues, and the final scaling result should also be represented by
multiple residues.

For RNS with moduli set {m1, m2, m3} = {2n − 1, 2n, 2n + 1}, we have

M = m1 ×m2 ×m3 = 23n − 2n

Mi = {22n + 2n, 22n − 1, 22n − 2n}〈
Mi
−1
〉
= {2n−1,−1, 2n−1 + 1}

. (6)

in which, i = 1, 2, 3. Substituting (6) into (4), we can get

X = 〈2n−1(22n + 2n)x1 − (22n − 1)x2 + (2n−1 + 1)(22n − 2n)x3〉M
= 2n−1(22n + 2n)x1 − (22n − 1)x2 + (2n−1 + 1)(22n − 2n)x3 − IM

, (7)

where I is an integer to ensure 0 ≤ X ≤ M− 1.

3. Design of High Precision RNS Multiplier
3.1. Joint RNS Scaler for Moduli Set {2n − 1, 2n, 2n + 1}

The proposed RNS multiplier needs the scaling result of scaling factors m1, m3, m1m2,
and m2m3. Generally, we need four scalers to implement them. To further reduce the
hardware complexity, we propose two joint scalers which can get scaling results for two
scaling factors at the same time, one of which is for scaling factors m1 and m1m2, and the
other is for scaling factors m3 and m2m3. As shown in the following derivation, the scaling
results of scaling factors m1m2 and m2m3 can be obtained from intermediate products of m1
scaler and m3 scaler, respectively. As such, we can greatly save the hardware consumption
by combining them with two joint scalers.

According to (7), we derive four calculation methods for these four scaling factors, m1,
m3, m2m3, and m1m2, respectively.

3.1.1. Scaling Factor K = m3

According to (7), the scaling operation can be represented as

X
m3

= 22n−1x1 − (2n − 1)x2 + (22n−1 − 1)x3 − Im1m2 +
x3

m3
. (8)

In RNS, all residues are integers, and x3 < m3, so x3/m3 < 1. Thus, we can round
them down (8) and get⌊

X
m3

⌋
= 22n−1x1 − (2n − 1)x2 + (22n−1 − 1)x3 − Im1m2

=
〈

22n−1x1 − (2n − 1)x2 + (22n−1 − 1)x3

〉
m1m2

. (9)
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Mapping (9) to residue channels m1, m2, and simplify them, we can obtain

X3,1 =

〈⌊
X
m3

⌋〉
m1

=
〈

2n−1x1 + (2n−1 − 1)x3

〉
m1

=
〈

2n−1x1 − 2n−1x3

〉
m1

X3,2 =

〈⌊
X
m3

⌋〉
m2

= 〈x2 − x3〉m2

, (10)

Because 0 ≤ X ≤ M− 1, then 0 ≤ bX/m3c ≤ m1m2 − 1. By using CRT, we can
uniquely represent bX/m3c with the remainders of channels m1 and m2. However, in
most DSP-oriented applications, the remainder of channel m3 is also required to match the
original three moduli set. Then,⌊

X
m3

⌋
= 〈2nX3,1 − (2n − 1)X3,2〉m1m2

=
〈

2n〈X3,1 − X3,2〉m1
+ X3,2

〉
m1m2

. (11)

Because 0 ≤ 2n〈X3,1 − X3,2〉m1
+ X3,2 < m1m2, we can get

X3,3 =
〈

2n〈X3,1 − X3,2〉m1
+ X3,2

〉
m3

=
〈
−〈X3,1 − X3,2〉m1

+ X3,2

〉
m3

. (12)

3.1.2. Scaling Factor K = m1

Similarly with factor K = m3, scaling for K = m1 can be represented as

X
m1

=
〈
(22n−1+2n+1)x1−(2n+1)x2+2n(2n−1+1)x3

〉
m2m3

+
x1

m1
. (13)

Then, the values in residue channels m2 and m3 are

X1,2 =

〈⌊
X
m1

⌋〉
m2

= 〈x1 − x2〉m2

X1,3 =

〈⌊
X
m1

⌋〉
m3

=
〈

2n−1x3 − 2n−1x1

〉
m3

. (14)

For the precise representation of bX/m1c, the residues in channel m2 and m3 are
enough. However, in most applications, the residue in channel m1 is still needed in the
following processing. Thus, by using CRT, we can get⌊

X
m1

⌋
=
〈

2n〈X1,2 − X1,3〉m3
+ X1,2

〉
m2m3

. (15)

Because 0 ≤ 2n〈X1,2 − X1,3〉m3
+ X1,2 < m2m3, we can get

X1,1 =
〈
〈X1,2 − X1,3〉m3

+ X1,2

〉
m2m3

. (16)
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3.1.3. Scaling Factor K = m2m3

Low proposed two scaling structures for scaling factor K = m2m3 in [22,23], respec-
tively. However, they have a unit error when x1 < x2. In this paper, we propose a scaling
structure which can get the scaling results accurately. According to (7), we can get

X
m2m3

= 2n−1x1 − x 2 − 2n−1x3 + x3 − Im1 +
x2 − x3

m2
+

x3

m2m3
. (17)

x2 and x3 are non-negative integers which are defined on the radixes of m2 and m3.
Thus, if and only if x2 − x3 < 0, (x2 − x3)/m2 + x3/(m2m3) < 0. Then, from (17), we
can get ⌊

X
m2(m3)

⌋
=

{ 〈
2n−1x1 − x 2 − 2n−1x3 + x3

〉
m1

x2 − x3 ≥ 0〈
2n−1x1 − x 2 − 2n−1x3 + x3 − 1

〉
m1

x2 − x3 < 0
. (18)

When x2 − x3 < 0, according to (18),〈
2n−1x1 − x 2 − 2n−1x3 + x3 − 1

〉
m1

=
〈

2n−1x1 − 2n−1x3 − (x 2 − x3 + 2n)
〉

m1
. (19)

Thus, (19) can be converted to⌊
X

2n(2n + 1)

⌋
=
〈

2n−1x1 − 2n−1x3 − 〈x2 − x 3〉m2

〉
m1

= 〈X3,1 − X3,2〉m1

. (20)

When x2 − x3 > 0, it is obviously that x2 − x3 has the same dynamic range with x2, so
the modulo m2 operations in (20) do not change the calculation result. These two situations
can be combined into (20).

From (20), we can see that the scaling result of scaling factor m2m3 can be calcu-
lated by the result from the scaler with scaling factor m2. Because X ∈ [0, M − 1],
0 ≤ bX/2n(2n + 1)c < m1, the results in all channels of moduli set {m1, m2, m3} are
bX/2n(2n + 1)c.

3.1.4. Scaling Factor K = m1m2

Scaler with scaling factor m1m2 has a similar structure with that of m2m3, From (7) we
can get

X
2n(2n − 1)

= x1 − x2 + 2n−1x1 − 2n−1x3 − Im3 +
x1 − x2

m2
+

x1

m1m2
. (21)

If and only if x1 − x2 < 0, (x1 − x2)/m2 + x1/(m1m2) < 0, we have⌊
X

2n(2n − 1)

⌋
=
〈
(2n+x1−x2)+2n−1x1−2n−1x3

〉
m3

. (22)

Then, (22) can be converted to⌊
X

2n(2n − 1)

⌋
=
〈
〈x1 − x2〉m2

+ 2n−1x1 − 2n−1x3

〉
m3

= 〈X1,2 − X1,3〉m3

. (23)

The same as with scaling factor m2m3, the situation x1 − x2 > 0 can be combined
into (23).

From (23), we can see that the scaler with scaling factor m1m2 can also be calcu-
lated by the result from the scaler with scaling factor m1. Because 0 ≤ X < M, 0 ≤
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bX/2n(2n − 1)c < m3. We can use the value in channel m3 to represent it. If we need to
expose it to channels m1 and m2, it can be simply implemented by modular operations.

In summary, the calculation methods of these four different scaling factors are shown
in Table 1.

Table 1. Calculation methods for four different scaling factors.

K 〈bX/Kc〉m1
〈bX/Kc〉m2

〈bX/Kc〉m3

m3
〈
2n−1x1 − 2n−1x3

〉
m1

〈x2 − x3〉m2

〈
−〈X3,1 − X3,2〉m1

+ X3,2

〉
m3

m1
〈
〈X1,2 − X1,3〉m3

+ X1,2

〉
m1

〈x1 − x2〉m2

〈
2n−1x3 − 2n−1x1

〉
m3

m2m3 〈X3,1 − X3,2〉m1
〈X3,1 − X3,2〉m1

〈X3,1 − X3,2〉m1

m1m2
〈
〈X1,2 − X1,3〉m3

〉
m1

〈
〈X1,2 − X1,3〉m3

〉
m2

〈X1,2 − X1,3〉m3

3.2. High Precision RNS Multipliers for Moduli Set {2n − 1, 2n, 2n + 1}
We propose two high precision RNS multipliers based on CRT. For multiplicands X

and Y defined on the moduli set {m1, m2, m3}, the product result is scaled by a fixed scaling
factor M = m1m2m3. Since 0 ≤ bX ·Y/Mc < M, we can guarantee that the result is still
in the dynamic range of the RNS. As shown in Figure 2, we add several complementary
items to the result of Figure 1a to get a high precision multiplication result. We can see
from the following derivation how the complementary items work to obtain high precision.
As mentioned before, the adding complementary items can be obtained directly from the
proposed scalers, so the proposed RNS multiplier needs less extra hardware consumption
in comparison with the basic scaling multiplier.

The derivation process is as follows.
According to (21), we have

Y
m1m2

=


⌊

Y
m1m2

⌋
+ y1−y2

m2
+ y1

m1m2
when y1 ≥ y2⌊

Y
m1m2

⌋
+ y1−y2+m2

m2
+ y1

m1m2
when y1 < y2

=

⌊
Y

m1m2

⌋
+
〈y1 − y2〉m2

m2
+

y1

m1m2

=

⌊
Y

m1m2

⌋
+

m1Y1,2 + y1

m1m2

. (24)

By using (8), (21), and (24), we can get

X ·Y
M

=
X
m3
· Y

m1m2

=

(⌊
X
m3

⌋
+

x3

m3

)(⌊
Y

m1m2

⌋
+

m1Y12+y1

m1m2

)
=

⌊
X
m3

⌋⌊
Y

m1m2

⌋
+

x3

m3

⌊
Y

m1m2

⌋
+

X
m3

(
Y1,2

m2
+

y1

m1m2

), (25)

According to (17), we have

X
m2m3

=

⌊
X

m2m3

⌋
+

X3,2

m2
+

x3

m2m3
. (26)
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Thus, the last add item in (25) can be expanded as

X
m3

(
Y1,2

m2
+

y2

m1m2

)
=

X
m2m3

(
Y1,2 +

y1

m1

)
=

(⌊
X

m2m3

⌋
+

X3,2

m2
+

x3

m2m3

)(
Y1,2 +

y1

m1

)
=

⌊
X

m2m3

⌋
Y1,2 +

X3,2Y1,2

m2
+

Y1,2x3

m2m3
+

y1

m1

⌊
X

m2m3

⌋
+

X3,2y1

m1m2
+

x3y1

m1m2m3

. (27)

Then, (25) can be rewritten as

X ·Y
M

=

⌊
X
m3

⌋⌊
Y

m1m2

⌋
+

x3

m3

⌊
Y

m1m2

⌋
+

⌊
X

m2m3

⌋
Y1,2

+
X3,2Y1,2

m2
+

Y1,2x3

m2m3
+

y1

m1

⌊
X

m2m3

⌋
+

X3,2y1

m1m2
+

x3y1

m1m2m3

. (28)

We can find that the division operations in (28) have a divisor that is not the power
of 2, which can be difficult to implement. In order to reduce hardware complexity, we
approximately represent the divisors in x3

m3

⌊
Y

m1m2

⌋
and y1

m1

⌊
X

m2m3

⌋
by m2. We maintain

X3,2Y1,2
m2

and abandon Y1,2x3
m2m3

, X3,2y1
m1m2

and x3y1
m1m2m3

as approximate errors , for these three items
are smaller than 1. After these simplifications, (28) can be approximately expressed as

X ·Y
M
≈
⌊

X
m3

⌋⌊
Y

m1m2

⌋
+ Y1,2

⌊
X

m2m3

⌋
+ ∆1, (29)

where

∆1 =

⌊
Y

m1m2

⌋
x3

m2
+

⌊
X

m2m3

⌋
y1

m2
+

Y1,2X3,2

m2
. (30)

The first two items to add in (29) only have integer multiplications and all the mul-
tipliers can be obtained directly from the scalers. Moreover, while (30) has decimals, all
the divisors are powers of 2, which can be simply implemented by shifting. The totally
approximate error in (29) is

δ1 =
x3

m2m3

(
Y1,2 −

⌊
Y

m1m2

⌋)
+

y1

m1m2

(
X3,2 +

⌊
X

m2m3

⌋)
+

x3y1

m1m2m3
. (31)

Moreover, this kind of multiplier can also be realized by another method, which is
similar to the above derivation procedure. According to (13) and (17), we can get

X ·Y
M

=
X
m1
· Y

m2m3

=

⌊
X
m1

⌋⌊
Y

m2m3

⌋
+

x1

m1

⌊
Y

m2m3

⌋
+

X
m1

(
Y3,2

m2
+

y3

m2m3

). (32)

In the same way, (32) can be approximated as

X ·Y
M
≈
⌊

X
m1

⌋⌊
Y

m2m3

⌋
+ Y3,2

⌊
X

m1m2

⌋
+ ∆2, (33)
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where

∆2 =

⌊
X

m1m2

⌋
y3

m2
+

⌊
Y

m2m3

⌋
x1

m2
+

Y3,2X1,2

m2
. (34)

In addition, the error of (33) is

δ2 =
x1

m1m2

(
Y3,2 +

⌊
Y

m2m3

⌋)
+

y3

m2m3

(
X1,2 −

⌊
X

m1m2

⌋)
+

x1y3

m1m2m3
. (35)

Although the multipliers implemented by (29) and (33) have the same structure, they
use different scalers, which leads to different hardware complexity. It is worth noting
that the hardware complexity can also be reduced by reducing the number of add items
in the multipliers with the cost of precision loss. For example, since the complementary
items in (30) and (34) are relatively small but consume a lot of hardware resources, we can
abandon them and get a simplified RNS multiplier. This provides a trade-off between
calculation precision and hardware consumption. From now on, we call the proposed
RNS multiplier according to (29) and (33) as a full compensatory RNS multiplier, and the
RNS multipliers implemented by abandoning (30) and (34) are represented by a partial
compensatory RNS multiplier. The following numerical example is used to illustrate our
proposed RNS multiplication algorithm. Letting X = 64 and Y = 460, Table 2 shows the
detailed calculation traces of the RNS multiplication operation step by step based on (29).

Table 2. Computation traces of X×Y = 64 ∗ 460 of the proposed high precision RNS multiplier.

Moduli set {7, 8, 9}

Residues,{x1, x2, x3},{y1, y2, y3} {1, 0, 1},{5, 4, 1}⌊
X
m3

⌋
= {X3,1, X3,2, X3,3} {0, 7, 7}⌊

Y
m1

⌋
= {Y1,1, Y1,2, Y1,3} {2, 1, 2}⌊

X
m2m3

⌋
0⌊

Y
m1m2

⌋
8⌊

Y
m1m2

⌋⌊
X
m3

⌋
{0, 0, 2}

Y1,2

⌊
X

m2m3

⌋
{0, 0, 0}⌊

Y
m1m2

⌋
x3
m2

1⌊
X

m2m3

⌋
y1
m2

0

Y1,2X3,2
m2

0

(29) {0, 0, 2}+ 1 = {1, 1, 3} = 57

calculation error 64× 460− 57 ∗ 504 = 712

4. Hardware Structures

For the RNS with moduli set {2n− 1, 2n, 2n + 1}, some numerical calculations and oper-
ations can be replaced by bit-wise logic operation to achieve an efficient hardware structure.
Let the binary representation of an n-bit integer x be xn−1xn−2 . . . x0 and 0 ≤ x < 2n − 1,
according to the properties of the modulo operations and the Boolean logic operation
rules [14], we can easily get

〈−x〉2n−1 = 〈x〉2n−1

〈2rx〉2n−1 = CLS(x, r)
, (36)
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where x represents bit-wise inversion of binary numbers, and CLS(x, r) indicates that
integer x is shifted to the left by r bits.

The above two operations for modulo 2n + 1 will become a little bit complicated. For
an (n + 1)-bit integer with binary representation x = xnxn−1...x0 and 0 ≤ x < 2n + 1, then

〈−x〉2n+1 =

〈
2n + 1−

n

∑
i=0

2ixi

〉
2n+1

=

〈
2 + 2n − 1 + xn −

n

∑
i=0

2ixi

〉
2n+1

= 〈2 + xn + xn−1xn−2...x0〉2n+1,

(37)

and

〈2rx〉2n+1 =

〈
n

∑
i=0

2i+rxi

〉
2n+1

=

〈
n−r−1

∑
i=0

2i+rxi +
n

∑
i=n−r

2i+rxi

〉
2n+1

=

〈
n−r−1

∑
i=0

2i+rxi + 2n
n

∑
i=n−r

2i−n+rxi

〉
2n+1

=

〈
n−r−1

∑
i=0

2i+rxi + (2n − 1)−
n

∑
i=n−r

2i−n+rxi + 2

〉
2n+1

=

〈
xn−r−1...x1x0 000...0︸ ︷︷ ︸

r

+ 111...1︸ ︷︷ ︸
n−r−1

xnxn−1...xn−r + 2

〉
2n+1

.

(38)

The hardware structure of the scalers and multipliers in this paper are based on
these operations.

4.1. Multiplier Hardware Structure

The implementation block diagrams of the proposed compensatory scaling RNS
multipliers are shown in Figure 3.

In Figure 3, the multiplications in solid box represent the basic items of the pro-
posed RNS multiplier, while the multiplications in dotted box represent the compensation
items. The scaler blocks in Figure 3 are all proposed joint scalers, and the implementa-
tion details are shown in Figure 4. As shown in Figure 3, the final result is calculated
by the product of two scalers without any other effort. Thus, this just costs a little extra
hardware consumption.

4.2. Scaler Hardware Structure

We designed the scaling structures of the two joint scalers proposed in this paper. In
addition, the implementation block diagram is shown in Figure 4.

In Figure 4, the proposed scaling structures of these four scaling factors are imple-
mented using logic operations in (36) and modular adders proposed in [19]. The module in
the two dotted line box can be used separately as scaler implementations of scaling factor
m2m3 and m1m2, respectively. The overall implementation in Figure 4a can be used as a
joint implementation for scaling factors m2m3 and m3, while Figure 4b can be used for
scaling factors m1m2 and m1.
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Figure 3. Compensatory scaling RNS multiplier structure. (a) multiplier structure corresponding
to (29), (b) multiplier structure corresponding to (33).

Figure 4. Scaling structures of four scaling factors. (a) scaling factor 2n + 1 and 2n(2n + 1) joint
scaling structure; (b) scaling factor 2n − 1 and 2n(2n − 1) joint scaling structure.

Figure 4a can be further optimized, since the cascade modulo m1 can be replaced by a
Carry Save Adder (CSA) and a modulo m1 adder. This optimized structure is shown in
Figure 5. It is worth noting that we use this optimized structure in the implementation of
Figure 4a in addition to scaling factor m2m3, in order to get a better hardware performance.
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Carry saved adder

2mmod      adder( , 1)CLS X n 

mod      adder1m

2 3

X

m m

 
 
 

-
3x1x 2x

Figure 5. Optimized scaling structure for scaling factor m2m3.

5. Performance Analysis
5.1. Calculation Performance of the Proposed Multiplier

In order to verify the calculation performance of the proposed compensatory scaling
multiplier, we firstly analyze the calculation precision of the proposed multiplier compared
with the TCS multiplier and the basic scaling RNS multiplier (see Figure 1a. Two metrics,
MSE (mean-square-error), and SNR (Signal-to-Noise) are used to evaluate the calculation
precision of three multipliers included. The MSE is calculated by:

MSE =
1
N

N−1

∑
i=0

(Xreal,i,norm − Xresult,i,norm)
2, (39)

while SNR is defined as:

SNR(dB) = 10 log10


N−1
∑

i=0
Xreal,i

2

N−1
∑

i=0
(Xreal,i − Xresult,i)

2

. (40)

In (39) and (40), Xreal,i represents real results of ith calculation, Xresult,i represents
ith result calculated by the three multipliers, while Xreal,i,norm and Xresult,i,norm represent
the unit normalization of Xreal,i and Xresult,i, respectively. For each i, the inputs of the
multiplier are randomly selected from RNS’s dynamic range. N is the total number of
samples calculated for each n, in this paper, N = 10,000. The dynamic range of RNS
is changed by n from 5 to 12. For comparison, the bit-width k of TCS is selected to
guarantee that the dynamic range of TCS is slightly bigger than that of RNS. For example,
for n = 5, the moduli set of the RNS is 31, 32, 33; then, M = 32,736, and we choose
k = f loor(log2M + 1) = 15 bit in order to compare with TCS. The simulation results are
shown in Figures 6 and 7.

5 6 7 8 9 10 11 12

n

10-25

10-20

10-15

10-10

10-5

100

M
S

E

full compensatory RNS multiplier

partial compensatory RNS multiplier

basic scaling RNS multiplier

TCS multiplier

Figure 6. MSE of three kinds of multipliers.
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120

140
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180
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full compensatory RNS multiplier

partial compensatory RNS multiplier

basic scaling RNS multiplier

TCS multiplier

Figure 7. SNR of three kinds of multipliers.

From Figure 6, for all n, the proposed RNS multiplier achieves almost the same MSE
with a TCS multiplier, while, for the basic scaling RNS multiplier, it suffers a relatively big
MSE when n < 8. This means that the proposed RNS multiplier has a better calculation
precision when the bit-width is not large enough.

As shown in Figure 7, for each n, the proposed RNS multiplier outperforms the
traditional way by about 50–140 dB when n increases from 5 to 12, which reveals that the
proposed RNS multiplier can greatly improve the calculation precision of the multiplication
in RNS and avoid the overflow at the same time. In addition, the proposed multiplier
achieves an SNR curve similar to that of the TCS multiplier, with an SNR loss of about 5
dB. This is because the dynamic range of TCS is chosen to be slightly larger than that of
the RNS. Moreover, as mentioned before, the hardware consumption of proposed RNS
multiplier can be saved by abandoning the third add item in (29) and (33). Although this
can lead to a loss of calculation precision, the result shown in Figure 7 suggests that our
partial compensatory RNS multiplier still outperforms the basic scaling one.

5.2. Synthesis Results of RNS Multiplier Based on Design Compiler

In order to evaluate the hardware performance of the proposed RNS multipliers, we
designed them by VHDL and compiled them with Synopsys Design Compiler (DC) under
the SMIC 65 nm process, respectively. The partial compensatory RNS multiplier with
only one complementary item was also in consideration. We synthesized three mentioned
multipliers in a clock timing constraint approach which uses the smallest clock period. The
results are shown in Table 3.

In Table 3, Structure 1 means the structure in (29) and its simplified version, and
Structure 2 means the structure in (33) and its simplified version. Although structures
of two multipliers are symmetrical, they use different numbers of modulo m1 and m3
adders. Moreover, two cascaded modulo m1 adders can benefit from the optimal hardware
structure in Figure 5, so the hardware consumption of S1 is slightly larger than that of
S2 for each n. BS means basic scaling RNS multiplier, PC means partial compensatory
RNS multiplier and FC means full compensatory RNS multiplier. We use the AT of basic
scaling RNS multiplier with structure 1 as a basis to calculate the AT ratio for each n. From
Table 3, for each n, although the proposed multiplier needs about 2–2.3 times hardware
consumption compared with the basic scaling multiplier, it can get about 2.6–3 times SNR
than that of the basic scaling multiplier. To further evaluate the hardware efficiency of the
proposed RNS multiplier, we calculate the SNR/AT of three multipliers. The results are
shown in Figure 8. We can see that the proposed partial compensatory RNS multiplier has
the biggest SNR/AT for each n, which means it has the highest hardware efficiency. In
addition, the proposed RNS multiplier has bigger SNR/AT than that of the basic scaling
one. This indicates that our proposed RNS multiplier still outperforms basic scaling RNS
multiplier in hardware efficiency.
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Table 3. Synthesis results of multipliers.

A (µm2) T (ns)
A ∗ T

(µm2 ∗ ns) AT Ratio

n = 5

Structure 1

BS 4500.36 2.19 9889.31 1

PC 5197.68 2.39 12,458.73 1.26

FC 6280.92 2.69 16,942.90 1.71

Structure 2

BS 3651.84 2.29 8399.15 0.85

PC 4745.52 2.49 11,848.47 1.20

FC 7913.88 2.59 20,570.07 2.08

n = 8

Structure 1

BS 7743.96 2.69 20,906.37 1

PC 10,293.12 2.89 29,823.28 1.43

FC 13,224.60 3.09 40,949.84 1.96

Structure 2

BS 7428.24 2.69 20,021.11 0.96

PC 10,254.96 2.89 23,453.74 1.12

FC 16,380.36 3.03 49,757.47 2.38

n = 11

Structure 1

BS 12,677.76 2.89 36,704.90 1

PC 17,025.48 3.09 52,766.21 1.43

FC 23,253.84 3.29 76,688.60 2.09

Structure 2

BS 12,537.72 2.99 37,606.26 1.02

PC 15,290.28 3.19 48,888.83 1.33

FC 26,150.76 3.29 86,222.45 2.35

n = 14

Structure 1

BS 16,674.12 3.18 53,148.76 1

PC 26,294.76 3.39 90,232.63 1.70

FC 31,066.20 3.59 111,744.81 2.10

Structure 2

BS 15,747.12 3.29 51,894.63 0.98

PC 26,294.76 3.39 89,279.12 1.68

FC 32,858.64 3.59 118,271.72 2.23

5 6 7 8 9 10 11 12

n

0

0.5

1

1.5

2

2.5
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3.5

4

4.5

S
N

R
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T

10
-3

Prop. full

Prop. simple

Traditional

Figure 8. Hardware efficiency of two kinds of multipliers (higher is better).
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Hisat proposes a few efficient RNS scalers for moduli set {2n − 1, 2n+p, 2n + 1} with
scaling factor 2n and 2n+p [15]. This work is a recent development in RNS scaler design.
The hardware efficiency of this work is obviously better than that of ours. As far as I know,
our work in this paper is the first to discuss the problem of overall accuracy of the RNS
multiplier, instead of the modular multiplier. In our design, we use the scaling results
scaled by 2n − 1, 2n(2n − 1), 2n + 1, and 2n(2n + 1), instead of 2n. Our focus in this work is
not on optimizing the scaler. Any optimized scaler can be used in the proposed multiplier
as long as it meets the requirements of scaling factor.

6. Conclusions

This work presented a high precision overflow-free multiplier design for three-moduli
set {2n − 1, 2n, 2n + 1}. The proposed RNS multiplier avoids overflow based on the scaling
approach and achieves high precision by adding several compensation items to compensate
the precision loss caused by scaling. Our RNS multiplier can get almost the same calculation
precision as the TCS multiplier, which outperforms the basic scaling RNS multiplier about
2.6–3 times in SNR. In addition, the compensation items can be flexibly selected to make a
trade-off between hardware resource and calculation precision. Synthesis results suggest
that both our full compensatory RNS multiplier and partial compensatory RNS multiplier
outperform traditional basic scaling RNS multiplier in hardware efficiency.
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