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Abstract: In order to meet the real-time requirements of the autonomous driving system, the existing
method directly up-samples the encoder’s output feature map to pixel-wise prediction, thus neglect-
ing the importance of the decoder for the prediction of detail features. In order to solve this problem,
this paper proposes a general lane detection framework based on object feature distillation. Firstly,
a decoder with strong feature prediction ability is added to the network using direct up-sampling
method. Then, in the network training stage, the prediction results generated by the decoder are
regarded as soft targets through knowledge distillation technology, so that the directly up-samples
branch can learn more detailed lane information and have a strong feature prediction ability for the
decoder. Finally, in the stage of network inference, we only need to use the direct up-sampling branch
instead of the forward calculation of the decoder, so compared with the existing model, it can improve
the lane detection performance without additional cost. In order to verify the effectiveness of this
framework, it is applied to many mainstream lane segmentation methods such as SCNN, DeepLabv1,
ResNet, etc. Experimental results show that, under the condition of no additional complexity, the
proposed method can obtain higher F1Measure on CuLane dataset.

Keywords: lane line detection; decoder; distillation; probability map

1. Introduction

With the increasing popularity of automobiles, the frequent occurrence of road traffic
accidents and the aggravation of traffic congestion are becoming increasingly prominent.
According to relevant statistics, about 1.35 million people died in traffic accidents world-
wide in 2018, and tens of millions of people were injured or disabled in traffic accidents [1].
The occurrence of road traffic accidents not only causes huge economic losses to individu-
als, families, and even the whole country [2], but also seriously threatens people’s safety.
According to a statistical analysis of traffic accidents by the Ministry of Public Security,
about 50% of significant traffic accidents are related to lane line departure. In this context,
a lane-keeping system is favored by more and more drivers. In a lane-keeping system, lane
line detection is closely related to the realization of lane-keeping function, which directly
affects the robustness and real-time performance of the whole system.

In recent years, the advanced driver assistance system (ADAS) and autonomous
driving are becoming more important to reducing traffic accidents. As a key technology
for intelligent vehicles, lane detection has attracted widespread attention from plenty of
institutes and automobile technology companies [3]. Generally, ADAS technology includes
tasks such as lane changing (LC), object detection system (ODS), collision avoidance system
(CAS), adaptive cruise control (ACC), lane departure warning system (LDWS) [4]. Among
the research, vision-based lane detection has always been a hot topic in the field of lane
line detection [5]. Lane markings are an essential traffic safety feature with the functions of
separating road areas, stipulating the direction of travel, and providing guidance informa-
tion for pedestrians. In addition, as one of the core elements of an auxiliary environment
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awareness module, lane detection technology is crucial in the autopilot field [6] and is
a powerful tool not only for building high-precision maps, but also for verifying their
accuracy [7]. Researchers use different sensors such as radar, lidar, single camera, and
stereo camera to obtain environmental data to identify the environment around the vehicle
accurately. This paper will focus on vision-based methods because they are cheaper, but
can correctly locate local locations in environmental perception for any subsequent lane
departure detection and path/trajectory planning. Constantly monitoring the vehicle’s
position in the lane lines can be very helpful in avoiding collisions caused by accidental
lane deviation, fatigue, or driving under the influence of controlled substances.

Lane line detection becomes very challenging and confusing due to the following
factors: (a) The appearance of lane line marking variants, such as dashed or solid lines,
white or yellow lines, and road boundaries with less knowledge of road geometry [8–10].
(b) The intrusion of nearby obstacles either concealed the lane line markings or was
mistakenly regarded as the lane line-markings. (c) The existence and shadow effect of
street signs or words are often considered lane lines feature points [11,12]. (d) The change
in illumination, which will mutate the color and intensity.

The main contributions of this paper are as follows: (a) Considering the importance of
the decoder in recovering the boundary information of the target pixel, the decoder branch
is added based on the existing direct up-sampling lane line detection algorithm. It improves
the classification and prediction ability of the lane line boundary pixel. (b) Considering the
limitation of the decoder in the computational cost, the idea of knowledge distillation is
adopted to use the classification probability graph generated by the decoder. It is a soft
target to guide the direct up-sampling branch to learn the boundary classification ability
of the lane line without increasing the time of the model in the inference stage. (c) The
proposed method can be applied to all current lane line detection algorithms using a direct
up-sampling structure. In this paper, the generality and effectiveness of the proposed
method are verified on the most challenging CuLane dataset by conducting experiments
on several mainstream lane line detection algorithms using a direct up-sampling structure.

The remaining part of the research is organized as follows:

• Section 2—Discusses the related work.
• Section 3—Describes the methodology and multi-tasks optimization.
• Section 4—Discusses the CuLane dataset.
• Section 5—Reports the experimental results and analysis.
• Section 6—Provides our conclusions.

2. Related Work

The automatic driving sensing module can obtain the environmental information
around the vehicle. One of the most important components of the module is lane line
detection, which is the premise to control the safe driving of the automatic driving vehicle
within the lane line. Therefore, lane line detection has become a research hotspot in the
field of autonomous driving perception. Existing in the lane line detection method can
be roughly divided into three categories: traditional image processing method, image
processing, and convolutional neural networks (CNN) with the neural network and the
lane line detection method based on deep learning.

Among the traditional lane line detection methods, some works of literature [13–15]
have made a comprehensive summary of it summarized that the traditional lane line
detection methods [16] are usually divided into three steps: image pre-processing, local
feature extraction, and lane line fitting. Among them, local feature extraction is to capture
local lane line information by using edge [17], texture [18], and color [19] features on
the region of interest (ROI) [20] in the image, which is a key step of traditional lane line
detection methods. However, it needs to analyze the distribution characteristics of lane
lines in the image, and manually design and combine feature extraction algorithm. The
traditional lane line detection method was selected for specific road scenes. It has been
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difficult to adapt to the complex scenes in the practical application of autonomous driving,
and the design of the extraction algorithm requires a high professional level.

In the method combining traditional image processing and CNN, CNN relies on
large-scale datasets [21], and its powerful nonlinear fitting ability, which overcomes the lim-
itations of the traditional lane line detection method and improves the generalization ability
of the algorithm. Early lane line detection methods [17,22] based on the convolutional
neural network only use a neural network to replace the local feature extraction step in
traditional ways, but they still need complex post-processing. For example, Kim et al. [17]
combined neural network and RANSAC algorithm to detect lane lines and used CNN
to learn lane line features in edge images. The RANSAC algorithm was used to remove
outliers and fit the lane lines, but since CNN input is a lane line edge detection image,
the accuracy of this method is directly affected by the edge detection algorithm. In liter-
ature [23], the top and front view of the lane lines are taken as input, and the dual-view
convolutional neural network is used to detect the lane line. However, it requires complex
pre-processing of the input image.

The lane line detection method based on deep learning is defined as a dense classi-
fication prediction problem. In order to better classification from the supervision of the
sparse signal out of the lane line, Pan [24] proposed a spatial convolution neural network
(SCNN). SCNN transmits messages between neurons from different directions in the space
so that they can capture the spatial relationship between pixels, but it cannot recover the
lane line boundary pixels well because of direct up-sampling. Therefore, most lane line
segmentation networks [25,26] adopt the encoder–decoder network structure. For example,
Kim et al. [27] redefined the point detection problem as a region segmentation problem.
SegNet [28] was used to segment the lane lines on both sides in a sequential end-to-end
transmission learning method without any post-processing. However, it relies heavily on
the lane line segmentation graph as the supervision signal and the training process is very
complicated. Zhang et al. [29] use the network structure of two decoders sharing the same
encoder to segment the lane line and the driving area and use the link encoder to transfer
the lane line information of the two decoders with complementary branches, while the
decoder with multi branches will bring huge computing overhead. Literatures [30,31] also
adopted the encoder–decoder structure and extended lane line detection to instance seg-
mentation. They need to accurately predict pixel categories and assigned correct instance
labels for each pixel. However, they used clustering or complex label allocation strategies,
which increased the computational complexity of the model.

To solve the problem that the direct up-sampling algorithm method in the literature
as mentioned above cannot recover the lane line features well, and the problem that the
network using the encoder–decoder method increases the huge computational cost, this
paper proposes an object feature distillation (OFD) framework. It uses a direct up-sampling
structure network based on the addition of a decoder branch. It also needs to fuse the
features of each stage of the encoder to supplement the detailed information of the target
and better restore the classification prediction of the target. Meanwhile, considering the
requirement of the autonomous driving system for the reasoning time of lane line detection
algorithm, this paper is inspired by the knowledge distilling algorithm [32–34]. The
classification probability graph generated by the decoder is used as the soft target of the
distillation loss function. The classification probability graph of the up-sampling branch
is directly used as input to learning the refined classification information of the target in
the encoder branch. In addition, only the forward calculation is performed on the direct
up-sampling branch in the model inference state. The decoder is not used, which will not
bring any additional computational cost.

3. Methodology

Firstly, detail the SCNN architecture along with network details and then show how
we fuse object feature distillation to get better results.
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3.1. Spatial Convolution Neural Network (SCNN)

The target feature distillation method proposed in this paper is mainly applied to
the method of directly up-sampling the feature of the image to the input original image
size for pixel-to-pixel classification. The SCNN network is one of the representatives of
this kind of lane line segmentation algorithm. As shown in Figure 1, it adds 4 SCNNs
in the spatial direction after the top convolution layer (“FC7 layer”) of LargeFOV [35] to
introduce spatial message propagation so that it can better capture the spatial relationship
between pixels. Its backbone network is the modified VGGNet [36], which better preserves
spatial information by removing the largest pooling layer in the 3rd and 4th stages, and
the standard convolution is replaced by Dilated Convolution (DC) [37] to obtain a larger
receiver field. Finally, the directly up-samples branch samples the feature image up by
eight times through bilinear interpolation. The resolution is equal to the size of the input
image to obtain a larger receptive field. Another existing prediction branch will pass
the so f tmax operating to the feature image and input it to the average pooling layer and
the fully connected layer (FC), the sigmoid function is used to predict whether there is a
lane line.
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3.2. Knowledge Distillation (KD) Method

Knowledge distillation (KD) is to extract knowledge from complex networks to
guide compact network learning, which can significantly improve the performance of
compact models and has been extended from image classification tasks to segmentation
tasks [38–40]. Usually, in the knowledge distillation method, the compact student network
takes the intermediate output of the teacher network as the soft target and supervises
the student network to learn the knowledge extracted from the teacher network. In the
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literature [39], the geometric information of target depth predicted by the teacher network
is used to guide the semantic segmentation tasks. However, lane lines do not have similar
target depth information in natural images. In lane line segmentation, knowledge distilla-
tion is used to use the more abstract feature images generated in the later stage as the soft
target of the distillation [41], which enables the network to learn richer context information.
However, it ignores the shallow local detail information, which is very important for lane
line boundary restoration. The target feature distillation method proposed in this paper
does not need to train the complex teacher network alone, and each branch shares the
feature coding network. We only need to use the classification probability map generated
by the encoder branch with lane line boundary thinning information like the soft target of
distillation to guide the direct up-sampling branch. In addition, the method in this paper
does not require additional annotation of the training dataset.

3.3. Methodology Follow in This Paper

This paper proposes a method of distilling lane line boundary refinement information
from the decoder. It can be applied to various algorithms that directly up-samples the
feature image to the input image size for lane line segmentation to learn more accurate lane
line boundary information from the decoding branch and do not increase the reasoning
time of the network. Next, the design details of the overall framework of the proposed
method, the structure of the added decoder branch, and the implementation principle of
distilling lane line feature information from the decoder are described in detail.

3.3.1. The Overall Structure Design of the Target Characteristic Distillation Network

In this paper, lane line detection is defined as a pixel-level classification problem; that is,
lane line features are extracted from the input image through the backbone network. Then,
the resolution of the feature image is gradually restored, and the lane line information in the
feature image is refined in the decoder. Finally, distilling the classification results of each
pixel predicted by the decoder to the direct up-sampling branch to enhance its prediction
ability of lane line features. As shown in Figure 2, the whole network is composed of four
parts, including 1 encoder and 3 output branches.
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In the existing method, the encoder is usually a modified mainstream Convolutional
Neural Network (CNN) [42,43]. For example, to preserve the spatial information of the
target, VGGNet and ResNet will remove the maximum pooling layer of the last two stages
in VGGNet and Resnet or modify the convolution step size to 1 and replace the standard
convolution layer with hole convolution with a different void ratio, to obtain a larger
receptive field. In addition, “FC6” and “FC7” fully connected convolution layer, as shown
in Figure 1, are added. Their output with high-dimensional feature images enables the
network to learn more abundant lane line features.

The direct up-sampling branch changes the channel of the output feature image of the
backbone network through a 1× 1 convolution layer. It then uses bilinear interpolation to
directly restore the resolution of the feature image to the size of the input image. However,
the resolution of the feature image is continuously reduced in the encoder, and the repre-
sentation of the feature becomes more and more abstract. Therefore, the lane line detection
network using the direct up-sampling method often fails to sufficiently recover the lane
line boundary information. Therefore, a decoder branch is added in this paper, which can
restore the resolution of the feature image and refine the lane line features through three
times of two times up-sampling and convolution operations.

It is predicted that the lane lines have branches that will act on the backbone network.
The design details are shown in Figure 1. Firstly, the feature graph output by the decoder
is subjected to the so f tmax operation; then, it is stretched into a one-dimensional vector
and sent to the average pooling layer and the two-layer fully connected layer. Finally,
the output result of the full connection layer is used as a sigmoid operation input to the
binary cross-entropy loss function. The lane line branch prediction results are used for
the lane line evaluation stage, and only the segmentation image that predicts the presence
of lane lines is obtained for lane line coordinates to reduce the network’s misdetection of
non-existent lane lines.

3.3.2. Network Decoder Structure Design of Target Feature Distillation Network

The design of the encoder structure in the lane line detection network determines the
ability of the network to extract the target features, and the design of the decoder structure
affects the ability to restore and predict the details of the target features. In order to explore
the influence of different decoder structures on the feature prediction of recovery lane
lines, this paper added decoders to the SCNN network. The decoder is designed with
three stages, and its structure is shown in Figure 3a. The output of the encoder is directly
refined by three times of convolution layer and two times of bilinear interpolation so that
the resolution of the feature image is restored to the original image size. The structure of
the 5-stage decoder is shown in Figure 3b. In addition to the above operations, also fully
consider the different characteristics of the target feature expression at a different stage of
the encoder. The decoder features of the later stage are used to guide the feature learning
of the previous stage to recover the prediction of target details better. This decoder design
can be applied to various lane line segmentation algorithms using the direct up-sampling
method. In addition, when using ResNet as the backbone network, only four stages of
decoders are needed. In Figure 3, “×” is used to define that how many convolutional
layers we used, and “*” is used to define the convolutional kernel size we use in that
specific layer.
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3.3.3. Loss Function of the Target Feature Distillation Network

Inspired by using the classification probability map output by the teacher network
as the soft target of the pixel-level distillation loss function in the existing research, the
classification probability map generated by the decoder branch is distilled in this paper.
The direct up-sampling branch learns the lane line boundary information to enhance
the detection of lane line boundary. Therefore, the final convolution output of decoder
branching is defined as A ∈ Rc×h×w, where c represents the number of channels of
convolution output. h represents the height of the output feature graph; w represents the
width of the output feature graph. Similarly, the directly up-samples branch convolution
output is defined as B ∈ Rc×h×w. In order to enable the direct up-sampling branch to
learn the pixel-level classification results of the decoder branch, the mean square error loss
function is used as the distillation loss function of the two branches, and its definition is
shown in Equation (1):

ldist
(

Aij, Bij
)
=

1
w× h

h

∑
i

w

∑
j
‖ϕ
(

Aij
)
− ϕ

(
Bij)‖

2 (1)

where ϕ(.) represents so f tmax operation. After the convolution output passes through
so f tmax, the sum of all pixels in the channel dimension is 1, and any pixel value on the
feature image represents the classification probability that the current position belongs
to one of the lane lines or background; ϕ

(
Aij
)

represents the target value of the decoder
distillation loss function, and ϕ

(
Bij
)

is the input value of the distillation loss function.
The distance between the classification probabilities of the two branch pixels is mea-

sured by Equation (1), and the network minimizes the distance between the input value
and the target value through continuous iteration.

The definition of the total loss function of the method in this paper is shown in
Equation (2):

ltotal = lup

(
B− B̂

)
+ ldecoder

(
A− Â

)
+ αldist(A, B) + βlexit

(
E− Ê

)
(2)

The total loss function is composed of four parts, in which lup(.) and ldecoder(.) rep-
resent the cross-entropy loss function of the direct up-sampling branch and the decoder
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branch, respectively. Â and B̂ both represent the true annotation of the current input im-
age; ldist(.) represents the decoder information of distillation loss function in Equation (1),
which means that the lane line has a branch loss function, using the binary cross loss
function. E is the output of the sigmoid function; Ê represents the true label of whether
the lane line exists in the current input image. Finally, parameters α and β were used to
balance the distillation task and the presence of lane lines to predict the influence of the
task on the performance of the whole network.

4. Dataset

Despite the importance and complexity of traffic lane line detection, current datasets
are either too limited or too easy to compare various approaches, and a large public an-
notated benchmark is needed [13]. KITTI [44] and CamVid [45] both have pixel-level
annotations for lane markings, but only hundreds of images, making deep learning ap-
proaches ineffective. Caltech Lanes Dataset [16] and TuSimple Benchmark Dataset [46]
include 1224 and 7000 photos with annotated lane markings, respectively, in a restricted sce-
nario with light traffic and transparent lanes marking. Furthermore, none of these datasets
annotates lane markings that are occluded or unseen due to abrasion. However, such lane
markings can be inferred by humans and are extremely useful in real-world applications.

In this paper, we prefer to use the CuLane dataset [24]. Cameras were installed in
six different vehicles driven by six different drivers and captured videos while driving in
Beijing on various days. More than 55 h of video were collected, yielding 133,235 frames,
more than 20 times the size of the TuSimple Dataset. The dataset was divided into 88,880
for preparation, 9675 for validation, and 34,680 for testing. These input images have a
resolution of 1640× 590. We remove the sky and very close areas from the image and
resize accordingly to the lane line network model. Our initial experiments found that
traditional photometric and geometric recipes for data augmentation were not providing
better driving results, so we do not use augmentation. Figure 4 depicts a variety of scenes,
including urban, agricultural, and highway settings. As one of the world’s largest and most
congested cities, Beijing presents many daunting traffic scenarios for lane line detection.
The dataset was divided into two categories: standard and difficult, which correspond
to the nine examples in Figure 4. The proportion of each scenario is shown in Figure 5.
The eight difficult scenarios account for the majority of the dataset (72.3%). We manually
annotate the traffic lane lines with cubic splines for each frame. As previously mentioned,
lane markers are often obscured by automobiles or are not visible. Even in these difficult
situations, lane line detection algorithms must estimate lane locations from the background
in real-world applications. As a result, we continue to annotate the lanes according to the
context in these situations, as shown in Figure 4.

CuLane dataset is available at https://drive.google.com/drive/folders/1mSLgwVTia
UMAb4AVOWwlCD5JcWdrwpvu (accessed on 1 May 2021).

Table 1 compares and prefers using the CuLane dataset [24] with existing lane marking
datasets [47].

Table 1. Comparison among different lane line datasets.

Dataset Training Frame Sequences M. Weather M. Time Attributes

Caltech Lanes - 1224 4 Yes No 2
Road Marking - 1443 29 Yes Yes 10

KITTI Road 289 579 - No No 2
TuSimple 3626 7000 7000 No No 2
VPGNet 14,783 21,097 - Yes Yes 17

BDD100K 70,000 100,000 100,000 Yes Yes 11
CuLane 88,880 133,235 55 h Video Yes Yes 9

https://drive.google.com/drive/folders/1mSLgwVTia
UMAb4AVOWwlCD5JcWdrwpvu
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5. Experimental Result and Analysis

The training, validation, and testing of the experimental model in this paper are all
built by TensorFlow [48] framework and cuDNN [49] kernel used for calculation. Hardware
equipment mainly includes a high-performance workstation host. The workstation is
configured with an Intel@CoreTM i7-6800K CPU@3.40 GHz, NVIDIA 2080 Ti graphics card.

5.1. Evaluation Standard

To verify the effectiveness of the proposed method, the official evaluation terminology
is fully used when evaluating the CuLane dataset. In the literature [25], to make the
evaluation more reasonable, both the predicted and the real lane line are labeled as lines
with a width of 30 pixels and calculated the intersection over union (IOU) between them.
True-positive (TP) cases are selected by setting IOU threshold, which is usually set to 0.3
or 0.5. Then, the F1Measure is used to quantify the results of lane line detection, whose
definition is shown in Equation (3):

F1Measure =
(

1 + r2
) P× R

r2 p + R
(3)
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Precision (P) is defined as

Precision (P) =
TP

TP + FP
(4)

where FP represents false-positive cases, and Recall Rate (R) is defined as:

Recall (R) =
TP

TP + FN
(5)

where FN denote false negative (FN), γ is usually set to 1. In addition, during the test, the
coordinates of each lane line need to be determined from the probabilistic map predicted
by the network, so the results with branches need to be used. If the existing value of the
lane line in the predicted probability map is greater than the threshold value, then the pixel
coordinate points of the corresponding lane line are obtained from the probability map for
subsequent calculation of F1Measure which can effectively reduce the false detection rate.

5.2. Experimental Environment & Network Parameter Setting

This paper uses the standard Stochastic Gradient Descent (SGD) training model on
the CuLane data set. The batch size is set as 12, and the basic learning rate is 0.01, the
momentum is 0.9. The weight decay is 0.0001. The learning rate strategy adopts “Poly,”
and the learning index and the iteration times are set as 0.9 and 60 K, respectively.

The backbone network used in the experiment is VGGNet and ResNet, both of which
use the pre-trained weights of the ImageNet dataset and enhance the input data. First,
random rotation of [−2◦, 2◦] is performed on the batch data; then, random cropping is
performed, and the cropped image size is equal to 0.05 times the original input image
resolution. Finally, the image resolution is adjusted to 288× 800 pixels. Through a large
number of experiments, α in Equation (2) is set as 10, and β is set as 0.1. All experiments
in this paper were carried out under the PyTorch framework, and two NVIDIA 2080 Ti
GPUs were used. In addition, in training the network, the gradient of distillation loss
during backpropagation does not update the decoder branch parameters; it only affects the
weights of the parameters of the direct up-sampling branch.

5.3. Experimental Result and Comparative Analysis
5.3.1. Quantitative Analysis

To verify the effectiveness of the proposed method in this paper and calculate its
F1Measure on the CuLane dataset, Table 2 shows the calculation results of the target feature
distillation method applied on the SCNN [24]. In nine complex scenarios of the CuLane
dataset, the F1Measure of the proposed method in six scenarios, and the whole dataset is
ahead of the other algorithms. It verifies the effectiveness of the proposed method without
increasing the additional computation cost. However, in-crowd and dazzle light scenario
GCJ [29] method because F1Measure is higher than the other methods. This is because GCJ
method uses the geometric prior information between the lane line and the driving area,
which increases the context reasoning ability of the algorithm for occluding lane line. By
adding geometric information, the segmentation effect of lane lines is improved, which is
the next work of this paper.

Table 2. Model performance comparison.

Method
Scenario

Normal Crowded Dazzle Light Shadow No Line Arrow Curve Crowded Night Total

SCNN [24] 90.6 69.7 58.5 66.9 43.4 84.1 64.4 69.7 66.1 71.6
GCJ [29] 89.7 76.5 67.4 65.5 35.1 82.2 63.2 76.5 68.7 73.1
SAD [41] 90.7 70.0 59.9 67.0 43.5 84.4 65.7 70.0 66.3 71.8

Our Smooth 92.1 72.6 61.6 71.7 46.0 86.9 68.9 72.6 69.4 74.1
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As shown in columns 6–9 of Table 3, F1Measure of the target feature distillation method
applied to DeepLabv1, ResNet50, ResNet101, and SCNN are shown, respectively [25]. The
results show that the target feature distillation method proposed in this paper can improve
the lane line detection performance in each sub-scene and the total dataset, especially in the
shadow and dazzle light scene. This method brings significant improvement, which verifies
its effectiveness and versatility. In addition, columns 2–5 in Table 3 are the evaluation
results of literature [24] on the corresponding lane line detection algorithm. Since there is
no lane line labeling in the crossroad sub-scene data, Table 3 only shows its FP measure.

Table 3. Experimental results of the application of target feature distillation method to the main stream lane segmenta-
tion method.

Scenario

Methods

DeepLabv1
[25]

ResNet50
[25]

ResNet101
[25]

SCNN
[25]

DeepLabv1
+ OFD

ResNet50
+ OFD

ResNet101
+ OFD

SCNN +
OFD

Arrow 74.0 79.0 84.0 84.1 76.8 82.5 86.2 86.8
Cross Road 2060 2505 2183 1990 2445 2229 2004 2222
Crowded 61.0 64.1 68.2 69.7 62.8 67.1 69.8 71.5

Curve 61.0 59.8 65.5 64.4 61.8 64.5 68.5 67.0
Dazzle Light 49.9 54.1 59.8 58.5 55.3 58.6 63.3 64.3

Night 56.9 60.6 65.9 66.1 57.57 63.6 67.1 67.6
No Line 34.0 38.1 41.7 43.4 35.4 40.6 43.8 45.0
Normal 83.1 87.4 90.2 90.6 84.5 89.1 90.9 91.6
Shadow 54.7 60.7 64.6 66.9 64.7 67.6 68.3 73.0

Total 63.2 66.7 70.8 71.6 64.7 69.4 72.2 73.2

As shown in Figure 6, the improved F1Measure of the four groups of comparative
experiments in Table 3 in each scene were calculated, and their mean and standard deviation
were calculated. It can be seen from the figure that the average value of the improvement
is the highest in the Resnet50 method, and it can be found that the network performance of
the decoder with a relatively simple structure is improved more obviously, which indicates
the importance of the decoder for the prediction of lane line feature recovery, and also
proves the effectiveness of the target feature distillation method. Additionally, in the
Resnet101 method, the performance of each sub-scene has the closest improvement range,
so the standard deviation of its F1Measure improvement is the smallest, which may be due to
its encoder’s strong feature expression ability, which enables it to extract lane line features
in each traffic scene effectively.
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5.3.2. Qualitative Analysis

The target feature distillation method was applied to DeepLabv1 and SCNN methods,
and lane line detection results before and after application were compared. As shown in
Figure 7, column 1 represents the actual label of the input image. The images in column
2 represent the results without using the target feature distillation method. The image in
column 3 represents the experimental results after applying the method. By comparing the
lane line detection results at the red circle in column 2 image of the DeepLabv1 method,
it can be seen that the target feature distillation method can more effectively recover the
prediction of lane line pixels in congestion and night scenes. From the red circle in the
lower right corner of the SCNN prediction result image, it can be seen that the method
presented in this paper can effectively reduce the false detection rate of lane lines on the
shadow road without clear lane line identification.
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tion method.

Figure 8 shows lane line detection results after each algorithm applying the proposed
method in different complex road scenarios of the CuLane dataset. Column 1 is the original
image input, column 2 is the corresponding segmented image, and column 3–5 is the
probability graph of lane line segmentation of each algorithm. To better see the probability
of lane line classification, the probability diagram of the SCNN network in the fifth column
is visualized by a heat map and displayed in the last column. The blue represents the
minimum probability value, and the red represents the maximum. From left to right,
as the algorithm complexity increases, the lane line boundary segmentation and lane
line continuity in the lane line classification probability diagram get better and better. In
particular, as the visualization result of line 6 in Figure 8 shows, with the enhancement
of the network’s ability to extract lane line features, the detection effect of the blue lane
line on the right of the figure gets better and better. In addition, as shown in lines 4–6 in
Figure 8, the method proposed in this paper can effectively detect lane lines under harsh
conditions with no obvious illumination at night.

As different decoders have different degrees of recovery and refinement to the encoder
feature classification prediction results. Various decoder networks are designed to add
to the SCNN method, and the influence of lane boundary refinement information on
lane detection performance in the distillation is explored. As shown in Table 4, row 2
shows the experimental results when the decoder with three stages is up-sampled, row
3 shows the results of using a five stage decoder network. Row 4 shows the results after
using the smooth decoder network proposed in the literature [50]. Due to the highest
complexity of decoder design and channel attention module, the attention weight vector
can be learned and generated. By adjusting the channel weight, the classification probability
of lane line pixel can be enhanced to improve the lane line detection performance and
to distill the information of smooth decoder, the F1Measure of the new method is 74.1%,
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which is 2.5% higher than that of the original SCNN. It also shows the effectiveness of the
proposed method.
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Table 4. Influence of different decoder structures on lane line detection performance %.

Method Total (%)

SCNN 71.6
SCNN (3 Stage) 72.4
SCNN (5 Stage) 73.2
SCNN (Smooth) 74.1

Since the final output result of the convolutional layer of the network is operated by
so f tmax, the classification probability of the pixel belonging to each lane line and back-
ground in the channel dimension of the feature map satisfies the probability distribution.
Therefore, in the design of distillation loss function and using the mean square error (MSE)
to measure the distance of classification probability of each pixel directly. The KL diver-
gence loss function can also measure the distance between the distribution of classification
probability map of lane line output from direct up-sampling branch and decoder branch,
which measures the distance between the output results of two branches from the perspec-
tive of a probability distribution. As shown in Table 5, row 2 is the experimental result of
using the mean square error (MSE) loss function as the distillation loss function. Row 3
shows the experimental results using the KL divergence loss function as the distillation
loss function, which improves the F1Measure on the dataset by 0.4% compared to the results
using the mean square error (MSE) as the distillation loss function.

Table 5. Influence of different distillation loss functions on lane line detection performance %.

Method Total (%)

SCNN 71.6
SCNN_5Stage_MSE 73.2
SCNN_5Stage_KL 73.6

6. Conclusions and Future Work

In this paper, lane detection is defined as the problem at a pixel-level classification.
To solve the problem of lane line segmentation without using a decoder to recover the
lane line boundary refinement information. By adding the decoder branch, the target of
the lane line can be better recovered from the low-resolution feature image. The feature
pixel classification prediction and the pixel-level distillation loss function are applied. The
direct up-sampling branch learns the lane line segmentation probability map generated by
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the decoder branch to make up for the lack of lane line boundary refinement information.
Therefore, without increasing any computational cost, the network’s ability to detect lane
lines is improved. The experimental result shows that the target feature distillation method
proposed in this paper improves the F1Measure and can better adapt the various types of
road scenes. In straight lines, curves, backlit scenes, and vehicle occlusion scenes, the
algorithm has good detection accuracy, strong robustness, and higher detection speed. In
addition, the prior geometric information between lane lines can effectively improve the
performance of lane detection.

In future work, the lane detection and classification results will fuse with a forward-
collision warning strategy. It will be helpful for assisted driving in avoiding collision
caused by accidental lane deviation, fatigue, or driving under the influence of controlled
substances in complex or straight road environments structured.
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