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Abstract: We introduce a blockchain-based online employment contract system to protect the rights
and interests of both employees and employers. In the proposed model, an employer and a worker
can interactively create a new electronic online contract, and the mutually signed contract is saved
on a contract blockchain so that the contract becomes certifiable but cannot be forged by the contract
signers. In particular, the blockchain in our system provides transactional privacy to protect sensitive
personal information such as social identifier, contact information, income, and so forth, contained
in the contract. Since a remote cloud server must provide not only secure storage, accessibility, and
availability of all signed contracts, but also increased security in the server, we propose a new en-
crypted keyword search mechanism with enhanced search accuracy. Each contract is associated with
encrypted keywords generated from the names of contractual parties and must remain confidential
and anonymous even to the server. Although, the contracts must always be accessible by the contract
signers, only the cloud server should be able to retrieve each user’s contract without decrypting the
contract or identifying the contract signer. To meet these requirements, we propose a new encrypted
keyword search mechanism based on Gentry’s homomorphic encryption technology; the server
can find each user’s contract when two encrypted arbitrary keywords are homomorphic to each
other. Since the keywords in the proposed system are based on person names or business names,
they are easily predictable, and, thereby, many synonyms for a keyword can exist. Therefore, the
proposed encrypted keyword search takes into account not only the keywords but also the ownership
of each contract; in this way, the proposed search scheme is secure against a keyword guessing
attack and provides strong search accuracy against the keyword synonyms. As a result, users can
only access their own contracts, and the cloud server can exactly retrieve the requester’s contracts.
Implementations for the proposed system and corresponding analysis on its security and simulated
performance are provided.

Keywords: employment contract; blockchain; homomorphic encryption; keyword; encrypted search

1. Introduction

An employment contract or a labor contract (hereinafter referred to as a contract) that
specifies the working conditions and requirements is essential to protect the rights and
interests of employers and employees. Recently, the types of work have been diversified;
international work is increasing due to globalization, and part-time work and temporary
work are also increasing due to slow economic growth and high unemployment rate.
Contracts for part-time workers and temporary workers are very important, even though
they are temporary and renewed frequently. However, unlike the contracts for regular
workers, those for part-time and temporary workers have been improperly executed.
Even when contracts are executed, employers often use non-standard forms that may not
be sufficient for legally binding. In the absence of well-defined work requirements and
conditions, unfair labor practices such as nonpayment of wages can occur. For example, in
one survey on improper wages for part-time jobs, wages had been overdue for 59.9% of
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1546 participants, and unpaid for 27.2% [1]. Therefore, a practical employment contract
system that can handle various types of employment and working conditions is necessary.

In general, contracts can be classified into three types: written contracts, digital
contracts, and electronic contracts. Written contracts are most commonly used off-line, but
they may not be secure enough for keeping personal information, preventing from forgery,
and loss. PDF (Portable Document Format) contracts, which are widely used online in
recent years, are the most representative examples of digital contracts. Digital contracts
have the advantages of being portable and convenient, maintaining the exact appearance
of document, and working online. However, the PDF document is still an image, so it is
susceptible to contract forgery; even if it is signed, the integrity of the contract content is
not guaranteed because the signature is also an image independent of the contract content.

Unlike digital contracts, electronic contracts involve cryptographic technologies in-
cluding encryption, digital signature, and digital right management that ensure strong
security. These technologies support contract confidentiality, non-forgery, and contract
verifiability as well as contractor authentication.

In this paper, we introduce a blockchain-based electronic contract system. Contracts
contain personally sensitive information such as identifiers, contact information, and
wages. Therefore, we propose here a secure and reliable online contract system that satisfies
the following security requirements: (1) confidentiality, (2) non-forgery, (3) verifiability,
(4) secure accessibility and availability, and (5) contractor anonymity.

Our proposed model will enable a pair of an employer and a worker to create a new
contract online. A contract blockchain manages contracts that have been signed by both
sides in hashes the system records to the blockchain. The general advantage of using
blockchain is that any information recorded on the blockchain can be publicly verified by
anyone on the blockchain network, but labor contracts should not be publicly broadcast
over networks. Therefore, in our system, only the hash of the contract is communicated
over the blockchain network, and all of contractual parties perform a proof of work for a
block containing their contracts to update the blockchain. The contract signers can validate
the transaction hashes of their own contracts during the blockchain generation and always
verify their contracts using the blockchain. Therefore, the proposed blockchain model
serves as the ledger of contract creation record while effectively preserving the personal
information of contracts.

For secure and efficient management of the signed contracts, each contract signer
generates an encrypted contract and two or three encrypted keywords using the names of
the contractual parties. The encrypted contracts are stored with the encrypted keywords
on a cloud server that users can access using the keywords; only the contract owner
can decrypt his or her contract. This process ensures both contract confidentiality and
contractor anonymity in the cloud server; the server can never know who made a contract
with whom. To ensure that only the cloud server can retrieve each user’s contract, and
only with encrypted keywords given by the user, we propose a new encrypted keyword
search mechanism that considers both the contract keyword and the contract ownership.
Using Gentry’s homomorphic encryption technology, the server can determine if any two
encrypted keywords are homomorphic to each other: a user generates and sends a newly
created encrypted keyword to request his or her contract on the server, and then, the server
compares the given keyword to all keywords in the list. The server can find all contracts
that are matched with the same keyword as the given keyword. By the way, the keywords
in the proposed system are generated from person names or business names, and thus, the
keywords can be easily predicted and many keyword synonyms can exist. The server has
to sift out only the requester’s contract among the many contracts with the same keyword,
and thus, the proposed search mechanism also uses a contract access token to verify if the
requester is the contract owner. As a result, the proposed search model exactly retrieves
the requester’s contracts; at the same time, it is secure against a keyword guessing attack
and accurate against the keywords synonyms.

The main achievements of our present work are as follows:
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• a secure, reliable, and practical online employment contract system architecture using
a blockchain that preserves transactional privacy is introduced.

• the contract management architecture using a cloud server which is secure and pre-
serves personal information is proposed.

• enhanced encrypted keyword searching which is secure against keyword guessing
attacks and accurate against keyword synonyms is proposed.

The rest of this paper proceeds as follows. In Section 2, we review related works.
In Section 3, we briefly describe the cryptographic prerequisite closely associated with
our system and provide concrete protocols and algorithms to implement our system. We
analyze the security and efficiency of the proposed system in Section 4. Finally, we discuss
and conclude our paper in Section 5.

2. Related Works
2.1. Blockchain-Based Smart Contracts

Smart contracts, introduced by Nick Szabo [2], are computer transaction protocols
that allow contracts to be entirely written and signed online. They satisfy all requirements
of general written contracts but minimize certain complications of the process such as
abnormal exceptions and unreliable intermediaries. However, the initial model was not
secure against contract forgery, contract integrity, and contract confidentiality.

Satoshi Nakamoto introduced blockchain technology in 2008 [3]. The blockchain is a
distributed and shared database that maintains a continuously increasing list of ordered
blocks containing users’ transactions; it is built based on various cryptographic technologies
including hash, digital signature, and consensus protocols such as proof of work and a
proof of stake. The blockchain is updated by its previous block hash, the current block’s
Merkle tree root hash, and a random nonce satisfying a predefined system difficulty, and
all data recorded in the blockchain can be publicly validated just by hash comparison.
Therefore, it guarantees data integrity and unforgeability at the same time; it also provides
undeniability of the transaction generation because every transaction is digitally signed.

The blockchain solves the security issues of online smart contracts, and various blockchain-
based smart contract platforms have been developed. Ethereum by V. Buterin [4] is a global
and distributed platform that is operated by a public blockchain, so all users of the
blockchain network share all data. Transactions are not confidential to users, although users
are anonymous. Ethereum is typically used for token generation and stock issuance, etc.

Hyperledger Fabric [5] was also developed as an enterprise blockchain. Unlike Bitcoin
and Ethereum, it is a private blockchain that only authorized users can participate in.
Because only some nodes perform any given smart contract, multiple contracts can be
executed in parallel. Authorized users can be identified, but transactions are confidential
to unauthorized users. Hyperledger Fabric is widely used for various applications such
as personal health records [6], cooperation between education and industry [7], and a
government funding tracking system [8]. Blockchain technology has been also widely
applied for Industry 4.0, such as secure management of healthcare information [9], efficient
and transparent management of industrial Internet of Things data [10], and fair recruitment
and human resource management [11].

Related to employment contracts, Pinna and Ibba [12] suggested a blockchain-based
temporary employment contracts system. The proposed decentralized employment system
uses blockchain to securely and transparently manage the entire process of job opening of
employers, job applying of workers, hiring, and payment. Lallai et al. [13] provided the
software development methodology to build a decentralized application for the blockchain-
based temporary employments. The systems mentioned above focus on the transparent
management of the employment progress and process, but our system focuses on the
secure management of the contract writing, creation, storage, and retrieval.

Because all transactions are distributed and shared publicly or privately over the
blockchain network, they are exposed to any or all authorized users on the blockchain;
thus, transactional privacy is not still preserved. Kosba et al. [14] proposed a privacy-
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preserving smart contract system that does not store financial transactions in the clear on
the blockchain. Transactions are encrypted and the correctness of contract execution can be
verified by zero-knowledge proofs.

Our contract system is not for monetary transactions, but employment contracts do
contain sensitive personal information; therefore, it is necessary for contract contents to be
confidential to others except the involved parties. In our contract blockchain, the contract
contents are not shared over the blockchain; only a hash of the contract is distributed and
shared. Instead, contractual parties can validate their contracts for accuracy before the
contract chain is updated. In addition, all contracts are encrypted and stored on a cloud
server for their future use. Our contract system preserves transactional privacy in a more
practical way.

2.2. Privacy-Preserving Encrypted Keyword Search

Our proposed system uses encrypted keyword search technology for finding contracts
on the server without decrypting the data. To protect data privacy, sensitive data must be
encrypted before outsourcing to a cloud server, and encrypted data search is inevitable.
Since Song et al. [15] introduced searchable encryption, researchers have conducted nu-
merous efforts to develop searchable encryption. Boneh et al. [16,17] introduced public
key encryption with keyword search (PEKS) based on identity-based encryption [18] using
bilinear Diffie-Hellman and trapdoor permutation. The shortcoming of PEKS is that the
server has to scan all encrypted keywords in sequence to find a matched document.

To overcome the inefficiency of the sequential scan of PEKS, investigators suggested
index-based keyword searching. An index contains a list of keywords mapped to their
documents, and Goh [19] introduced secure index-based search functionality, proposing
two secure index structures, IND-CKA and Z-IDX, based on Bloom filters. Liu et al. [20]
proposed searchable encryption with multiple data sources, specifically, multiple indices
from different sources. Wang et al. [21,22] introduced similarity scores based on the
keyword frequency in a document so that searched results can be ranked by the similarity
score, and Cao et al. [23] proposed multi-keyword ranked searching based on secure inner
product computation; this process returns documents in the order of their relevance to
these keywords. Rajan et al. [24] proposed a dynamic multi-keyword search algorithm
that searches documents with multiple keywords sorted by keyword frequency, and
Yin et al. [25] suggested more efficient multi-keyword conjunctive querying using a tree-
based index. Wu et al. [26] proposed verifiable public key encryption with searching using
an inverted encryption index without using a query trapdoor so that file receivers can verify
the correctness and completeness of search results. Cao et al. [27] proposed attribute-based
encryption with enhanced access control, which provides a secure index to resist keyword
guessing attacks from access and search patterns.

To prevent the malicious behavior of a search server, Hu et al. [28] proposed an
encrypted search model using blockchain, in which every single search process is managed
as a smart contract and recorded on the blockchain; thus, it guarantees the fairness of the
search process. Jiang et al. [29] provided an improved blockchain-based encrypted search
model allowing multi-keyword search.

Our proposed encrypted keyword search scheme is based on Gentry’s homomorphic
encryption [30,31]. Homomorphic encryption allows calculations on encrypted data with-
out decrypting it; that is, the result of the computation performed on encrypted data is
the same as the result of the computation for the original data. The security of Gentry’s
scheme is based on the hardness of the approximate integer gcd [32]; in other words, for
given a list of integers that are near multiples of a hidden integer, it finds that hidden
integer. Although homomorphic encryption is less efficient than symmetric searchable en-
cryption, we adopted homomorphic encryption for our encrypted search for the following
reasons: to generate new search tokens for every single search request, to make only the
contract owner generate a valid search token for his or her contracts and not to expose
the original keyword information to others including even the cloud server. Accordingly,
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our proposed search mechanism is secure against keyword guessing attacks and provides
accurate search results against keyword synonyms by also considering contract ownership.
We also propose a file index for efficient keyword searches.

3. Materials and Methods for Employment Contracts Allowing Encrypted
Keyword Searches
3.1. Cryptographic Prerequisite

We briefly review the approximate GCD problem (A-GCD) [32] and the homomorphic
hash function [23], which provide the basic security of the proposed scheme.

A. A-GCD

Let λ be a security parameter, ρ = λ, η = O(λ2), and γ = O(λ5). The (ρ, η, γ) A-GCD is
defined as follows:

Given polynomially many samples from Dγ , ρ(p) for a randomly chosen η -bit odd
integer p, output x, where

Dγ,ρ(p) = {Choose q⇐ Z∩ [0, 2γ/p), r ⇐ Z∩ (−2ρ, 2ρ) : Output x = p · q + r}

B. Homomorphic hash function

Let G be a multiplicative cyclic group of order p and (g1, g2, . . . , gn) be generators.
For a vector b = (b1, b2, . . . , bn), its homomorphic function is defined as H(b) = ∏n

i=1 gi
bi .

Then H(b) satisfies the following properties:

• Homomorphic: For any two vectors b1, b2 and random integers r1, r2 then H(r1b1 + r2b2)
= H(b1)

r1 H(b2)
r2 .

• Collision Free: For any polynomial time algorithm, it is hard to find b1, b2, b3, r1 and
r2, which satisfies H(b3) = H(b1)

r1 H(b2)
r2 but b3 6= r1b1 + r2b2.

3.2. System Model, Assumptions, and Notation
3.2.1. System Model

We propose an online labor contract management system that provides functionality
for contract creation, signing, storage, and management. The system consists of users,
employment contract software called PTEC, a cloud server, a trusted key generation
center (KGC), and a contract blockchain denoted as C-Chain. Figure 1 shows the system
configuration and the main operations between the components mentioned above. The
main roles of each component are as follows:

• User: Users are divided into workers or employers. A pair of one worker and one
employer signs an employment contract using PTEC over the P2P networks.

• Employment contract software: PTEC is a contract application that provides all the
functions supported by the proposed system, including contract creation, signing,
uploading, searching, and reading.

• Cloud server: It stores encrypted contracts and manages access to the contracts. With a
user’s contract request, it finds and responds the corresponding contract if the request
is valid.

• KGC: A trusted key generation center that communicates with the user’s PTEC and
the cloud server. It generates secret identifiers for registered users and also provides
homomorphic encryption keys to the server for the proposed encrypted keyword
search.

• C-Chain: A blockchain for contract recording to prevent contract forgery.
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The KGC first generates system parameters and configures the cloud server, and users
can use our system just by installing PTEC. Users register with the KGC by sending their
individual identifier and public keys for signature and encryption and receive a secret
identifier from the KGC. For the registered users, a pair of a worker and an employer
can create a new contract using PTEC; both parties complete the electronic contract and
generate their digital signatures, and the final contract is added to C-Chain if both signatures
are valid. For permanent cloud server storage and access, the names of the two contractual
parties are used to generate keywords and those are assigned to the contract. The contracts
are encrypted with the user’s encryption public key and the keywords are encrypted
with the cloud server’s public key using Gentry’s homomorphic encryption. Finally, the
encrypted contract is uploaded to the cloud server along with the encrypted keywords,
which users can then use to request their contracts. In our system, each user generates a
new encrypted keyword for each single contract access request. The cloud server selects
contracts by matching contract keywords to a user’s encrypted keyword and access token.

3.2.2. Assumptions, Threat Model, and Security Requirements

We assume the following for the practical use of the proposed system:

• The KGC is secure and trusted.
• The cloud server carries out the prescribed protocol and keeps its secret keys secure.
• Authorized users use the proposed contract system using their own PTECs, and they

never expose their secret identifiers or private keys for encryptions and signatures.
• PTEC is secure and reliable and can manage all parameters used in the proposed

system. Users cannot access other users’ encrypted information.
• C-Chain can be only updated by PTECs of registered users.
• The communication with the KGC is secure. All KGC data are encrypted with a

systemically predefined master key hidden in PTEC.

The above assumptions correspond to the basic requirements for implementing the
proposed system, so they can be solved with a secure implementation. We also define a
threat model for our system as follows:

• Attackers can create contract request queries for other users with predicted keywords.
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• Attackers can obtain all information communicated over the network between users
and the cloud server, including known encrypted keywords and actual keyword pairs.

• The cloud server can only obtain encrypted contracts and encrypted keywords but
can search all data stored on the server.

For secure and reliable use, we designed the proposed system to satisfy the following
security requirements:

• Contract confidentiality: Only the owner of a contract can read the contract.
• Contract unforgeability: It is impossible to forge signed contracts.
• Undeniability of contract signing: A contract owner cannot repudiate that he or she

signed the contract.
• Contract verifiability: Users can always obtain their original contracts from the cloud

server and verify the validity of the contract using the C-Chain.
• Contract accessibility: Only registered users can upload contracts to the cloud server

and also generate valid request queries for their searches, and users can only access
their own contracts.

• Authorized contract search: Only a searcher who knows the secret key p can re-
trieve a user’s contract by performing the proposed encrypted keyword search in the
cloud server.

• Contractor anonymity: It is impossible to identify the signer of the contract with the
encrypted keywords.

3.2.3. Notation

Before we describe the specific protocols we used to develop our system, we briefly
summarize all notations used in this paper. First, for our proposed system, we used the
short version of a standard employment contract form, as shown in Table 1.

Table 1. Standard Employment Contract—Short Form.

Contractor Contract Specification

Employer

Name
Company registration number

Employment period
Working place

Main tasks
Working hours

Break hours
Working days (day of the week)

Break days (day of the week)
Wage (amount/bonus/extra pay/payment date/payment

method/etc.)
Social insurance

Contract date
Contact information (company name/phone

number/address/employer name/etc.)

Employee
Name

Social identifier
Contact information (company name/phone number/address/etc.)

Table 2 shows main parameters and notations used in the rest of the paper.
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Table 2. Notation.

Division Notation Description

KGC SKKGC KGC’s secret key for user registration and verification

user

ui
The i-th user for a user set U = { u1, u2, . . . , un}.
A user can be either a worker or an employer.

qidi ui’s secret identifier
<SKi

+, SKi
−> ui’s public key pair for digital signature generation and verification

<CKi
+, CKi

−> ui’s public key pair for contract encryption and decryption

Digital signature

S(K−, H0(M)) EC [33] digital signature generation algorithm for a message M with a
private key K−

V(K+, Sig) EC digital signature verification algorithm for a signature Sig with a
public key K+

Sigi A digital signature of ui

Encryption &
Decryption

PKE(K+, M) ECIES public key encryption algorithm for a plaintext M with a public
key K+

PKD(K−, C) ECIES public key decryption algorithm for a ciphertext C with a
private key K–

E(S, M), D(S, C) AES encryption and decryption algorithms with a symmetric key S

Hash function

H0 (M) A hash function (SHA-256) for a message M, which generates a hash
string of 256 bits.

H1(b = (b1, b2, . . . , bn)) A homomorphic hash function for a vector b

Hx(M) A hash function generating a string of x bits length for a message M.
Hx: {0,1}*→ {0,1}x.

Contract
Ck

i,j
A temporary contract generated at the k-th step between an employer

ui and a worker uj
Ci,j A final contract file between an employer ui and a worker uj (a json file)

Blockchain
Ti,j A transaction for Ci,j

C-Chain Blockchain for contract transactions

Keyword-based search
query

wi ui’s keyword for contract search
KTt

i A keyword token for a keyword wi generated at time t
ATt

i An access token for a user ui generated at time t

Cloud server
KT A set of keyword tokens stored on the cloud server

KT = {kt1, kt2, kt3, . . . , ktn}

Fidt
i,j

The identifier of a contract file that is generated between ui and uj at
time t

3.3. Employment Contracts Allowing Encrypted Keyword Searches

The main operations of our system are divided into four modules: (1) system setup by
the KGC, (2) user registration, (3) blockchain-based employment contract creation using
PTEC, and (4) contract management by the cloud server. In the next subsections, we
describe the concrete protocols for each module in detail.

3.3.1. Setup by KGC

The KGC sets its secret key SKKGC and selects all kinds of cryptographic protocols nec-
essary for our system, including symmetric key encryption/decryption algorithms, public
key encryption/decryption algorithms, digital signature algorithms, and the homomorphic
encryption algorithm. As described in Table 2, our system uses an elliptic curve digital
signature scheme, an elliptic curve integrated encryption scheme (ECIES) for public key
encryption and decryption, and an advanced encryption standard algorithm for symmetric
encryption and decryption. In addition, the KGC sets security parameters required for the
proposed encrypted keyword search algorithm. The parameters are determined as follows:

Let l be the bit length of a keyword hash, and let q be the bit length of a user’s
secret identifier; r denotes the bit length of noise. The values of l, q, and r are systemi-
cally predefined. In our experiment, those values are set to l = 160, r = 60, and q = 100.
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For a given l, r, and q, a security parameter λ is determined as an integer satisfying
λ > max(l, r + q). For example, we set security parameter λ as 164 in our experiment, and
the parameters <ρ, η, γ, τ> for the homomorphic encryption are determined as ρ = λ,
η = O(λ2), γ = O(λ5), τ = γ + λ. The private key of the cloud server is p, and p is a prime
such as p ≥ 210 · λ. Another secret αs for the cloud server is a prime that satisfies the
following condition:

(p mod αs) 6= 0 where 2l + 2q+r < αs < p.

Here, *[z]p = z mod p has values within −p/2 < [z]p ≤ p/2. The public key of the
cloud server is pk = {x0, x1, . . . , xτ}, and the τ + 1 public keys x0, x1, . . . , xτ are generated
by Dγ,ρ (p) that is described in Section 3. Here, x0 is the largest odd number among the
public keys and satisfies the following two conditions: x0 mod p = αs and x0 mod αs 6= 0.

3.3.2. User Registration

The main task of registering users with the KGC is to assign a secret identifier to a user.
A new user ui first creates an identifier idi, a key pair <SKi

+,SKi
−> for digital signature

generation and verification, and another key pair <CKi
+,CKi

−> for contract encryption and
decryption. ui sends < idi, SKi

+, CKi
+> to the KGC. The KGC creates a secret identifier for

idi using KeyGen(idi) algorithm, defined as follows:

KeyGen(idi): For an input idi

1. it outputs a secret identifier: qidi = Hq (idi ⊕ SKKGC).

The algorithm VerifyUser(idi, auth_code, timestamp) validates the legitimacy of a user ui.
The user generates an authentication code auth_code = H0(idi|qidi|timestamp) for idi, qidi,
and current timestamp and sends <idi, auth_code, timestamp > to the KGC. The VerifyUser()
algorithm works as follows:

VerifyUser(idi, auth_code, timestamp): For given idi, auth_code and timestamp

1. it computes qid = Hq (idi ⊕ SKKGC), AC = H0(idi|qid|timestamp),
2. if auth_code = AC then it outputs “valid.”
3. else it outputs “fail.”

3.3.3. Blockchain-Based Employment Contract Creation

A pair of a worker and an employer can create a new employment contract using
PTEC in three steps: (1) contract creation, (2) C-Chain update, and (3) contract upload to
the cloud server.

A. Contract Creation

Let an employer be ui, and let a worker be uj. The contract is created interactively
between the two participants in five steps as shown in Figure 2. Each temporary contract
generated in each step is encrypted with a recipient’s public key and temporarily stored on
the cloud server. Once the contract is created, the temporary contract files in progress are
removed from the cloud server.
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Otherwise, the contract creation fails.

B. C-Chain update

Once a contract is successfully created, PTEC of ui generates a new transaction Ti,j for
the contract Ci,j. Ti,j is defined as follows:

Ti,j = {TID|Ci,j} = {TID|Sigi|Sigj|Ci,j
2}, where TID = H0(Ci,j).

PTEC broadcasts only TID over the network, and TID can be validated by the contrac-
tual parties associated with the transaction. If TID is not correct, the transaction is rejected
by the signer of the contract corresponding to TID. At the end of a block interval, for every
valid TID, every PTEC that created a new transaction in the block interval performs a proof
of work on the transactions collected in the block interval in order to add the transaction
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to the C-Chain. After mining a nonce that satisfies a predefined difficulty in our system, it
broadcasts a new block information as follows:

Block = PreviousBlockHash|timestamp|nonce|NewRootHash,

where NewRootHash is a root hash of the Merkle hash tree made up of all TIDs. The Block is
verified by all peers on the network, including verifying that the hash of Block satisfies the
difficulty of the system. If more than half of peers agree to the Block, then, finally, C-Chain
is updated as follows and broadcasted over the network:

C-Chain = H0(PreviousBlockHash|timestamp|nonce|NewRootHash)

PTEC keeps C-Chain updated. For practical use, the latest C-Chain is also stored at the
cloud server. Thus, PTEC can always get the latest C-Chain from the cloud server.

C. Contract Upload

Once C-Chain for Ci,j is updated, Ci,j is encrypted with each signer’s public key
separately and uploaded to the cloud server along with encrypted keywords for permanent
storage and use. Because the contract is encrypted with each signer’s public key, only the
contract signer can decrypt the contract. Furthermore, the keywords are homomorphically
encrypted with the cloud server’s public key so that each contract is always searchable
by the cloud server with the keywords. The PTEC of each ui related to Ci,j performs the
following steps to upload each user’s contract to the cloud server.

Step 1: Contract encryption

• PTEC generates an encrypted contract ECi = PKE(CKi
+, Ci,j).

Step 2: keyword and access token generation
For each contract, a pair consisting of an encrypted keyword token and a contract

access token is required for the cloud server to retrieve ui’s contract. The contract access
token is required to prove the ownership of the contract. Let ui’s identifier, keyword and
secret identifier be idi, wi and qidi, respectively.

• PTEC generates a pair of keyword token KTi and access token ATi using GenKeyword-
Token(idi, wi, qidi, pk).

The GenKeywordToken() algorithm generates homomorphically encrypted keyword
tokens for a keyword w, a secret identifier qid, and the cloud server’s public key pk. It
outputs two types of tokens denoted as KT and AT; KT is an encrypted keyword, and
AT is an access token to show the ownership of the contract. AT distinguishes the signer
from others who might have the same keyword. Note that only registered users should be
able to store contracts in the cloud server; thus, each user must first be authenticated by
the KGC before the token is generated. For an authorized user, the KGC responds with a
session key that is used to generate the token. In other words, the session key is required to
ensure that only a registered user can upload a contract to the cloud server. A session key
is generated by the following GetSessionKey() algorithm:

GetSessionKey(id, qid):

1. it generates auth_code = H0(id|qid|timestamp) with a timestamp for the current time,
2. it generates a session key request SK_RQST = “session key

request|id|auth_code|timestamp”, and
3. it sends SK_RQST to the KGC.
4. the KGC performs VerifyUser(id, auth_code, timestamp).
5. if valid, the KGC
6. chooses αu that is a prime satisfying 2l + 2q+r < αu and (p mod αu) 6= 0,
7. generates auth_codeα = H0(αu | αs | timestamp), and
8. sends <“verified”, αu, auth_codeα> to ui.
9. else the KGC sends a “failed” message to ui.
10. it outputs the KGC’s response.



Electronics 2021, 10, 1086 12 of 24

The GenKeywordToken() algorithm is defined as follows:

GenKeywordToken(id, w, qid, pk):

1. it gets a session key αu and its authentication code auth_codeα using GetSessionKey(id, qid),
2. it chooses a random subset S ⊆ {1, 2, . . . , τ } from the public key pk = {x0, x1, . . . , xτ} of the

cloud server,
3. it chooses a random integer R, and
4. it computes <C1, C2, C3> as follows:
5. C1 = [Hl(w) + R · qid + αu ∑i∈S xi]x0

6. C2 = H1(R · qid)
7. C3 = [qid + R · qid + αu ∑i∈S xi]x0

8. it outputs <KT = (C1, C2), AT = (C2, C3), αu, auth_codeα, timestamp>.

Step 3: Contract upload

• PTEC sends an encrypted contract upload request UP_RQSTi = <“contract upload”,
TID,ECi, KTi, ATi, αu, auth_codeα, timestamp> to the cloud server.

D. Contract Request

After the contract upload has been completed, ui can request its contract from the
cloud server at any time. For the contract request, ui’s PTEC generates a new pair of KTi
and ATi using GenKeywordToken(idi, wi, qidi, pk). Finally, PTEC sends a contract request
query CRT_RQST = <“contract request”, KTi, ATi, αu, auth_codeα, timestamp> to the cloud
server. We describe how the cloud server stores the uploaded contract and responds to the
user’s contract request in the next section.

3.3.4. Contract Management and Encrypted Keyword Searches by Cloud Server

The primary role of the cloud server is to securely store users’ contracts and deliver
correct contracts to user requests. As mentioned before, the contracts stored on the cloud
server are confidential and anonymous to the server, but the server does need to be able to
retrieve the requested contracts accurately and efficiently. To achieve this, the cloud server
slightly modifies the uploaded tokens and then stores the contracts in its database (DB)
server along with the modified tokens. We describe how the server modifies the uploaded
tokens and indexes contract files to increase search efficiency.

A. Contract Storage and File Index Table Update

For a single contract Ci,j, each contractual party uploads its encrypted contract and
tokens. For each upload request UP_RQST, the cloud server first verifies if the request was
created by an authorized user. For αu, auth_codeα and timestamp given in UP_RQST, the
server computes AC = H0(αu|αs|timestamp) with its secret αs. If AC = auth_codeα, then the
request is valid. Because the user possesses a valid auth_codeα that can be only generated by
the KGC knowing the secret αs, the server can be convinced that the KGC has authenticated
the user.

If the upload request is valid, the cloud server assigns a single file identifier to all
encrypted contracts and tokens created by both contractual parties ui and uj. In other
words, a single file identifier is assigned to all encrypted contracts and tokens with the
same TID. The file identifier, which is a sequentially increasing number, is automatically
generated by the server. Let Fidt

i,j be a file identifier for a set of files related to Ci,j uploaded
at time t. Consequently, Fidt

i,j indicates a set of < ECi, ECj, KTi, KTj, ATi, ATj >.
Here, the tokens are generated with individual αu randomly assigned to each user

by the KGC, which means that the server needs to store αu additionally for each contract.
In order to eliminate this inefficiency, the cloud server re-encrypts the given tokens by
replacing αu with its private secret αs. For each set of KT = (C1, C2) and AT = (C2, C3), C1
and C3 are recomputed as follows:

1. P1 = C1 mod p mod αu, P3 = C3 mod p mod αu;
2. C1

′ = [P1 + αs ∑i∈S xi]x0
, C3

′ = [P3 + αs ∑i∈S xi]x0
.
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Hence, the cloud server can retrieve each user’s contract with the server’s secret αs
without storing individual αu. Then, the server stores the encrypted contracts and the
modified tokens with its file identifier.

The cloud server maintains a file index table for efficient contract search, as shown
in Table 3. The table consists of two attributes: keyword token and bit string; for each
keyword token in the table, the bit string represents whether each contract contains the
keyword or not. The table contains only distinct keyword tokens. For example, if two
different keyword tokens KT1 and KT2 indicate to the same keyword w, KT1 and KT2 are
homomorphic to each other and one of them is added to the table; that is, a previously
uploaded keyword token is added to the table. Suppose that KT = {KT1, KT2, . . . , KTj}
is the current set of distinct keyword tokens uploaded to the cloud server. As shown
in Table 3, the bit string of each keyword token KTi is determined as follows: for all file
identifiers Fidt

i,j = {1, . . . , n}, if the keyword token of the contract indicated by each file
identifier is homomorphic to KTi, then 1 is assigned; otherwise, 0 is assigned.

Table 3. File Index Table.

(1) the Way of Determining Bit String of Each Keyword Token

KI
FID

Fid1
1,2=1 Fid2

1,3=2 Fid3
1,2=3 . . . Fidt

i,j=n Bit String

KT1 1 1 1 . . . 0 1110 . . . 0
KT2 1 0 1 . . . 0 1011 . . . 0
KT3 0 1 0 . . . 0 0101 . . . 0
. . . . . . . . . . . . . . . . . . . . .
KTj 0 0 0 . . . 1 0000 . . . 1

(2) file Index Table

KT Bit String

KT1 1110 . . . 0
KT2 1011 . . . 0
KT3 0101 . . . 0
. . .
KTj 0000 . . . 1

Whenever a new contract set is uploaded, the table is updated. First, the cloud server
compares the given keyword token KTk with all the KTi in KT. If there is a KTj such that the
keyword wj represented by KTj is the same as the keyword wj represented by KTk, then the
bit strings of all keyword tokens in the table are updated. Otherwise, a new KTk is added
to the table and all the bit strings are updated.

B. Keyword and Access Token Comparison

The key operation of the cloud server is to determine whether any two tokens are
homomorphic or not. We propose two test algorithms to determine the homomorphism of
two tokens. Suppose that KTi is a keyword token for a keyword wi and KTj is a token for wj.
The two different keyword tokens KTi and KTj are homomorphic if wi = wj. The algorithm
Test_KT(KTi, KTj) determines whether two tokens KTi and KTj are homomorphic or not.

Test_KT(KTi, KTj): Suppose that KTi = <Ci1, Ci2> and KTj = <Cj1, Cj2>. It computes
the following Equation (1). If the result is 1, then the two tokens are homomorphic. That is,
wi = wj. Otherwise, wi 6= wj.

H1(Ci1mod p mod αs)× Cj2

H1
(
Cj1mod p mod αs

)
× Ci2

(1)

Similarly, the algorithm Test_AT(ATi, ATj) determines whether two tokens ATi and
ATj are homomorphic or not. Suppose that ATi is an access token for a secret identifier qidi
and ATj is a token for a secret qidj. ATi and ATj are homomorphic if qidi = qidj.
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Test_AT(ATi, ATj): Suppose that ATi = <Ci2, Ci3> and KTj = <Cj2, Cj3>. It computes
the following Equation (2). If the result is 1, then qidi = qidj. Otherwise, qidi 6= qidj.

H1(Ci3mod p mod αs)× Cj2

H1
(
Cj3mod p mod αs

)
× Ci2

(2)

C. Contract Search

Users can always request their contracts to the cloud server. For a contract request,
a user ui creates a contract request query CRT_RQST = < “contract request”, KTi, ATi,
αu, auth_codeα, timestamp> using GenKeywordToken(idi, wi, qidi, pk). The cloud server first
verifies the validity of the request using auth_codeα and the server’s secret αs. If the
request is authorized, then the server performs a keyword-based contract search. It finds
a keyword token in the file index table that is homomorphic to KTi. In other words, it
finds a token KTj such that Test_KT(KTi, KTj) = 1 by doing Test_TK(KTi, KTj) for all KTj in
KT. If there is no such KTj, the search fails. If the search succeeded, the bit string of KTj
represents the file identifiers of the contracts containing the same keyword as the requested
keyword. For all file identifiers such that the bit value of each file identifier is 1, it performs
Test_AT(ATi, ATj) for all access tokens ATj attached to the contracts of the selected file
identifiers. Finally, it finds contracts such that Test_AT(ATi, ATj) = 1 and responds with the
contracts to the request.

Additionally, ui’ can make a request with multiple keywords. For example, suppose
that a worker ui wants to search a contract containing both ui’s name wi and an employer
uj’s name wj. Then, ui generates two sets of keyword tokens <KT1, AT1> and <KT2, AT2> for
wi and wj, respectively. <KT1, AT1> is the output by calling GenKeywordToken(idi, wi, qidi, pk)
and <KT2, AT2> is the output by calling GenKeywordToken(idi, wj, qidi, pk). Thus, <KT1, AT1>
and <KT2, AT2> are defined as follows:

KT1 = 〈C11, C12〉 =< [Hl(wi) + R1 · qidi + α1 ∑i∈S xi]x0
, H1(R1 · qidi) >,

AT1 = 〈C12, C13〉 =< H1(R1 · qidi), [qidi + R1 · qidi + α1 ∑i∈S xi]x0
>,

KT2 = 〈C21, C22〉 =<
[
Hl
(
wj
)
+ R2 · qidi + α2 ∑i∈S xi

]
x0

, H1(R2 · qidi) >,
AT2 = 〈C22, C23〉 =< H1(R2 · qidi), [qidi + R2 · qidi + α2 ∑i∈S xi]x0

>,

where a pair of (R1 and α1) and a pair of (R2 and α2) are random values used in each
GenKeywordToken() function for wi and wj, respectively.

When two sets of keyword tokens are given to the cloud server, it first looks for
homomorphic keyword tokens for the given tokens in the file index table. That is, it finds
KTi such that Test_KT(KT1, KTi) = 1 and KTj such that Test_KT(KT2, KTj) = 1. Let the bit
string of KTi be Bi and the bit string of KTj be Bj. It calculates B = Bi·Bj where · is an AND
bit operation. Then, it finds all file identifiers such that the bit value of B is 1. Finally, it
finds contracts satisfying Test_AT(AT1, ATk) = 1 (or Test_AT(AT2, ATk) = 1). AT1 and AT2
are homomorphic access tokens for authenticating the same qidi, so testing for only one
access token is sufficient. Remind that a set of contract files represented by a file identifier
Fidt

i,j uploaded at time t is < ECi, ECj, KTi, KTj, ATi, ATj >. There are two different access
tokens generated by both signers participated in the contract. Test_AT() works for each
AT; if one of them is 1, then, the contract access is authorized. In this way, the proposed
contract search algorithm works for multiple keywords.

4. Theoretical Analysis and Experimental Results
4.1. Correctness of the Encrypted Keyword Search

Only the cloud server that knows the private key p can search contracts with encrypted
keywords; we show how the proposed search scheme works correctly. First of all, a user
ui’s ciphertexts C1 and C3 contained in KT and AT are modified to C1

′ and C3
′ by the cloud

server. We describe the recalculation for C1, and it is the same for C3. C1 is calculated with
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a session key αu but the cloud server removes αu and replaces it with the server’s secret αs.
We show that the modified C1

′ outputs the correct search result.
First, C1 is determined as follows:

C1 = [Hl(w) + R · qid + αu ∑ xi]x0
= [Hl(w) + R · qid + αu(p · q1 + r1 + p · q2 + r2 + . . . + p · qn + rn)]x0
= Hl(w) + R · qid + αu(p · q1 + r1 + p · q2 + r2 + . . . + p · qn + rn) + k(p · q0 + r0)
= Hl(w) + R · qid + αu(p · q1 + r1 + p · q2 + r2 + . . . + p · qn + rn) + k(p · q0) + k · r0
= Hl(w) + R · qid + p(αu · q1 + . . . + αu · qn + k · q0) + αu(r1 + r2 + . . . + rn) + k · r0
= Hl(w) + R · qid + p(αu ∑ qi − k · q0) + αu(∑ ri) + k · r0

To remove αu from C1, the cloud server firstly computes the following Equation (3).

P1 = C1 mod p mod = Hl(w) + R·qid + k·r0 (3)

Then, it computes C1
′ using αs and a subset of public keys S selected randomly by the

server as follows:

C′1 = [P1 + αs ∑i∈S xi]x0
= [Hl(w) + R · qid + k·r0 + αs(p · q1 + r1 + p · q2 + r2 + . . . + p · qn + rn)]x0
= Hl(w) + R · qid + k·r0 + αs(p · q1 + r1 + p · q2 + r2 + . . . + p · qn + rn) + m(p · q0 + r0)
= Hl(w) + R · qid + k·αs + αs(p · q1 + r1 + p · q2 + r2 + . . . + p · qn + rn) + m(p · q0 + αs)
= Hl(w) + R · qid + p(αs · q1 + . . . + αs · qn + m · q0) + αs(r1 + r2 + . . . + rn + k + m)
= Hl(w) + R · qid + p(αs ∑ qi + m · q0) + αs(∑ ri + k + m)

Because x0 mod p = αs, the above equation holds, and the modified encrypted key-
words are stored at the server. For a keyword search, two test algorithms Test_KT(Ci, Cj)
and Test_AT(Ci, Cj) need to compute (Ci mod p mod αs) and (Cj mod p mod αs) first. For
the modified ciphertext C1

′, the following Equation (4) holds so that the test algorithms
work correctly:

C1
′ mod p mod αs = Hl(w) + R·qid (4)

Notice that the initial encrypted keywords stored on the server along with a new
contract must be recomputed with the server’s secret αs. Regarding whether or not a
contract request query requires the server to recalculate the search ciphertexts of the tokens
contained in the request query to find user’s contract, the tokens in the query are only
required for the homomorphic comparison to the tokens stored on the server.

Suppose that the tokens contained in ui’s new contract request query are <KT2, AT2>,
where KT2 = <C1

2, C2
2> and AT2 = <C2

2, C3
2>. Without loss of generality, C1

2 and C3
2 are

modified to C1
2′ and C3

2′ with αs by the server to obtain the correct search result. Then,
Test_KT(C1

′, C1
2′) and Test_AT(C3

′, C3
2′) are performed. Here, αs will be finally removed

from C1
2′ and C3

2′ in the testing algorithm, and thus the server does not need to generate
C1

2′ and C3
2′ with αs intentionally before doing the testing algorithms. Therefore, instead

of computing C1
2′ with αs, a modified testing algorithm is used to remove the recalculation.

For two search ciphertexts < C1
′, C1

2>, a modified testing algorithm works as follows:

H1(C′1mod p mod αs)×Cj2

H1(C2
1 mod p mod αu mod αs)×Ci2

=
H1(Hl( wi)+Ri ·qidi)×H1(qidj)

Rj

H1(Hl(wj)+Rj ·qidj)×H1(qidi)
Ri

=
H1(Hl( wi))×H1(qidi)

Ri×H1(qidj)
Rj

H1(Hl(wj))×H1(qidj)
Rj×H1(qidi)

Ri
= H1(Hl(wi))

H1(Hl(wj))

The process works for <C3
′, C3

2> in the same way. In our simulation, the proposed
encrypted search algorithm provides 100% contract search accuracy.

4.2. Security Analysis

Here, we show that our system satisfies the security requirements described in Section 4.1.
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(1) Contract unforgeability: Each contract is double signed by both parties. Based on
the security of the EC digital signature algorithm, it is impossible to generate a valid signed
contract or forge the signed contract without knowing each user’s private key. Morever,
the hash of the signed contract is publicly recorded on the C-Chain so that even the owners
of the contract cannot forge their previously signed contracts.

(2) Contract confidentiality: All contracts stored on the cloud server are encrypted with
each owner’s public key. Depending on the security of the ECIES public key encryption
algorithm, it is impossible to decrypt the contract without knowing each owner’s private
key. Therefore, only contract signers can decrypt and read their own contracts.

(3) Contract accessibility: In order to upload a contract to the server and to generate
a contract request query, a user must receive a session key αu from the KGC to generate
encrypted tokens. In this process, the user must show that she or he knows a valid secret
identifier qid assigned from the KGC in the user registration process. The KGC authenticates
the user using the VerifyUser() algorithm and issues a session key αu for a registered user
with an authentication code auth_codeα. The code can only be created by the KGC that
knows a secret αs shared with the cloud server. Finally, the server will accept the contract
upload or the contract request query if the auth_codeα a is valid. Therefore, only registered
users can receive a valid session key and generate valid search tokens, so they can upload
and access their contracts. Moreover, the auth_codeα contains the current timestamp, so the
proposed system prevents replay or reuse of a previously used request query.

Next, as we mentioned before, the keywords are easily predictable. A registered but
mischievous user um might be able to make a contract request for another user uk’s keyword
wk and succeed in obtaining a valid session key from KGC, but um has no choice but to use
um’s own secret identifier qidm to generate tokens for wk. Here, the tokens for wk stored
on the cloud server were generated by uk’s secret identifier qidk, so the server will fail to
find a contract that corresponds to um’s request query. Users cannot access other contracts
with only known or predicted keywords; they must also know the keyword owner’s secret
identifier. Therefore, the proposed encrypted search scheme is secure against the keyword
guessing attack. The result is that users can only access their own contracts.

(4) Contract verifiability and undeniability: Each contract is created interactively by
both employer and worker and digitally signed by both of them. Then, the hash of the
signed contract is publicly recorded on the C-Chain. To maintain privacy, no other users
can publicly verify the contract content, but contract signers also cannot repudiate the fact
that they have signed the contract given that the contract hash containing their signatures
is recorded on the C-Chain. When a dispute arises, the original contract can be always
obtained from the cloud server and validated with the signers’ public keys and the C-Chain.

(5) Contractor anonymity: The keywords attached to each contract in effect repre-
sent the signers of the contract. However, the keywords are first hashed, and then the
hashed keywords are homomorphically encrypted and stored on the server along with
the encrypted contracts. With the one-way-ness of the cryptographic hash function, it is
impossible to know the actual keyword w from the hashed value Hl(w), but computing
Hl(w) from w is very easy. The keyword is a common person’s name or a known business
name, so we can easily obtain all pairs of <w, H1(w)> for well-known names w. Therefore,
the keyword hash H1(w) should not be disclosed from the keyword token. We show that it
is also impossible to know the keyword hash Hl(w) from the homomorphically encrypted
keyword token C1 = [Hl(w) + R · qid + αs ∑ xi]x0

for w. Only the server that knows a
secret key p can compute Key = ((C1 mod p) mod αs) = Hl(w) + R·qid, and the keyword hash
Hl(w) is still hidden by a random R·qid. It is impossible to know Hl(w) without knowing the
secret identifier qid of the contract owner because R is refreshed randomly in the generation
of each keyword token. The server that knows p can test whether any two keywords are
homomorphic or not through our keyword test algorithms, but it cannot discover Hl(w)
in the keyword search step. Therefore, the actual keyword w is not exposed to any others
including the server.
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(6) Authorized search by the cloud server: The keyword search is only allowed for
the cloud server because only the server knows the secret key p and can perform the
encrypted keyword searches correctly. Because we based our keyword encryption on
Gentry’s homomorphic encryption [32], we prove the security of our model using the
security proof of Gentry’s encryption. Roughly speaking, if an adversary A performs the
encrypted keyword search without knowing p, then we can construct a solver B that can
solve the approximate GCD problem using A, but this contradicts the hardness of A-GCD.
From Theorem 4.2 in [32], we can conclude the following Lemma 1:

Lemma 1. Fix the parameters <ρ, η, γ, τ> as in the proposed scheme from Section 4.2 (all polyno-
mial in the security parameter λ). Any adversary A with advantage e on the proposed encrypted
keyword search scheme can be converted into an algorithm B for solving <ρ, η, γ>-approximate
GCD with success probability at least e/2. The running time of B is polynomial in the running time
of A, and in λ and 1/e.

Proof. We follow Gentry’s proof to show how B can recover p with the success probability
using A. Let qp(z) and rp(z) be the quotient and remainder of z with respect to p, hence
z = qp(z)·p + rp(z).

Step 1: The solver B constructs τ + 1 public keys x0, . . . , xτ from Dγ , ρ(p). It relabels so
that x0 is the largest. It restarts unless x0 is odd. B outputs a public key pk = <x0, . . . , xτ>.

Step 2: B produces a sequence of integers and attempts to recover p by utilizing A to
learn the least-significant bit of the quotients of these integers with respect to p. For this, B
uses the following subroutine:

Subroutine Learn-LSB (z, pk):
Input: z ∈ [0, 2γ) with|rp(z)| < 2ρ, a public key pk = <x0, . . . , xτ>
Output: The least-significant bit of qp(z)
1. for j = 1 do poly(λ)/e do:
2. Choose a random rj > 2l + 2q+r, a bit mj ∈ {0, 1}, and a random set Sj ⊆{1, . . . , τ}

3. Set Cj =
[
z + mj + rj ∑ xi

]
x0

4. Call A to get a prediction Aj ← A(pk, Cj, rj)
5. Set aj = Aj mod 2
6. Set bj = aj ⊕ parity(z)⊕mj
7. Output the majority vote among the bj’s

Line 3 is a valid encryption of the bit [rp(z)]2⊕mj. Because p is odd, we always have
[qp(z)]2 = [rp(z)]2⊕parity(z). Then, Learn-LSB(z, pk) will return [qp(z)]2 with overwhelming
probability.

Step 3: A is an oracle for the least-significant bit of qp(z), and recovering p is rather
straightforward. Given any two integers z1 = qp(z1)·p + rp(z1) and z2 = qp(z2)·p + rp(z2) (with
rp(zi) << p), repeatedly apply the following process to them:

Binary GCD:
1. If z2 > z1 then swap them, z1 ↔ z2.
2. Use the oracle to learn the parity bit of both qp(z1) and qp(z2), denote bi = [qp(zi)]2.
3. If both qp(zi) are odd then replace z1 by z1 = z1 − z2 and set b1 = 0.
4. For each zi with bi = 0, replace zi by zi = (zi − parity(zi))/2.

(Note that zi − parity(zi) is even, so the new zi is an integer.)

When rp(zi) << p, subtracting the parity bity does not change the quotient with respect
to p. That is, qp (zi − parity(zi)) = qp(zi). When we set zi

′ = (zi − parity(zi))/2, we get

qp(zi
′) = qp(zi)/2 and rp(zi

′) = (rp(zi) − parity(zi))/2.

Hence, after O(γ) iterations we will finally get two integers z1
′, z2

′ with z2
′ = 0 and

qp(z1
′) being the odd part of GCD(qp(z1), qp(z1)).
Step 4: To recover p, the solver B draws a pair of elements z1*, z2* from Dγ , ρ(p) and

applies the binary GCD algorithm to them. With probability at least 0.6, the odd part
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of GCD(qp(z1*), qp(z2*)) is one, which means that the procedure will output an element
z” = 1·p + r with |r| ≤ 2ρ. Lastly B repeats the binary GCD procedure using z1 = z1* and
z2 = z”, and the sequence of parity bits of the qp(z1) in all the iterations spell out the binary
representation of qp(z1*). Now, B recovers z∗1/qp

(
z∗1
)
.

The success probability of B is identical to the proof in [32]. �

4.3. Simulated Performance Analysis

We analyze the computational efficiency of the proposed scheme. Our system con-
sists of two main parts: contract creation using blockchain and the contract search with
encrypted keywords. The most time-consuming and crucial operations in creating a new
employment contract are performing the proof of work for new contracts in a block and
verifying the validity of the contract. In the contract search part, the main operations are
keyword token generation, contract upload, and the search keyword token comparison.
We simulated the actual processing time for each major task with various values and
then analyzed the computational performance of our system with the simulated results.
We summarize the system environment of each peer node used in our simulation, the
simulation parameters, and their values in Table 4.

Table 4. Simulation Parameters and Values.

System Environment and Parameters Values

System OS/CPU/RAM Window 10, 64 bit/i7/8 GB
DB for keyword tokens Mongo DB

The number of peer nodes 10, 50, 100, 150, 200

The number of names
Top 100 most famous names in S. Korea

(the number of names is relatively small in
order for the synonym test)

The number of business names 30,206 actual business names selected
randomly

The number of distinct keywords 100, 200, 500, 1000, 3000, 5000, 7500

4.3.1. Contract Creation by Users

Firstly, the time efficiency to create a single contract on the user side is analyzed. The
time to fill out the contract form depends entirely on the user, so only the computational
efficiency of the operations performed by PTEC is analyzed. The contract creation consists
of five steps as described in Section 3.3.3. Steps 1 through 4 basically include encrypting a
temporary contract with the recipient’s public key and uploading the temporary contract
to the cloud server. Uploading includes both the delivery of the contract to the cloud server
and the storage of the contract in the temporary contract DB. In addition, Step 2 through 4
involve downloading the temporary contract, decrypting the contract. Generating a digital
signature is added to Steps 3 and 4, and the signature is needed to verify in Steps 4 and 5.
Table 5 summarizes the average time of each operation performed by PTEC, and Table 6
shows all operations involved in each step and the average time to perform all those
operations for each step. Notice that the average time in Table 6 differs from the actual
running time of each step because the operations conducted by each user were excluded
from the time analysis. As can be seen in Tables 5 and 6, since the amount of time to
perform the cryptographic operations and communicate with the cloud server is about
79 ms in total, it can be neglected. Unlike PDF contracts, the user does not need to manually
create or attach his or her signature. Just by filling out the contract form, a signed contract
that is secure, unforgeable, and verifiable is automatically completed by PTEC.
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Table 5. The average time of each operation performed by PTEC.

Operation Average Time (ms)

Contract encryption/decryption 2
Uploading a contract to the cloud server 9.5

Downloading a contract from the cloud server 4.25
Digital signature generation 2
Digital signature verification 2

Table 6. The average time of PTEC’s operations for each step.

Steps Operations Performed by PTEC Average Time (ms)

Step 1 Encryption and uploading 11.5
Step 2 Downloading, decryption, encryption, and uploading 17.75

Step 3 Downloading, decryption, signature generation,
encryption, and uploading 19.75

Step 4 Downloading, decryption, signature verification,
signature generation, encryption, and uploading 21.75

Step 5 Downloading, decryption, and signature verification 8.25

4.3.2. C-Chain Update

Every signed contract is recorded on the contract blockchain, C-Chain. The most
time-consuming operation in C-Chain generation is performing the proof of work for a
new block containing new contracts; the process requires finding a random nonce that
satisfies the predefined blockchain difficulty. Figure 3 shows the random nonce mining
time according to various difficulties. The process took less than 1 s at levels under 5 but
increased exponentially from level 5 and above, taking about 10 min for level 7.
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Figure 3. Mining Time.

Once the proof of work has been completed, a block hash for the block is determined
that must be validated by users on the network before the C-Chain updates. Figure 4 shows
the block verification time, which includes computing the block hash of the block with
previously broadcasted contract hashes and the given nonce and comparing the computed
block hash with the given block hash. This task should be done by peers on the network,
and it is verified if more than half of the peers agree to the given block hash. This task
works independently with individual users, so the block verification time is affected by
the network situation rather than the number of peers in the network. It takes about 3.78 s
on average.
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4.3.3. Contract Search with Encrypted Keywords

When the C-Chain for a new contract is updated, the contract is uploaded to the
cloud server. Before that process, however, searchable keyword and access tokens must
be generated, which requires communication with the KGC to get a random αu. The
contract is encrypted, and a set of an encrypted contract and tokens is delivered to the
cloud server. Then, the server assigns a file identifier to the contract and stores it. Finally,
the server updates the file index table for the given keyword token. To update the table,
the server must compare the given keyword token to all tokens in the table to find one
that is homomorphic to the given token: That is, an encrypted keyword search occurs.
Thus, we analyze the computation time for the main operations: keyword and access token
generation, contract encryption and delivery, and keyword search by the server.

Figure 5 shows the keyword and access token generation time. Generating the key-
word token includes the KGC’s selecting αu and computing a few hash values for the
signer’s keyword and secret identifier; this takes about 503 ms on average. The most
time-consuming operation is to receive the session key from the KGC. The average time for
creating each token with the given session key and the signer’s secret identifier is around
6.75 ms. The contract is encrypted with the contract signer’s public key and then a set of
encrypted contract and keyword and access tokens are delivered to the cloud server.
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Figure 5. Keyword and access token generation time.

Figure 6 shows the average time for the contract encryption and delivery to the
server; it takes about 8 ms. The contract encryption takes about 2 ms on average and
the average delivery time to the cloud server is about 6.12 ms. The token generation,
contract encryption, and delivery are performed individually by each user, so the processes
can take place in real time. In contrast, updating the file index table takes as long as the
encrypted keyword search time, which is heavily affected by the size of the table; that is,
table updating time is proportional to the number of keyword tokens in the table. Figure 7
shows search times by number of tokens in the table. The homomorphic test for a pair of
search tokens takes about 1.13 ms. Because the search is performed sequentially against the
tokens in the file index table, the search time is also closely affected by the locations of the
searched keywords in the table, and the figure shows three different average search times
for different keyword tokens locations. It took less than 1 s for 500 keyword tokens, but
for more than 500, the search time difference increased depending on the tokens’ locations
in the file index table. For keywords at the beginning of the table, the best-case keyword
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search, it took about 500 ms until 5000 tokens and 1.34 for 7500 tokens. For keywords in
the middle of the table, reflecting average search time, it took 602 ms for 1000 tokens, 2 s
for 3000 tokens, and 4.8 s for 7500 tokens. Lastly, for keywords not in the file index table,
which shows the worst search time, it took 2.5 s for 1000 tokens, 6.6 s for 5000 tokens, and
almost 8 s for 7500 tokens. In terms of practical use of our system, 8 s is a long time for
a keyword search. The search time inevitably increases proportional to the number of
keyword tokens in the table, but actual running time can vary depending on how the cloud
server is implemented. We expect that it can be further improved by allowing parallel
search using a distributed DB or a search engine-enhanced DB.
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Finally, we summarize the total amount of time for completing the entire process,
from creating a new contract to uploading the contract to the cloud server. Table 7 shows a
summary of the total execution time with 200 peers and 7500 tokens.

Table 7. Summary of the total execution time.

Main Process Operations Average Time (ms)

Contract creation by users 79

Blockchain update(with
difficulty level 5)

Mining a block hash 4065
Block hash verification 3913

Contract encryption & search
token generation

Search token generation 612
Contract encryption & delivery 8

Contract storage including keyword search 4826

Total 13,503

5. Discussion and Conclusions

A secure online employment contract system architecture using blockchain technol-
ogy to build an unforgeable, undeniable but verifiable has been presented. Comparing
current digital contracts such as PDF contracts, the proposed electronic contract system
has the advantages of strong security, efficient storage and management, and practical
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usability for the following reasons: (1) Non-forgery, non-repudiation, and verifiability are
the most essential security requirements of the contract system. The proposed contract
system uses a variety of cryptographic technologies including public key cryptography,
homomorphic encryption, digital signature, and blockchain to ensure all the most essential
security requirements of the contract system. (2) All contracts created in the proposed
system are stored and managed integrally on the cloud server. Individuals are not bur-
dened with keeping their contracts secure with no risk of losing them. Moreover, users
can always access and use their own contracts anytime, anywhere. (3) In this paper, a
dedicated software PTEC was used to sign a contract, but the proposed contract system
can be implemented on any platform such as web platform and mobile; hence, users can
conveniently use it in any environment.

The blockchain technology basically requires public verification of transactions by
sharing the transactions with all users on the blockchain network to update the blockchain.
However, because each contract contains highly sensitive personal information such as
social identifier, personal address, and income, sharing the contracts with others for the
blockchain generation is not available in the proposed system. Rather than sharing the
contract itself, our model shares only the transaction hash of each contract with others
on the blockchain network to preserve the transactional privacy of contracts. Because
all of contractual parties participate in the proof of work for their contracts to update
the blockchain, each contractual party can validate the transaction hash of his or her own
contract. Therefore, the proposed blockchain model serves as the ledger of contract creation
record while effectively preserving the personal information of contracts.

In addition to the creation of unforgeable and verifiable contracts, the secure manage-
ment and use of the created contracts must be supported. For this, we also proposed a
secure contract management and contract search model using a cloud server. All the signed
digital contracts are securely managed on the cloud server for practical and secure use.
This means all contracts are encrypted and stored on the cloud server for confidentiality;
however, any contract signer should be able to access his or her contract on the cloud server
all the time. To achieve this, we provided an enhanced encrypted keyword search protocol
to make the cloud server retrieve each user’s contract without decrypting the contract or
identifying the actual signer of the contract. Each contract is matched with two or three
keywords based on the names of contractual parties; because the keywords are name based,
they are easily predictable, and keyword synonyms can occur frequently in the proposed
system. This means the server has to sift out only a contract requester’s contract among
the many contracts with the same keyword, because users should be able to access their
own contracts only. Thus, to solve this problem, we proposed an encrypted search scheme
considering both the contract keywords and the ownership of each contract. The proposed
search model firstly selects contracts matching to a user’s encrypted keyword, and then, it
verifies the ownership of the selected contracts. To increase the search efficiency, a file index
table was proposed, as well. In particular, for multiple keywords search, the proposed
algorithm can find contracts matching to all of the multiple keywords with a simple AND
bit operation on the file indexes of the keyword-based selected contracts. So, the contract
search time can be significantly reduced. As a result, the proposed search model exactly
retrieves the requester’s contracts; at the same time, it is secure against a keyword guessing
attack and provides strong search accuracy against the keywords synonyms.

We provided concrete implementation of the proposed system, demonstrated how the
proposed system satisfies the proposed security requirements, and simulated the efficiency
and practicality of the proposed system under various parameters. Our proposed system
showed 100% search accuracy with the most time-consuming operation being the encrypted
keyword search. In the simulated results, the process took an average of 4.8 s for 7500
keyword tokens. We need further research on various approaches to reduce the keyword
search time.
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