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Abstract: Accurate prediction of core losses plays an important role in the design and analysis
of flux-switching permanent magnet (FSPM) machines, especially during high-speed and high-
frequency operation. Firstly, based on the numerical method, a high-frequency core loss prediction
method considering a DC-bias magnetization component and local hysteresis loops as well as the
harmonic effect is proposed. Secondly, the magnetizing characteristics of the silicon steel sheet and,
consequently, the core loss of the electrical steel used as the core lamination are measured. Then,
the loss coefficient of each core loss component is obtained by the data fitting tool. Based on the
proposed method, the stator and rotor core losses of a three-phase, 12-stator-slot, and 10-rotor-pole
(12/10) FSPM machine with different soft iron materials and driving modes are calculated. Finally,
the results of the numerical method are verified by conventional finite element analysis.

Keywords: flux-switching; permanent magnet; finite element analysis; core loss; hysteresis; eddy
current; high frequency

1. Introduction

In recent years, considerable attention has been paid to high-speed electrical machine-
based drives for a wide range of applications, such as flywheel energy storage, aircraft
electrical starter–generator systems, and electric vehicles [1]. However, with the ever-
growing increase in the fundamental frequency of the armature current due to mechanical
speed, the proportion of core loss among the total losses is increasing, and, consequently,
accurate prediction of core loss at high frequencies has become a challenge for topology
design, thermal management, control strategies, and the safe operation of high-speed
permanent magnet (PM) machines.

Previously, C.P. Steinmetz employed an empirical equation to evaluate the loss of ferro-
magnetic materials [2], which is mostly used for low-frequency machines (e.g., 50 Hz) with
a sinusoidal air-gap magnetic field. Subsequently, more models for core loss calculation
were proposed, including the core loss separation model [3], the orthogonal decomposition
model [4], and the flux density trajectory method [5]. The core loss separation model
only takes into account the losses caused by alternating magnetization and neglects the
effects of rotating magnetization, resulting in a simple and an easy implementation, but
with a large deviation. The orthogonal decomposition model has higher accuracy due to
the consideration of the elliptical rotational magnetization, but the loss calculation coeffi-
cients of ferromagnetic materials under alternating magnetization and circularly rotating
magnetization need to be obtained by two-dimensional (2D) core loss testing equipment
before calculation. The flux density trajectory method accounts for both harmonic and
rotating magnetic fields, and the loss coefficients can be obtained by fitting the loss curves
directly from the alternating magnetization method provided by the silicon steel sheet
manufacturer. In [6], the core loss of silicon steel sheets with different materials at different
frequencies and flux densities was measured by the Epstein method and a magnetism
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measuring instrument, respectively. In [7], the loss data of a silicon steel sheet was mea-
sured by TPS-500M equipment, and the machine core loss was separated by an experiment,
which verified the results of the finite element calculation. A method for calculating eddy
currents and corresponding losses in a laminated transformer core using the finite element
method is developed in [8]. The method is based on the transformation of the 3D model
into the corresponding 2D model. By using the 2D mesh, the number of finite elements is
drastically reduced.

In addition, the influence of processing factors on core loss is also studied. In [9],
the core loss of a silicon steel sheet with a different thickness after different processing
processes, such as insulation, cutting, and heat treatment, was tested by the experimental
method, and the additional factor of iron loss and the additional loss caused by magnetic,
thermal, and mechanical coupling was evaluated by combining it with the finite element
method. The loss coefficient of the core material caused by the manufacturing process
was tested in [10], and the loss of unprocessed silicon steel sheets and processed silicon
steel sheets was compared by the finite element method. The results showed that the loss
of core material increased by 23.5% after processing. The no-load and load core losses
of a surface-mounted PMSM made of amorphous alloy were studied based on the finite
element method and verified by experiments in [11]. Based on the analytical method,
the influence of different split ratios on the loss and performance of the stator and rotor
with limited loss was studied in [12], and the analysis results were verified by the finite
element method. Four models are used to investigate the lightweight structure applied in
stators [13], and the adoption of a high-performance soft magnetic alloy core can improve
the power density of a PMSM. In [14], the iron loss of amorphous alloy and silicon steel
sheets was compared by the finite element method. Through experimental verification, it
was found that although the loss of amorphous alloy increased after manufacturing, it was
still lower than that of silicon steel sheets. The electromagnetic energy formula under 3D
magnetization considering permeability and permittivity tensors was studied in [15], and
a modified average total core loss formula was presented.

On the other hand, due to the robust rotor structure and favorable thermal dissipation
ability, the flux-switching permanent magnet (FSPM) machine, having both magnets and
armature windings in the stator, is regarded as a promising candidate. However, unlike
conventional rotor-PM brushless machines where the core loss in the rotor is relatively
small, the rotor core loss of FSPM machines is also large. A.S. Thomas found that the
core losses in the stator and rotor make up 60% of the total losses of a 50 kW/4000 rpm
FSPM machine, and the winding copper loss and magnet eddy current loss is 25% and
15%, respectively [16]. L. Mo obtained the distributions of core loss of a double-rotor
FSPM machine by both an analytical method and the finite element method (FEM) in the
hybrid driving mode [17]. J. Yuan conducted both simulations and experiments on a FSPM
machine under different driving methods [18], but the effect on core loss was neglected. S.
Zhu found an inherent phenomenon in FSPM machines that a magnetic DC bias component
exists in both the stator and rotor cores, and hence a modified loss calculation method was
proposed to calculate the iron loss more accurately [19]. However, all these analyses are
mostly based on theoretical and simulated results, and an experimental investigation of a
FSPM machine with a speed higher than 10,000 rpm is unavailable.

In this paper, a high-frequency core loss prediction method based on the FEM and the
numerical calculation method (NCM) is proposed and implemented for high-speed FSPM
machines, where the radial and tangential flux density waveforms at critical positions of
the stator and rotor cores are extracted, and consequently the variations in flux density
versus rotor positions are obtained. Thus, a core loss model is built considering a DC-bias
magnetization component and local hysteresis loops as well as the harmonic effect. Based
on the flux density of each element of the stator and rotor cores, a NCM is used to calculate
the accumulated core loss. This paper is organized as follows. The machine parameters and
core loss prediction model are given in Section 2. In Section 3, a square frame experiment
is set up and the loss coefficients of silicon steel are given. In Section 4, based on the NCM,
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the effects of different materials, working conditions, and driving methods on core loss are
obtained. Finally, the predicted results from the FEM verify the feasibility of the core loss
prediction method.

2. Machine Parameters and Core Loss Calculation
2.1. Machine Parameters

The object is a three-phase, 12-stator-slot, and 10-rotor-pole (12/10) FSPM machine
with double salient stator and rotor cores. The fractional-slot concentrated windings
(FSCWs) and permanent magnets (PMs) are located on the stator as shown in Figure 1. The
main dimensions and performance specifications are shown in Table 1.
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Figure 1. Cross-section of a 12/10 FSPM machine and eight key points. (a) 2D machine cross-section, (b) eight key points.

Table 1. Main parameters of the 12/10 FSPM machine.

Parameters Values

Number of stator slots, Ps 12
Number of rotor pole pairs, Pr 10

Stator outer diameter, mm 173
Stator inner diameter, mm 112
Axial iron core length, mm 43

Number of turns/slot 18
Winding layers 2
Peak power, kW 54.7

Rated speed, rpm 10,000
Rated torque, Nm 26.52
Rated power, kW 27.7
Rated current, A 100

Current density, A/mm2 10
Rated frequency, Hz 1666.7

Silicon steel sheet material 20JNEH1200
Permanent magnet material N35UH

It is known that the core loss of an electrical machine is directly related to the flux
density variation in the core. Therefore, before analyzing and calculating the core loss,
eight representative points in the stator and rotor cores were selected to obtain the flux
density waveforms within one electrical cycle as shown in Figure 1. Points 1–4 are located
at the centers of the rotor yoke, the junction between the rotor teeth and yoke, rotor teeth,
and rotor teeth near the air gap, respectively. Points 5–8 are located at the stator tooth near
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the air gap, the stator tooth center, the stator tooth root near the notch, and the stator yoke
center, respectively.

The corresponding variations in PM flux density waveforms of the eight key points are
shown in Figure 2. Obviously, for Point 1 the tangential component Bt changes significantly
whilst the radial one Br remains unchanged, which is totally reversed for Point 3, where
Bt remains unchanged and Br varies considerably. For Points 2 and 4, both Br and Bt
vary versus rotor positions but with the same and double the frequencies, respectively.
However, for Points 5–8 in the stator, a significant DC-biased component can be found in
the component of Br of Points 5 and 6. In Point 7, a phase-shift of nearly 90◦ exists between
Br and Bt. However, for Point 8, Br is almost zero within a period of two rotor pitches (72◦).
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Figure 2. Radial and tangential flux density waveforms of eight key points due to PMs.

Figure 3 shows the trajectories of the radial and tangential flux density changes at
eight key points when the machine is in no-load operation. There is not only an alternating
magnetic field but also a rotating magnetic field in the stator and rotor cores. It can be seen
that the change regularity of the flux density at each point on the stator side is completely
different from the change regularity of each point on the rotor side. The flux density in the
stator yoke and stator teeth changes in a single direction. The flux density in the stator yoke
center is mainly a tangential component, while the stator tooth center is mainly a radial
component. The stator tooth tip near the air gap has an obvious DC-biased magnetization
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component. The radial flux density and tangential flux density components at the junction
of the stator teeth and the yoke are relatively large. The flux density of the rotor tooth tip
has an obvious local hysteresis loop. The radial flux density and tangential flux density
components at other points of the rotor are relatively large.
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Figure 3. Flux density vector trajectories of the key eight points in the rotor and stator cores.

Based on the results above, for the stator core, the period of flux density changes is
Ts = 60/(n × Pr), where n is the rotor speed (rpm) and Pr is the number of rotor pole pairs
(being the same as the rotor tooth number), and the mechanical angle corresponding to one
electrical cycle is 360◦/Pr = 36◦. For the rotor core, it should be rotated through at least two
stator teeth before its radial and tangential flux density coincides with its initial position.
So, the period of flux density variation on the rotor core is Tr = 60/(n × Ps/2), where Ps is
the number of stator slots, and the mechanical angle corresponding to one electrical cycle
is 360◦/(Ps/2) = 60◦.

2.2. Core Loss Calculation Model

To consider the effect of rotational magnetization on core loss, the core flux density is
decomposed in the radial and tangential directions, namely Br and Bt. Since at any moment
the core flux density can be regarded as the vector sum of Br and Bt [20], the core loss is
the sum of two components due to alternating magnetizations in the radial and tangential
directions:

Pf = kh f
(

Bβ
rm + Bβ

tm

)
+ 2π2kc f 2

(
B2

rm + B2
tm

)
+ 8.76ke f 1.5

(
B1.5

rm + B1.5
tm

)
(1)

where kh, kc, and ke are the coefficient of hysteresis loss, additional loss, and eddy current
loss, respectively; f is the alternating current frequency; and Brm and Btm are the maximum
values of the radial and tangential components of the flux density, respectively.

It should be noted that the hysteresis loss Ph is mainly affected by the local hysteresis
loop, whereas the eddy current losses Pe and the additional losses Pc are mainly influenced
by the harmonic components [19,21]. After taking into account the local hysteresis loop and
the impact of the harmonic components on the core loss, the equation for the calculation
of hysteresis loss should be modified to (2), and the equation for the calculation of unit
volume eddy current losses and additional losses should be modified to (3).

Ph = kh f

(Npr

∑
j=1

B2
rmj +

Npt

∑
j=1

B2
tmj

)
(2)

Pc + Pe = 2π2kc f 2
∞

∑
k=0

k2
(

B2
rmk + B2

tmk

)
+ 8.76ke f 1.5

∞

∑
k=0

k1.5
(

B1.5
rmk + B1.5

tmk

)
(3)
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where Npr and Npt are the number of hysteresis loops within one cycle of Br and Bt,
respectively; Brmj and Btmj are the hysteresis amplitude of the jth hysteresis loops in the
radial and tangential directions, respectively; and Brmk and Btmk are the amplitude of the
kth harmonic component in the radial and tangential directions, respectively.

A mathematical model proposed to consider the effect of the DC magnetization
component on hysteresis loss is shown in Equation (4) [22], where kdc and α are constants
with the average values of kdc = 0.65 and α = 2.1, respectively, by numerically fitting
five silicon steel sheet materials in [23], Phdc and Ph are the hysteresis loss considering
the DC magnetization component or not, respectively, and Bdc is the value of the DC
magnetization component.

Phdc = Ph(kd cBα
dc + 1) (4)

By the time-step FEM, the calculation procedure of core loss is follows: firstly, the
stator and rotor cores are divided into small elements by the FEM. Secondly, the flux density
of each element within one magnetization cycle is obtained. Thirdly, based on MATLAB,
the core loss of each element is obtained. Finally, the total core loss of all elements is
obtained by adding together the core loss of each element.

3. Calculation of Core Loss Coefficients

In this section, the core loss coefficients of each loss component are determined by
tests on a sample module using an AC measurement system for soft magnetic materials
used in the prototyped FSPM machine. The experimental setup consists of a programmable
AC power supply (Chroma 61512), which can output AC/AC+DC voltages directly, a
power analyzer, an oscilloscope, and voltage and current probes as shown in Figure 4a.
The sample module is made of two silicon steel sheets, namely 10JNEX900 (0.1 mm) and
20JNEH1200 (0.2 mm). The cross-section of the test object is a silicon steel square frame
with a primary winding N1 and a secondary winding N2 wrapped around the core in turn.
The number of turns for both the primary and secondary windings is 80.
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The flux density B and the effective field strength He can be calculated as [19,24]

φ(t) =
1

N2

∫ t

0
e2(t)dt (5)

φm(t) = φ(t)− 1
T

∫ T

0
φ(t)dt (6)
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where T is the time period, e2 is the instance voltage waveform of the measuring coil, i(t) is
the current waveform measured in the excitation coil, and Le is the effective length of the
silicon steel sheets.

The iron loss can be calculated as

B(t) =
φm(t)

S
(7)

He(t) = N1
i(t)
Le

(8)

Pse =
1

ρVT

∫ T

0
i(t)e2(t)dt (9)

where ρ and V are the density and volume of the silicon steel sheets, respectively, and S is
the equivalent cross-sectional area.

The tested B-H magnetization curves of the silicon steel sheets are shown in Figure 4b.
The loss coefficients can be obtained by

Psc = kh M f B2
m + ke M f 2B2

m + kc M f 1.5B1.5
m (10)

where M is the mass of a silicon steel square frame.
Based on the MATLAB platform, the magnetic specific loss obtained from the test

at each frequency was fitted using the least-squares method (LSM) with the following
objective function.

Bm

∑
B=B1

[
Psc − Pse

Pse

]2

= min (11)

where Psc and Pse are the calculated and measured specific loss, respectively.
As a result, the loss coefficients kh, ke, and kc of 20JNEH1200 are 188, 0.079, and 2.01,

and for 10JNEX900 they are 143, 0.0154, and 1.3, respectively.

4. Soft Iron Material and Driver Harmonics Effects
4.1. Effects of Soft Iron Materials on Core Loss

Under a sinusoidal current as the power supply excitation, Figure 5 shows the effects
of different soft iron materials on stator and rotor core losses, respectively. As the armature’s
current density increases, the stator core loss shows a nonlinear increasing trend. However,
the core loss of the rotor is almost unaffected. On the other hand, as the thickness of the
silicon steel sheet decreases, both the stator and rotor core losses gradually reduce. For
machines with a high fundamental frequency, choosing the proper silicon steel sheet can
help improve the efficiency of the machine.
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4.2. Effect of Driving Modes on Core Loss

By reference to the ideal sinusoidal current, a coupled magnetic field–circuit method
was used to study the variation in core loss under two classical drive methods, namely
BLDC (PWM_ON) and BLAC (SVPWM). The waveform and harmonic content of the phase
current under rated operation conditions with different driving methods are shown in
Figure 6. It was found that the THD (total harmonic distortion) of the current is 19.87%
and 6.95% under the BLDC and BLAC driving methods, respectively, where the switching
frequency of SVPWM is 40 kHz.
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The effects of different frequencies on the stator and rotor core losses are shown in
Figure 7. It can be seen that the core loss shows an obvious tendency to increase with the
higher frequency. When the ideal sinusoidal current source is used to drive the machine, the
calculated core loss is lower than those driven by the BLDC or BLAC methods. Obviously,
the effect of different driving methods on the stator core loss is more pronounced than on
the rotor core loss, and the stator core loss is dominant.
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5. Verification

Since the prototype machine is still being processed, the core loss calculated using
commercial FEA software was compared with and used to verify the numerical calculation
of the core loss values used in this paper, as shown in Figure 8. Figure 8a,b show the core
loss of the stator and rotor calculated by different calculating methods. The loss data in the
left figure were calculated by commercial finite element software (ANSYS EM). The loss
data in the right figure were calculated by the NCM. It can be seen that the results of the
two methods of calculating losses are in the same trend, and the loss at low frequencies
is very close to that obtained using the commercial FEM. However, at high frequencies,
due to the consideration of DC bias and hysteresis loops, the calculated core loss is larger,
which is ignored in the FEM.
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6. Conclusions

A numerical method for calculating the core losses of a FSPM machine is proposed
and implemented in this paper, where the DC-bias magnetization component and the local
hysteresis loops as well as harmonic effects are considered simultaneously. Compared
with commercial FEM software, the validity of the proposed analysis method is verified.
Through this research, the following conclusions were drawn.

1. Based on the NCM method, the core loss of different stator and rotor materials was
compared. It was found that the core loss of the stator and rotor gradually decreases with
the decrease in the silicon steel sheet’s thickness. When the current density is 20 A/mm2,
the core loss of a 0.1 mm thickness silicon steel sheet is 73.6%, 70.9%, and 71.8% lower
than that of the 0.35 mm, 0.27 mm, 0.25 mm, and 0.2 mm thickness silicon steel sheets,
respectively. The variation in rotor loss is similar to that of the stator.

2. Compared with the ideal sine wave power supply, the stator iron loss of the BLDC
driving mode and the SVPWM driving mode increases by 20% and 16% during rated
operation, respectively, while the rotor iron loss increases by 3.7% and 5.3%, respectively. It
was found that the rotor core loss was less affected by the current amplitude and driving
method at the same frequency, whereas the stator core loss was greatly affected by the
current amplitude and the driving method.
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