
electronics

Article

Improving the Performance of an Associative Classifier in the
Context of Class-Imbalanced Classification

Carlos Alberto Rolón-González 1 , Rodrigo Castañón-Méndez 1, Antonio Alarcón-Paredes 1,* ,
Itzamá López-Yáñez 2,* and Cornelio Yáñez-Márquez 1,*

����������
�������

Citation: Rolón-González, C.A.;

Castañón-Méndez, R.;

Alarcón-Paredes, A.; López-Yáñez, I.;

Yáñez-Márquez, C. Improving the

Performance of an Associative

Classifier in the Context of

Class-Imbalanced Classification.

Electronics 2021, 10, 1095. https://

doi.org/10.3390/electronics10091095

Academic Editor: Jorge Igual

Received: 31 March 2021

Accepted: 3 May 2021

Published: 6 May 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Centro de Investigación en Computación, Instituto Politécnico Nacional, Mexico City 07700, Mexico;
carlosagrolon@gmail.com (C.A.R.-G.); rcastanonmendez@gmail.com (R.C.-M.)

2 Centro de Innovación y Desarrollo Tecnológico en Cómputo, Instituto Politécnico Nacional,
Mexico City 07738, Mexico

* Correspondence: aalarcon@cic.ipn.mx (A.A.-P.); ilopezy@ipn.mx (I.L.-Y.); coryanez@gmail.com (C.Y.-M.)

Abstract: Class imbalance remains an open problem in pattern recognition, machine learning, and
related fields. Many of the state-of-the-art classification algorithms tend to classify all unbalanced
dataset patterns by assigning them to a majority class, thus failing to correctly classify a minority
class. Associative memories are models used for pattern recall; however, they can also be employed
for pattern classification. In this paper, a novel method for improving the classification performance
of a hybrid associative classifier with translation (better known by its acronym in Spanish, CHAT)
is presented. The extreme center points (ECP) method modifies the CHAT algorithm by exploring
alternative vectors in a hyperspace for translating the training data, which is an inherent step of the
original algorithm. We demonstrate the importance of our proposal by applying it to imbalanced
datasets and comparing the performance to well-known classifiers by means of the balanced accuracy.
The proposed method not only enhances the performance of the original CHAT algorithm, but it also
outperforms state-of-the-art classifiers in four of the twelve analyzed datasets, making it a suitable
algorithm for classification in imbalanced class scenarios.

Keywords: associative memories; class-imbalanced datasets; pattern classifier; Lernmatrix; linear as-
sociator

1. Introduction

Classification and recall are two important tasks that are performed in the context
of the supervised paradigm of pattern recognition. It is a fact that few methods recall
effectively (and typically recall associative memories) [1]. On the other hand, approaches
and methods to classify patterns, such as Bayes, k-nearest neighbor (k-NN) classification,
regression trees (CART), neural networks, support vector machines (SVM), and deep learn-
ing methods, among many others, have proliferated, and further improved classification
algorithms can be commonly found in specialized literature [2].

Thus, the number of pattern recognition applications has grown significantly in recent
years, and new areas of application continually appear. In this context, every machine
learning researcher who designs and creates a new pattern classifier algorithm hopes that
the number of errors is as low as possible, and ideally the number of errors is zero, i.e.,
100% performance; however, the proof of the no free lunch theorem precludes the existence
of an ideal classifier. This very important theorem governs the effectiveness of all pattern
classification algorithms [3,4].

For this reason, machine learning researchers no longer try to design zero-error algo-
rithms because they know that this search is useless. Now, under this reality generated by
the no free lunch theorem, researchers aim for errors to tend to zero when classifying pat-
terns in datasets belonging to the different application areas. This is done in several ways,

Electronics 2021, 10, 1095. https://doi.org/10.3390/electronics10091095 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-2078-1268
https://orcid.org/0000-0002-9785-1252
https://orcid.org/0000-0001-6007-4464
https://orcid.org/0000-0002-6250-4728
https://doi.org/10.3390/electronics10091095
https://doi.org/10.3390/electronics10091095
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10091095
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10091095?type=check_update&version=2

Electronics 2021, 10, 1095 2 of 14

among which the treatment of data [5] and the search for novel and effective algorithms [6]
stand out.

The original proposal of this paper is framed in terms of the second option, i.e., the
search for a novel and effective algorithm. The effectiveness of the proposed algorithm is
based on its novelty as models for both machine learning tasks mentioned above have been
merged to achieve this, i.e., merging classification and recalling. Furthermore, unbalanced
datasets have been selected for the experimental study. This is particularly relevant because
it is known in the world of pattern recognition, machine learning, and related fields that
most pattern classification algorithms suffer from a significant bias towards the majority
class, and therefore higher misclassification of the minority class, which often corresponds
to important events [7,8].

Ideally, datasets should contain the same number of observations in each of their
classes; however, actual datasets rarely meet this condition. Instead, it is common that
the most interesting and challenging datasets, such as those of medical diagnosis, fraud
detection, etc., are unbalanced [1]. The imbalance ratio (IR) measures the imbalance for
a given dataset by dividing the cardinality of the majority class by the cardinality of the
minority one. If IR > 1.5, then the dataset is considered to be unbalanced.

One of the most common ways to measure algorithm performance is accuracy. This is
calculated as the percentage of correctly classified patterns out of the total patterns in the
testing set. Let N be the total number of observations in the testing set and C the number
of well-classified patterns, where the accuracy is then obtained by dividing C by N and
multiplying the result by 100, where 0 < C ≤ N and, correspondingly, 0 < accuracy ≤ 100.

For example, let us consider an extremely unbalanced dataset with 100 observations
of which 95 are positive and 5 are negative. To illustrate how class imbalance prevents
algorithms from obtaining a reliable performance, think about a classification algorithm
that, after fitting the data, assigns the “positive” class to each observation in the testing set
regardless of the true class. The number of correctly classified patterns is 95 out of 100, and
therefore the accuracy value is 95%. Although this can be considered quite good, we know
that the classifier could not correctly identify any of the observations in the minority class.
Surprisingly, many of the state-of-the-art classifiers follow the same behavior, i.e., many of
the well-known classifiers override the minority class in unbalanced datasets.

Unlike what happens with the large number of pattern classification methods, the
algorithms that perform a recall task are scarce, among which associative memories stand
out [9]. The pioneering associative model is the Lernmatrix, which was created in Germany
in 1961 by Karl Steinbuch [10]. Due to the nature of the patterns it works with, this model
behaves like a pattern classifier; however, the original Lernmatrix model is not competitive
as a pattern classifier.

Another classic model for pattern recall is an associative memory model known as a
linear associator, which dates back to 1972 and whose development is attributed to two
scientists working simultaneously and independently, namely Kohonen in Finland [11]
and Anderson in USA [12]. In relation to this model, studies have been carried out on
its convergence [13] and performance [14]; however, it is pertinent to note that very few
linear associator applications have been published [15] and that the reason for this is the
low performance exhibited by this model in most datasets. This occurs because the linear
associator enforces a very strong condition on the patterns in order for them to be recovered
correctly. All patterns must be orthonormal, which is very difficult (if not impossible) to
achieve in datasets generated in real-life applications.

The low performance exhibited by both models has motivated the scientific community
to segregate them. Thus, these two pioneering models of associative memories have been
forgotten for decades. Research on these two important classical associative models
resumed in 2002. As a consequence of this research work, a postgraduate thesis was
published in 2003 where a hybrid associative classifier with translation (better known by
its acronym in Spanish, CHAT) was introduced, which merged both models. The new

Electronics 2021, 10, 1095 3 of 14

hybrid model far outperformed the Lernmatrix and linear associator models when used
separately [16].

Since then, work has been carried out to improve the performance of the CHAT.
Current publications have presented successful case studies [17,18]. The original proposal
presented in this paper is, in a certain way, a continuation of these works.

The rest of the paper is organized as follows. In Section 2, the algorithms that serve
as the foundation for the proposal are explained individually. Section 3 is devoted to
providing a detailed description of the main proposal of this communication, i.e., the
extreme center points (ECP) method. The results are reported in Section 4, where it is
discussed how the proposed method performs in an imbalanced class scenario. Finally, the
conclusions and future work areas are presented.

2. Previous Works

According to what is disclosed by the no free lunch theorem, an ideal classifier does
not exist. In consequence, machine learning researchers know that looking for algorithms
that always produce zero errors is useless. For that reason, scientists are currently more
focused on enhancing the performance of existing classifiers by reducing their production
of classification errors. For instance, in [19], the authors proposed an enhancement to
a k-NN algorithm by adding a cost-sensitive distance function with careful selection of
parameter k. On the other hand, SVM models have been modified for improving their
performance by introducing an advanced radial basis function kernel [20] and by using
geometric transformations to achieve nonlinear structures for learning [21]. Furthermore, a
refinement of the multilayer perceptron (MLP) in terms of optimizing data distribution
in datasets as a method to find the most suitable number of hidden units was proposed
in [22].

Correspondingly, associative memory (AM) models have also been modified to in-
crease their performance. In the present work, a modification to the CHAT classification
algorithm is proposed, which in turn represents an improvement in the associative al-
gorithms by combining two of the first AM models. Due to its importance in this work,
the main concepts of AM are detailed below, as well as those of the Lernmatrix, linear
associator, and CHAT algorithms.

The main goal of AM is pattern recovery. An AM is an input–output system that
is cleaved into two phases as follows: (1) the learning phase, in which input data are
associated with the desired output, thus creating the associative memory, and the (2) recall
phase, where a new input pattern is presented to the previously generated AM [23].

In this context, input patterns are denoted by column vectors xµ, whereas their corre-
sponding output patterns are denoted by column vectors yµ, where µ = {1,2, . . . , p}, and p
is the total amount of patterns in the training dataset. In the learning phase, the memory
M is constructed by computing all the p associations (xµ, yµ), and then an input pattern
xµ is operated with the memory M to obtain their corresponding yµ output pattern in the
recall phase.

If the whole set of input patterns is equal to the corresponding output pattern set,
i.e., if each input pattern is associated with itself, then the memory is called an auto-
associative memory. Conversely, if at least one of the input patterns differs from its
associated output, i.e., it is not associated with itself, then the memory is referred to as a
hetero-associative memory.

The pioneer models of associative memories emerged with the Lernmatrix by Stein-
buch in the early 1960s [10]. This algorithm encouraged the generation of a range of
associative memories that were subsequently proposed. This is the case for the linear asso-
ciator proposed by Anderson and Kohonen in 1972 [11,12]. Both models had paramount
importance in the origin of associative memories; however, the original models of the
Lernmatrix and linear associator do not offer reasonable performance regarding current
classification algorithms. Still, they have inspired the creation of a new set of competitive
classification algorithms using their theory [16,17,24].

Electronics 2021, 10, 1095 4 of 14

2.1. Lernmatrix

The Lernmatrix is a hetero-associative memory model that was proposed by Steinbuch
in 1961 [10]. Due to its own nature, this model can work as a pattern classifier if it is
provided with a proper set of output patterns. In this regard, when a binary pattern is
presented to the memory in the recall phase, the memory will output a one-hot vector
representing the class of the given pattern.

With the aim of clearly illustrating how the Lernmatrix behaves as a classifier, let us as-
sume that M is a Lernmatrix and xµ represents the µ-th input pattern where µ = {1, 2, . . . , p},
with p being the number of patterns. Also, to represent the corresponding attribute of
a given pattern, let i = {1, 2, . . . , n} where n is the dimension of the pattern. The i-th
component of a given pattern xµ is denoted as xµ

i . According to the latter, a given pattern
of five dimensions representing the third pattern of a dataset would be denoted as follows:

x3 =

1
0
1
0
1

 (1)

where the first component of this pattern equals one and is denoted as x3
1 = 1.

In order to achieve proper classification with the Lernmatrix, it is required that output
patterns would be denoted in such a way that they represent the belonging class of the
patterns they are associated with. To do so, the use of a one-hot vector encoding system
is favorable. If a given dataset is grouped into k = 3 different classes, we can associate
the input patterns to an output pattern yω where ω∈ {1, 2, 3} represents the number of
the associated class. In this case, the input patterns belonging to the first class would be
associated with the corresponding y1 output pattern, represented as:

y1 =

 1
0
0

 (2)

The same would happen for the corresponding output patterns of the second and
third classes, respectively:

y2 =

 0
1
0

and y3 =

 0
0
1

 (3)

Furthermore, as in the input pattern example, the same notation applies to describe
a feature of a given output pattern, i.e., the i-th feature of a given output pattern yω is
denoted in the subscript of the pattern as: yω

i . For instance, in the previous example the
second feature of the third output pattern would be denoted as: y3

2 = 0.
Once understanding how the Lernmatrix could work as a classifier, we can proceed to

explain the learning and recall phase of this associative memory per se.

2.1.1. Learning Phase

To build a corresponding Lernmatrix for a given dataset, it is necessary to first create
a matrix M =

[
mij
]

kxn where k is the number of classes in the dataset and n corresponds to
the dimension of the given input patterns such that mij = 0, ∀i, j.

M =

 m11 · · · m1n
...

. . .
...

mk1 · · · mkn

 (4)

Electronics 2021, 10, 1095 5 of 14

Then, the corresponding learning rule is determined according to the following:

mij = mij + ∆mij (5)

∆mij =

+ε i f yµ

i = 1 = xµ
j

−ε i f yµ
i = 1 and = xµ

j = 0

0 otherwise

(6)

where ε > 0.

2.1.2. Recalling Phase

Once the learning phase is performed, an input pattern xγ, whose class is unknown, is
then presented to the previously generated memory M. In order to obtain the corresponding
class of such pattern, the next procedure is applied:

yω
i =

1 i f
n
∑

j=1
mijx

γ
j =

p
V

h=1

[
n
∑

j=1
mhjx

γ
j

]
0 otherwise

(7)

where V represents the maximum operator.
After the unknown xγ input pattern is operated with the memory, an output pattern

yω is generated, represented by a one-hot vector. This one-hot vector represents the class
of the pattern.

2.2. Linear Associator

The linear associator proposed by Anderson and Kohonen [11,12] is an AM that
associates input patterns to their corresponding output for pattern recovery tasks. This
model can appropriately recover the patterns of a training set if it meets the condition
of featuring orthonormal vectors, which in practice is difficult to find. Analogous to the
Lernmatrix, the linear associator also consists of the two phases explained below. In them,
the training set consists of p patterns where xµ represents the input vectors with dimension
n, and correspondingly yµ denotes the output vectors with dimension m.

2.2.1. Learning Phase of the Linear Associator

In this phase, the memory is obtained by operating the input and output patterns
according to the following two steps.

1. For each input pattern xµ, compute the matrix yµ·(xµ)t as detailed in Equations (8) and (9).

yµ· (xµ)t =

yµ

1
yµ

2
...

yµ
m

 (xµ
1 , xµ

2 , . . . , xµ
n

)
(8)

yµ· (xµ)t =

yµ
1 xµ

1 yµ
1 xµ

2 . . . yµ
1 xµ

j . . . yµ
1 xµ

n

yµ
2 xµ

1 yµ
2 xµ

2 . . . yµ
2 xµ

j . . . yµ
2 xµ

n
...

...
...

...
yµ

i xµ
1 yµ

i xµ
2 . . . yµ

i j . . . yµ
i xµ

n
...

...
...

...
yµ

mxµ
1 yµ

mxµ
2 . . . yµ

mxµ
j . . . yµ

mxµ
n

(9)

where this produces resulting p matrices of dimension m × n.

Electronics 2021, 10, 1095 6 of 14

2. Sum the p matrices to get the following memory:

M =
p

∑
µ=1

yµ· (xµ)t =
[
mij
]

mxn (10)

where the ij-th component of the memory is expressed as:

mij =
p

∑
µ=1

yµ
i xµ

j (11)

2.2.2. Recalling Phase of Linear Associator

Considering M, the memory computed in the previous phase, and xω being an input
pattern, then the recalling phase consists in obtain the corresponding output vector yω by
performing the following operation:

yω = M·xω =

[
p

∑
µ=1

yµ· (xµ)t

]
·xω (12)

2.3. CHAT

The hybrid associative classifier with translation was proposed by [16] and is a combi-
nation of the two previously explained algorithms. More precisely, the CHAT algorithm
implements the training phase of the linear associator and the recall phase of the Lernma-
trix model. Furthermore, the CHAT is an enhancement of a hybrid associative classifier
(CHA, by its acronym in Spanish) algorithm and differs by adding a translation of the
coordinate axes.

To perform corresponding pattern translation, the CHAT algorithm makes use of a
translation vector which in turn is defined as the mean vector of all the given input patterns.
After the translation vector has been obtained, this vector is subtracted from all the input
patterns in order to translate them to a new coordinate axis system in which the translation
vector is the new origin point. In doing so, a new set of input patterns is produced as
detailed in Definition 1 and Definition 2. Finally, Algorithm 1 describes in detail how the
CHAT works.

Definition 1. Translation vector. In the CHAT algorithm, the translation vector is represented by
the mean vector of the training input patterns by using the next equation:

¯
x =

1
p

p

∑
j=1

xµ (13)

Definition 2. Pattern translation. After the translation vector x is obtained, the whole set of
input patterns is translated, having this point as the origin of the new coordinate axes.

x̂µ = xµ − ¯
x , ∀xµ where µ ε {1, 2, . . . , p} (14)

With the aim of explaining its functionality, pseudocode for the CHAT algorithm is
presented below.

Electronics 2021, 10, 1095 7 of 14

Algorithm 1. CHAT algorithm.

Input: dataset, input_pattern, p
Output: recovered_pattern
Initialize translation_vector = []
for pattern in dataset

assign one-hot vector according to its class
end for
for pattern in dataset

translation_vector = translation_vector + pattern
end for
translation_vector = translation_vector/p
pattern_translation = dataset—translation_vector
Learning phase from Linear associator ()
Lernmatrix recalling phase ()
Sub-routine 1: Learning phase from Linear associator
Input: dataset
Output: associative_memory
Initialize associative_memory = [[]]
for pattern in dataset

matrix = one-hot_vector * transpose(pattern)
associative_memory = associative_memory + matrixend for

Sub-routine 2: Lernmatrix recalling phase
Input: associative_memory, input_pattern
Output: recovered_pattern
Initialize recovered_pattern = []
pattern = multiply_matrix (input_pattern, associative_memory)
max_value = maximunValue(pattern)
for i in range (0, len(pattern)

if pattern [i] == max_value
recovered_pattern [i] = 1

else
recovered_pattern [i] = 0

end if
end for

Although diverse improvements for state-of-the-art classification algorithms have
been proposed, class imbalances still constitute an unresolved problem, since, as mentioned
above, most pattern classification algorithms are highly biased towards the majority class,
making it very difficult for them to correctly identify any observations in the minority
class. The main purpose of this paper is to provide the CHAT algorithm with a mechanism
for boosting performance in the context of class imbalance, which is demonstrated by a
number of experiments over twelve unbalanced datasets.

3. Proposed Methodology

As mentioned before, the CHAT algorithm improves the performance of the CHA
by means of a vector translation step. It is noteworthy that the translation vector in the
original CHAT algorithm is represented by the mean point of the training dataset. In
this regard, we hypothesize that the existence of a different translation point may lead to
enhanced classification results. We conducted experiments in order to investigate this idea
by proposing the ECP method, which in turn is a method for finding the best translation
vector for a given dataset.

Extreme Center Points

This method creates an n-dimensional search hyperspace for selecting the translation
vector that produces the best classification results in the CHAT algorithm. In this work,
two alternatives for the ECP are presented: ECP (7) and ECP (9). Regardless, the election of

Electronics 2021, 10, 1095 8 of 14

one of these two heuristics replaces steps 3 and 4 of the CHAT original algorithm and is
detailed as follows:

1. Generate the extreme center points for each attribute of the training dataset. The
generation of these points represents the construction of a mesh for exploring a wide
range of values per attribute in order to select the translation vector that best fits the
CHAT algorithm for pattern classification. The 7-point version of the ECP model,
ECP (7), considers the following points:

• Minimum value of attribute;
• Minimum value of attribute + one standard deviation;
• Mean value of attribute − one standard deviation;
• Mean value of attribute;
• Mean value of attribute + one standard deviation;
• Maximum value of attribute − one standard deviation;
• Maximum value of attribute.

For the ECP (9), the attribute points for the search space are the following:

• Minimum value of attribute − one standard deviation;
• Minimum value of attribute;
• Minimum value of attribute + one standard deviation;
• Mean value of attribute − one standard deviation;
• Mean value of attribute;
• Mean value of attribute + one standard deviation;
• Maximum value of attribute − one standard deviation;
• Maximum value of attribute;
• Minimum value of attribute + one standard deviation

Note that the proposed methodology is capable of obtaining better results than
the original CHAT model, or at least the same performance, as the mean vector,
i.e., the original election of translation vector, is included in the search space of
translation vector.

2. Generate all the possible combinations using the ECP over n attributes in the training
dataset. Every combination represents a possible translation vector to be used in the
original CHAT algorithm.

3. Test all possible solutions in the obtained search space, i.e., evaluate the CHAT
algorithm using each of the points generated in the previous step, as the translation
vector. Additionally, select the point that better improves the classification results.
this point is called center point (CP).

4. With the aim of refining the values used to generate the translation vector, a neigh-
borhood of the center point is then analyzed. A more fine-grained spatial search is
performed around a neighborhood of ±1 standard deviation from the CP. That is, for
each attribute in the Center Point, n more points are equally distributed around it (for
this work in particular, n = 10). These new set of points are called deep points (DP)
and are distributed for each attribute as depicted in Figure 1.

5. Afterwards, a reevaluation of the CHAT using the DP as the translation vector is
carried out. To this end, steps 2 and 3 of the proposed method are repeatedly per-
formed with the recently obtained deep points. Finally, the best point is selected as
the translation vector to be used for classification of unknown patterns using the
CHAT algorithm.

Figure 1. Diagram of the spatial distribution of deep points around the center point.

Electronics 2021, 10, 1095 9 of 14

4. Results and Discussion

This section presents a detailed report about the experiments conducted using our
proposal in comparison to well-known classifiers in the state of the art.

In preliminary tests using CHAT-ECP, we observed that the election of different
translation vectors is particularly useful in imbalanced class scenarios. In accordance with
this premise, the datasets used in this paper were balanced as described below.

4.1. Datasets

In general, the selected datasets had an imbalance ratio (IR) of more than 5, except
for three of them, with IR values of of 2.78, 2, and 1.7, respectively. All datasets used
here contained only numerical attributes and are available from the KEEL data repository
(https://sci2s.ugr.es/keel/index.php). A general picture of these datasets can be seen in
Table 1.

Table 1. Dataset information.

Dataset Attributes Patterns IR*

Haberman 3 306 2.78
New-thyroid1 5 215 5.14

Iris0 4 150 2
E. coli (imbalanced: 0–4–6 vs. 5) 6 203 9.15

E. coli (imbalanced: 0–1 vs. 5) 6 240 11
E. coli (imbalanced: 0–6–7 vs. 5) 6 220 10

E. coli (imbalanced: 0–1–4–7 vs. 5–6) 6 332 12.28
E. coli (imbalanced: 0–1–4–6 vs. 5) 6 280 13

E. coli (imbalanced: 2–6 vs. 0–1–3–7) 7 281 39.14
LED display domain (imbalanced:

0–2–4–5–6–7–8–9 vs. 1) 7 443 10.97
Hayes-Roth 5 160 1.7

Balance scale 4 625 5.88
* IR: Imbalanced Ratio.

Short descriptions for each selected dataset are presented below.
Haberman: This dataset comes from a study conducted by University of Chicago’s

Billings Hospital between 1958 and 1970. It was recovered from the UCI repository dataset
at https://archive.ics.uci.edu/ml/datasets/haberman%27s+survival, donated in 1999. It
was a study regarding the survival rate from patients that went through a breast cancer
procedure. All the dataset’s attributes are integers. It is a binary class dataset where the
possible classes are patient survival after 5 years or longer (class 1) or patient death within
5 years (class 2).

New-thyroid1: This was a modification from the original dataset that can be accessed
through the UCI machine learning repository: https://archive.ics.uci.edu/ml/datasets/
thyroid+disease and was donated by Ross Quinlan from the Garavan Institute. Neverthe-
less, the new-thyroid1 dataset is an imbalanced version of the aforementioned dataset. It
can be obtained from the KEEL repository and the classes are divided in two. The exam-
ples which have hyperthyroidism represent the positive class and the rest of the classes
represent the negative class.

Iris0: The iris0 dataset is an adaptation of the well-known flower classification iris
dataset. As the original iris dataset is completely balanced, iris0 was modified to feature
imbalanced classes. For this purpose, the original iris-versicolor and iris-virginica classes
were grouped together into one single class (negative) and the remaining iris-setosa class
was label as positive.

E. coli datasets collect different measurements of the cell to predict the locations of
proteins. The datasets featured the following classes: cytoplasm (cp), inner membrane
(im), perisplasm (pp), outer membrane (om), outer membrane lipoprotein (omL), inner

https://sci2s.ugr.es/keel/index.php
https://archive.ics.uci.edu/ml/datasets/haberman%27s+survival
https://archive.ics.uci.edu/ml/datasets/thyroid+disease
https://archive.ics.uci.edu/ml/datasets/thyroid+disease

Electronics 2021, 10, 1095 10 of 14

membrane uncleavable signal sequence (imU), inner membrane lipoprotein (imL), and
inner membrane cleavable signal sequence (imS).

KEEL created different imbalanced versions of E. coli that separated the patterns into
two classes (positive and negative). The versions of E. coli used in this experiment were
the following:

E. coli (imbalanced: 0–4–6 vs. 5): A version of E. coli where the positive class is
comprised of patterns of cp, imU, and omL and the negative class is the class om.

E. coli (imbalanced: 0–1 vs. 5): A version of E. coli where the positive class is
comprised of patterns of cp and im and the negative class is the class om.

E. coli (imbalanced: 0–6–7 vs. 5): A version of E. coli where the positive class is
comprised of patterns of cp, omL, and pp, whereas the negative class is the class om.

E. coli (imbalanced: 0–1–4–7 vs. 5–6): A version of E. coli where the positive class
groups the patterns of the cp, im, imU, and pp classes, while the negative class is comprised
of the patterns of om and omL.

E. coli (imbalanced: 0–1–4–6 vs. 5): A version of E. coli where the positive class is
comprised of the patterns of cp, im, imU, and omL and the negative class is the class om.

E. coli (imbalanced: 2–6 vs. 0–1–3–7): A version of E. coli in which the positive class
is represented by the patterns of pp and imL and the negative class groups the patterns of
cp, im, imU, and imS.

LED display domain: Similar to previous datasets, this was obtained from the KEEL
repository, but the original data can be recovered from the UCI repository dataset. Each
pattern describes the recording of a LED display by seven light-emitting diodes repre-
sented by binary values: one if the LED is on or zero if not. Also, as mentioned in the
dataset information, each of these attributes has a 10% probability of being inverted, hence
introducing noise which represents a theoretical misclassification rate of 26%. The class is
an integer value from zero to nine, representing the digit shown on the display.

Hayes-Roth: This dataset was obtained from the KEEL repository and constitutes a
modified version of the original UCI dataset created by Barbara and Frederick Hayes-Roth
and was donated by David W. Aha. It is an artificial dataset created with the purpose
of having a baseline to compare the behavior of distinct classification algorithms. It is
comprised of three attributes (age, educational level, and marital status) ranging from 1–4
and one attribute (hobby) generated at random in a range of 1–3 with the aim of adding
noise to the data.

Balance scale: This dataset was recovered from the KEEL repository, but it is not a
native dataset from the KEEL project. The original dataset comes from the UCI machine
learning repository and has the purpose of modeling psychological experimental results by
classifying four attributes (left weight, left distance, right weight, and right distance) with
integer values ranging between 1–5 into one of three classes: tip to the right (R), tip to the
left (L), or balanced (B).

4.2. Classifiers

In this section, a brief description of each classification algorithm used in the experi-
mental stage is provided. All algorithms employed in the experiments are included in the
WEKA [25] data mining software, which was made with Java. Although WEKA encompass
a wide range of algorithms, for comparative purposes, only those with the best results
were included. All algorithms were executed using their default parameters.

K-nearest neighbor (KNN): The KNN algorithm is a simple and robust supervised
classification algorithm without a specific learning stage [26]. K-nearest neighbor methods
use a distance function in order to assign the most frequent class of the K-closest neighbors
to the pattern.

Sequential minimal optimization (SMO): SMO uses quadratic programming and se-
quential minimal optimization to represent hyperplanes or decision boundaries to separate
subsets of patterns. This method performs a high-dimensional mapping of the data and
looks for boundaries between classes or regions [27].

Electronics 2021, 10, 1095 11 of 14

Multilayer perceptron (MLP): A MLP is a type of a backward propagation neural
network algorithm [28]. Multilayer perceptrons are networks composed of a multitude of
units (called neurons) that are interconnected with each other in multiple layers. Neurons
provide an output based on their inputs. The outputs are obtained applying a prede-
fined function; it is generally simple but becomes more complex as we add more layers
or neurons.

JRip: The JRip classifier implements a set of proportional learning rules known
collectively as repeated incremental pruning to produce error reduction (RIPPER) [29] and
was proposed by Cohen W. William as an optimized version of IREP.

Naïve Bayes: Naïve Bayes methods are based on the use of probability and statistics
using the principles of the Bayes theorem [30]. Specifically, it uses the Bayes theorem by
supposing a conditional naïve independent probability between each pair of characteristics,
thus producing the value of the class of a given pattern.

J48: Also known as C4.5 [31], the J48 algorithm generates a decision tree as an exten-
sion of the ID3 algorithm. It implements a process of trimming one single step to mitigate
overfitting. It can handle discrete or continuous data and it is also capable of handling
missing values.

Random Forest: The random forest algorithm proposed by [32] is a combination of
other proposed models. The main idea behind the algorithm is to create a collection of
decision trees using a random dependent vector. It also implements a random selection of
features in combination with a bootstrap aggregation algorithm in order to generate more
controlled variance decision trees.

4.3. Validation Method

A validation method must be employed in order to estimate the behavior of the
classification models when applied to unknown input patterns. Here, a leave-one-out
cross-validation (LOOCV) method was implemented to separate datasets into training and
testing subsets.

LOOCV is an iterative method that selects a single instance at each iteration for
the validation set and the remaining examples for training the classifier. This process is
repeated for each pattern in the dataset. The main advantage of employing LOOCV is that
it follows a deterministic process, i.e., that there is no random separation of the data and
consequently the results are fully reproducible.

4.4. Performance Evaluation Metrics

An evaluation metric should be adopted in order to evaluate the performance of the
classification methods. Considering that the datasets included in this study featured imbal-
anced classes, a quite suitable metric for measuring classification results is the balanced ac-
curacy metric. To calculate the balanced accuracy, the following equations were computed:

Balanced Accuracy =
1
2

(
TP
P

+
TN
N

)
(15)

Overall Accuracy =
(TP + TN)

(P + N)
(16)

where TP (true positive) and TN (true negative) represent the number of the positive and
negative instances that are correctly classified, respectively. On the other hand, P and N
represent the number of positive (P) and negative (N) instances in the dataset.

4.5. Classification Results

The experimental results for the balanced accuracy can be seen in Table 2. Each column
represents the tested classifier, whereas each row corresponds to the selected dataset. For
each dataset, the best results for a particular dataset are shown in bold.

Electronics 2021, 10, 1095 12 of 14

Table 2. Dataset classification results.

Dataset CHAT ECP (9) CHAT ECP (7) CHAT
(Original) IB1 IB3 IB5 JRip Random

Forest SMO Naive
Bayes MLP J48

(C4.5)

Haberman 0.635 0.635 0.632 0.557 0.556 0.529 0.598 0.541 0.498 0.588 0.595 0.635
New-thyroid1 0.886 0.886 0.746 0.98 0.937 0.937 0.926 0.929 0.786 0.989 0.966 0.98

Iris0 0.98 0.99 0.96 1 1 1 1 1 1 1 1 0.99
E. coli (imbalanced: 0–4–6 vs. 5) 0.897 0.897 0.809 0.872 0.922 0.922 0.839 0.87 0.847 0.881 0.892 0.756
E. coli (imbalanced: 0–1 vs. 5) 0.923 0.923 0.775 0.87 0.923 0.898 0.832 0.868 0.85 0.923 0.895 0.782

E. coli (imbalanced: 0–6–7 vs. 5) 0.89 0.89 0.798 0.84 0.82 0.848 0.868 0.873 0.8 0.878 0.87 0.843
E. coli (imbalanced: 0–1–4–7 vs. 5–6) 0.918 0.918 0.792 0.87 0.873 0.915 0.789 0.817 0.778 0.853 0.897 0.917
E. coli (imbalanced: 0–1–4–6 vs. 5) 0.925 0.925 0.777 0.873 0.923 0.898 0.763 0.844 0.798 0.888 0.84 0.752

E. coli (imbalanced: 2–6 vs. 0–1–3–7) 0.857 0.857 0.772 0.848 0.852 0.853 0.852 0.784 0.852 0.853 0.855 0.855
LED display domain (imbalanced:

0–2–4–5–6–7–8–9 vs. 1) 0.87 0.87 0.823 0.909 0.91 0.91 0.893 0.896 0.88 0.849 0.863 0.88

Hayes-Roth 0.556 0.556 0.516 0.744 0.373 0.288 0.784 0.817 0.567 0.732 0.751 0.784
Balance scale 0.618 0.618 0.618 0.63 0.63 0.643 0.582 0.58 0.639 0.657 0.828 0.563

Best results are denoted in bold.

The obtained results show that CHAT-ECP (9) and CHAT-ECP (7) achieved balanced
accuracy values greater than the rest of the algorithms for four of the twelve datasets,
namely, E. coli (imbalanced: 0–6–7 vs. 5) with balanced accuracies of 0.89 and 0.89 respec-
tively, along with E. coli (imbalanced: 0–1–4–7 vs. 5–6), E. coli (imbalanced: 0–1–4–6 vs. 5),
and E. coli (imbalanced: 2–6 vs. 0–1–3–7) with values of 0.918, 0.925, and 0.857, respectively,
for both proposed methods.

Moreover, the proposed methodology had the best performance in two more datasets,
namely the Haberman dataset, which tied with J48, obtaining a result of 0.635. For the E.
coli (imbalanced: 0–1 vs. 5) dataset, our proposal achieved the best results jointly with the
IB3 and the Naïve Bayes algorithms with a balanced accuracy of the 0.923.

As can be seen in Table 2, the proposed methodology did not obtain a value of one
as a balanced accuracy value for any dataset. In difference, eight classifiers obtained a
performance with a value of one, but only in one of the datasets for all classifiers, namely
the one with the lowest IR (iris0), for which our method achieved a competitive result
of 0.98.

Besides, the results for both CHAT-ECP (9) and CHAT-ECP (7) were practically the
same, being indicative of the consistency of the method even when the number of center
points (on which the algorithm is built) differed. In addition, we obtained a balanced
accuracy greater than 0.85 in 9 of the 12 datasets, while the competing algorithms obtained
similar values on average for 6 datasets.

It is important to mention that our proposal achieved the best score for datasets with
IR values higher than 10, except for the LED display domain.

Do not forget that the initial intention of this work was to overcome the limitations of
the CHAT algorithm by adding the ECP method. In this regard, it is clear that ECP (9) and
ECP (7) improved the results of the original version for all datasets as seen in Table 2.

Statistical significance tests consist of rejecting or accepting null hypothesis H0, i.e.,
that there are no significant differences among a group of data. To this regard, we used the
Friedman test [33] in order to identify statistical differences in the performance results of
the classification algorithms.

When only looking to Table 2, the performances of the different classifiers show similar
results. Nevertheless, after running the Friedman statistical test, the null hypothesis was
rejected with a confidence of 95% with a p-value of 0.001, which provides evidence of
statistically significant differences among classifiers. Furthermore, the proposed CHAT-
ECP (7) method was ranked best according to the Friedman mean ranks for comparative
methods, whereas the original CHAT algorithm stayed in last place, as depicted in Table 3.

Electronics 2021, 10, 1095 13 of 14

Table 3. Friedman mean ranks.

Classifier Mean Ranks 1

CHAT-ECP (7) 4.833
CHAT-ECP (9) 4.958
Naive Bayes 5.125

MLP 5.167
IB5 5.375
IB3 5.667
IB1 6.208

Random Forest 7.042
J48 (C4.5) 7.042

JRip 7.583
SMO 8.583

CHAT (original) 10.417
1 Ordered from best to worst.

5. Conclusions

In this paper, a novel methodology for obtaining the translation vector for the CHAT
classification algorithm was presented. This proposal has two alternatives, either using
ECP (7) or ECP (9), whose points are defined by the proposed heuristic.

The results show that the proposed method is competitive with other classification
algorithms shown in the specialized literature.

In particular, one of the benefits of exploring the space of possible solutions to choose
the best translation vector for each dataset is that when the findings are applied to im-
balanced class scenarios, they translate the dataset in such a way that the chat algorithm
predictably carries out the classification task accurately.

For future research, we suggest considering an approach that allows the exploration a
wider range in the search space without the need to define specific points. In this regard we
believe that using metaheuristic algorithms may be of great benefit for achieving this goal.

It has been shown that an appropriate election of the translation vector is helpful to
obtain an improved performance. From there, we conclude that the application of the new
ECP method, results in a meaningful improvement in the classification performance of the
CHAT algorithm.

Author Contributions: Conceptualization, C.Y.-M. and A.A.-P.; methodology, A.A.-P., I.L.-Y. and
C.Y.-M.; software, C.A.R.-G. and R.C.-M.; validation, I.L.-Y. and A.A.-P.; formal analysis, C.Y.-M. and
I.L.-Y.; investigation, C.A.R.-G. and R.C.-M.; writing—original draft preparation, A.A.-P. and C.Y.-M.;
writing—review and editing, R.C.-M., I.L.-Y., C.A.R.-G., A.A.-P. and C.Y.-M.; visualization, R.C.-M.
and C.A.R.-G. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Acknowledgments: The authors want to thank the Instituto Politécnico Nacional of Mexico (Secre-
taría Académica, CIC, SIP and CIDETEC), the CONACyT, and the SNI for their support to develop
this work.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Burkart, N.; Huber, M.F. A Survey on the Explainability of Supervised Machine Learning. J. Artif. Intell. Res. 2021, 70,

245–317. [CrossRef]
2. Duda, R.O.; Hart, P.E.; Stork, D.G. Pattern Classification, 2nd ed.; John Wiley & Sons: New York, NY, USA, 2001; pp. 20–450.
3. Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [CrossRef]
4. Adam, S.P.; Alexandropoulos, S.-A.N.; Pardalos, P.M.; Vrahatis, M.N. No Free Lunch Theorem: A Review. In Dynamics of Disasters;

Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2019; Volume 145, pp. 57–82.
5. Ruan, S.; Li, H.; Li, C.; Song, K. Class-Specific Dee: Feature Weighting for Naïve Bayes Text Classifiers. IEEE Access 2020, 8,

20151–20159. [CrossRef]

http://doi.org/10.1613/jair.1.12228
http://doi.org/10.1109/4235.585893
http://doi.org/10.1109/ACCESS.2020.2968984

Electronics 2021, 10, 1095 14 of 14

6. Paranjape, P.; Dhabu, M.; Deshpande, P. A novel classifier for multivariate instance using graph class signatures. Front. Comput.
Sci. 2020, 14, 144307. [CrossRef]

7. Fernández, A.; López, V.; Galar, M.; del Jesus, M.J.; Herrera, F. Analysing the classification of unbalanced data-sets with multiple
classes: Binarization techniques and ad-hoc approaches. Knowl.-Based Syst. 2013, 42, 97–110. [CrossRef]

8. Mullick, S.S.; Datta, S.; Dhekane, S.G.; Das, S. Appropriateness of performance indices for imbalanced data classification: An
analysis. Pattern Recognit. 2020, 102, 107197. [CrossRef]

9. Karpov, Y.L.; Karpov, L.E.; Smetanin, Y.G. Some Aspects of Associative Memory Construction Based on a Hopfield Net-work.
Program. Comput. Softw. 2020, 46, 305–311. [CrossRef]

10. Steinbuch, K. Die Lernmatrix. Biol. Cybern. 1961, 1, 36–45. [CrossRef]
11. Kohonen, T. Correlation Matrix Memories. IEEE Trans. Comput. 1972, 21, 353–359. [CrossRef]
12. Anderson, J.A. A simple neural network generating an interactive memory. Math. Biosci. 1972, 14, 197–220. [CrossRef]
13. Reid, R.; Frame, J. Convergence in Iteratively Formed Correlation Matrix Memories. IEEE Trans. Comput. 1975, C-24,

827–830. [CrossRef]
14. Turner, M.; Austin, J. Matching performance of binary correlation matrix memories. Neural Netw. 1997, 10, 1637–1648. [CrossRef]
15. Austin, J.; Lees, K. A search engine based on neural correlation matrix memories. Neurocomputing 2000, 35, 55–72. [CrossRef]
16. Santiago-Montero, R. Clasificador Híbrido de Patrones Basado en la Lernmatrix de Steinbuch y en el Linear Associator de

Anderson-Kohonen. Master Thesis, Centro de Investigación en Computación del Instituto Politécnico Nacional, Ciudad de
México, México, 2003.

17. Uriarte-Arcia, A.V.; López-Yáñez, I.; Yáñez-Márquez, C. One-hot vector hybrid associative classifier for medical data classification.
PLoS ONE 2014, 9, e95715.

18. Cleofas-Sánchez, L.; Sánchez, J.S.; García, V.; Valdovinos, R.M. Associative learning on imbalanced environments: An empirical
study. Expert Syst. Appl. 2016, 54, 387–397. [CrossRef]

19. Zhang, S. Cost-sensitive KNN classification. Neurocomputing 2020, 391, 234–242. [CrossRef]
20. Gopi, A.P.; Jyothi, R.N.S.; Narayana, V.L.; Sandeep, K.S. Classification of tweets data based on polarity using improved RBF

kernel of SVM. Int. J. Inf. Technol. 2020, 1–16. [CrossRef]
21. Shi, B.; Liu, J. Nonlinear metric learning for kNN and SVMs through geometric transformations. Neurocomputing 2018, 318,

18–29. [CrossRef]
22. Zhao, Z.; Xu, S.; Kang, B.H.; Kabir, M.M.J.; Liu, Y.; Wasinger, R. Investigation and improvement of multi-layer perceptron neural

networks for credit scoring. Expert Syst. Appl. 2015, 42, 3508–3516. [CrossRef]
23. Hassoun, M.H. Associative Neural Memories, 1st ed.; Oxford University Press, Inc: Ann Arbor, MI, USA, 1993.
24. Velázquez-Rodríguez, J.-L.; Villuendas-Rey, Y.; Camacho-Nieto, O.; Yáñez-Márquez, C. A Novel and Simple Mathematical

Transform Improves the Perfomance of Lernmatrix in Pattern Classification. Mathematics 2020, 8, 732. [CrossRef]
25. Hall, M.; Frank, E.; Holmes, G.; Pfahringer, B.; Reutemann, P.; Witten, I.H. The WEKA data mining software: An update. ACM

SIGKDD Explor. Newsl. 2009, 11, 10–18. [CrossRef]
26. Tsalera, E.; Papadakis, A.; Samarakou, M. Monitoring, profiling and classification of urban environmental noise using sound

characteristics and the KNN algorithm. Energy Rep. 2020, 6, 223–230. [CrossRef]
27. Luo, Y.; Xiong, Z.; Xia, S.; Tan, H.; Gou, J. Classification noise detection based SMO algorithm. Optik 2016, 127,

7021–7029. [CrossRef]
28. Hoffmann, L.F.S.; Bizarria, F.C.P.; Bizarria, J.W.P. Detection of liner surface defects in solid rocket motors using multi-layer

perceptron neural networks. Polym. Test. 2020, 88, 106559. [CrossRef]
29. Toneva, D.H.; Nikolova, S.Y.; Agre, G.P.; Zlatareva, D.K.; Hadjidekov, V.G.; Lazarov, N.E. Data mining for sex estima-tion based

on cranial measurements. Forensic Sci. Int. 2020, 315, 110441. [CrossRef] [PubMed]
30. Andrejiova, M.; Grincova, A. Classification of impact damage on a rubber-textile conveyor belt using Naïve-Bayes method-ology.

Wear 2018, 414–415, 59–67. [CrossRef]
31. Mohanty, M.; Sahoo, S.; Biswal, P.; Sabut, S. Efficient classification of ventricular arrhythmias using feature selection and C4.5

classifier. Biomed. Signal Process. Control. 2018, 44, 200–208. [CrossRef]
32. Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
33. Friedman, M. The use of ranks to avoid the assumption of normality implicit in the analysis of variance. J. Am. Stat. Assoc. 1937,

32, 675–701. [CrossRef]

http://doi.org/10.1007/s11704-019-8263-5
http://doi.org/10.1016/j.knosys.2013.01.018
http://doi.org/10.1016/j.patcog.2020.107197
http://doi.org/10.1134/S0361768820050023
http://doi.org/10.1007/BF00293853
http://doi.org/10.1109/TC.1972.5008975
http://doi.org/10.1016/0025-5564(72)90075-2
http://doi.org/10.1109/T-C.1975.224314
http://doi.org/10.1016/S0893-6080(97)00059-2
http://doi.org/10.1016/S0925-2312(00)00309-X
http://doi.org/10.1016/j.eswa.2015.10.001
http://doi.org/10.1016/j.neucom.2018.11.101
http://doi.org/10.1007/s41870-019-00409-4
http://doi.org/10.1016/j.neucom.2018.07.074
http://doi.org/10.1016/j.eswa.2014.12.006
http://doi.org/10.3390/math8050732
http://doi.org/10.1145/1656274.1656278
http://doi.org/10.1016/j.egyr.2020.08.045
http://doi.org/10.1016/j.ijleo.2016.05.018
http://doi.org/10.1016/j.polymertesting.2020.106559
http://doi.org/10.1016/j.forsciint.2020.110441
http://www.ncbi.nlm.nih.gov/pubmed/32781389
http://doi.org/10.1016/j.wear.2018.08.001
http://doi.org/10.1016/j.bspc.2018.04.005
http://doi.org/10.1023/A:1010933404324
http://doi.org/10.1080/01621459.1937.10503522

	Introduction
	Previous Works
	Lernmatrix
	Learning Phase
	Recalling Phase

	Linear Associator
	Learning Phase of the Linear Associator
	Recalling Phase of Linear Associator

	CHAT

	Proposed Methodology
	Results and Discussion
	Datasets
	Classifiers
	Validation Method
	Performance Evaluation Metrics
	Classification Results

	Conclusions
	References

