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Abstract: This paper addresses an integral sliding mode-based anti-disturbance control algorithm
for a type of Markovian jump systems (MJSs), which are influenced by different types of mismatched
disturbances. On one hand, as for those disturbances that can be modeled, the disturbance observer
(DO) method is introduced to realize the dynamical estimation of disturbances. Based on this,
both the integral sliding surface (ISS) and the composite anti-disturbance controller are proposed
in succession for rejecting unknown disturbances and guaranteeing the stability of the controlled
MJS. Meanwhile, the states of the controlled system are ensured to reach ISS within a finite time.
In addition, the L1 performance index is given to attenuate the effects of bounded disturbances.
The controller and observer gains can be computed by using convex optimization techniques. The
satisfactory stochastic stability and dynamical tracking performance are both also proved. Finally,
the simulation results effectively verify all of the required performances.

Keywords: Markovian jump systems (MJSs); integral sliding mode (ISM) control; anti-disturbance
control; mismatched disturbances

1. Introduction

In actual production practices, the state of the controlled system usually presents vary-
ing degrees of randomness, which will cause many difficulties in terms of system modeling
and analysis [1]. Thus, the famous Markov jump systems (MJSs) are proposed. It is noted
that MJSs are typical random systems with various modes, where the transition proba-
bility between modes is determined by Markov chain when the systems are running [2].
By using the dynamic characteristics of the Markov chains, MJSs can effectively simulate
many types of engineering systems, such as manufacturing systems [3], solar systems [4],
network-based control systems [5], and aerospace systems [6]. For example, a Markov
random process needs to be imported to describe those random failures or disturbances of
thrusters, sensors, and components in order to precise identify the dynamics of spacecraft.
For a popular exoskeleton robot model, based on the angular position of four different
Markovian states (body, shank, thigh, and feet), a Markovian estimation model is built
to achieve the satisfactory dynamical description and information from each sensor [7].
Recently, the theoretical exploration on this kind of stochastic systems has also attracted
considerable attentions of many scholars, and there have been a lot of results on the analysis
of MJSs [8–14]. In [8], a sliding mode observer is designed to discuss the fault-tolerant
problem for the MJSs with actuator fault. By using the T-S fuzzy model, Ref. [10] discusses
a L2− L∞ filtering design issue for a class of typical MJSs. In [12], the nonfragile H∞ control
issue is considered for fast sampling discrete-time MJSs. Shen, Ma, Park, and Wang [13]
concerns a fuzzy fault-tolerant control algorithm, which applies to MJSs with unknown
mismatched faults.

As we all know, exogenous disturbances can be found in nearly all engineering
applications, which severely affects the property of the controlled systems [15]. With the de-
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velopment of control science, the anti-disturbance issue has undoubtedly become a research
hot issue. Many effective anti-disturbance methods have been widely used, such us active
disturbance rejection control (ADRC) [16,17], robust control [18], and disturbance observer
based control (DOBC) [19,20], etc. Among them, the DOBC method aims at completely
canceling disturbance to ensure the stability of the controlled system when disturbance
occurs. In addition, DOBC has also been widely applied into actual engineering systems,
such as robot models [21], spacecraft systems [22,23] and permanent magnet synchronous
motors [24], DC-DC buck converters [25], and chemical distribution systems [26], due to
the simplicity of the implementation and the flexible control structure. Hence, no matter
the perspective of theory or application, DOBC has a certain research value. Yi, Zheng,
and Liu [27] proposes an adaptive anti-disturbance control balgorithmy using dynamical
neural network disturbance modelling. In [28], a generalized disturbance observer (DO) is
considered to be able to estimate higher-order disturbances in the expanded time series.
Yao, Park, Wu, and Guo [29] proposes a DOBC anti-disturbance method for the singular
MJSs. In [30,31], the extended high-gain observer is designed to estimate the perturbation
and further apply it to the multi-agent systems.

In existing control theories, SMC has always been a vaild nonlinear robust control
technique and received considerable attention [32–35]. The design of sliding mode has
nothing to do with system parameters and external disturbances, which is to say, it can be
designed artificially. Accordingly, the SMC method has strong robustness. Huynh, Minh,
Amaefule, Tran, and Tran [36] focuses on the design of high order sliding mode observer
based power and load frequency control of multi-area interconnected power systems.
Based on the existing SMC, a nonsingular terminal SMC is discussed in [37], which can get
to the designed sliding surface in finite time without nonsingular phenomenon. However,
in general SMC, it will be very sensitive against disturbances or uncertainties once reaching
the sliding surface. Therefore, an ISM control scheme is designed to drive the initial state
into the sliding surface and eliminate the arrival phase [38]. Wang, Shen, Karim, and
Duan [39] discusses a fuzzy ISM control scheme for the typical T-S fuzzy models with
matched disturbances. In [40], an ISM control method is investigated for the robot systems
with time-delay estimation. As for the uncertain singularly perturbed system affected
by disturbances, the passive ISM control and ε-bound estimation problem are discussed
in [41].

According to the previous analysis, this manuscript pays attention to the research
of ISM-based anti-disturbance control for the MJSs suffering with mismatched distur-
bances. It is noticed that most of results of MJSs cannot directly compensate the effects
of mismatched disturbances. Few discussions pay attention to the dynamical tracking
and output constraint problem (see [9–12,29] for details). When compared with previous
results, two different mismatched disturbances are considered in the controlled MJSs. For
the disturbances that can be modeled or part of the information can be measured, a DO is
built to effectively estimate the dynamics of disturbances. According to observation infor-
mation and feedback state, an ISS and the corresponding ISM control input are designed
to realize the real-time compensation of unmatched disturbances. For those unmodelable
disturbances, L1 performance index is imported to restrain the influence of disturbance on
measurement output. By using convex optimization method, the augmented MJSs can be
proved to be stochastic stable. Meanwhile, the tracking error can be proved to converge
to zero and the output constraint is also verified. Finally, the simulation examples are
presented to substantiate the effectiveness of the proposed algorithm.

Notation: I and 0, respectively, represent a identity matrix and a zero matrix; For a
vector γ, ‖ · ‖ represents ‖γ‖ =

√
γTγ; λmin stands for the minimum eigenvalue; For a

matrix Q, sym{Q} can be described as sym{Q} = QT + Q.



Electronics 2021, 10, 1075 3 of 15

2. System Description

In the section, a class of MJSs with mismatched disturbances is considered as
ẋ(t) = A(rt)x(t) + B(rt)u(t) + C(rt)h(t) + Cd(rt)d(t)

y(t) = D(rt)x(t)

yd(t) = Dd(rt)x(t) + Ed(rt)d(t)

(1)

where x(t) ∈ Rm, y(t) ∈ Rn1 , yd(t) ∈ Rn2 , and u(t) ∈ Rp are the system state, the
system output, the measurable output, and the controlled input, respectively. rt stands for
continuous Markovian process, which takes a value on a finite state set ℵ = {1, · · · , N}.
Afterwards, the transfer rate matrix Π = [πij]i,j∈ℵ is expressed as

Pr{rt+4 = j|rt = i} =
{

1 + πij4+ o(4), i = j

πij4+ o(4), i 6= j
(2)

where lim4→0
o(4)
4 = 0,4 > 0. πij is the transition ratio jumping from mode i to mode

j. For any i ∈ ℵ, πii = −
N
∑

j=1,i 6=j
πij is satisfied. A(rt), B(rt), C(rt), D(rt), Dd(rt), and

Ed(rt) are the system matrices with suitable dimension. Subsequently, define A(rt) := Ai,
B(rt) := Bi, C(rt) := Ci, Cd(rt) := Cdi, D(rt) := Di, Dd(rt) := Ddi, and Ed(rt) := Edi.

Please note that d(t) ∈ Rp and h(t) ∈ Rp are two kinds of different disturbances,
where d(t) is supposed to be bounded with its norm. Choosing different upper bounds has
no substantial impact on the analysis of the system. In order to simplify the proof process,
‖d(t)‖∞ ≤ 1 holds. While another external disturbance h(t) is assumed to be generated by
the epitaxial system, as {

h(t) = Viσ(t)

σ̇(t) = Wiσ(t)
(3)

where σ(t) ∈ Rq is the state of the disturbance model. Vi and Wi are the known matrices.
For achieving favoable dynamic performance, the state is extended as

x̄(t) =
[

xT(t),
∫ t

0
eT(ϑ)dϑ

]T
(4)

where the error term e(t) is defined as e(t) := y(t)− yh, and yh is the desired output.
By integrating (1) with (4), the expanded MJS is further described as

˙̄x(t) = Āi x̄(t) + B̄iu(t) + C̄ih(t) + C̄did(t) + H̄iyh

y(t) = D̄i x̄(t)

yd(t) = D̄di x̄(t) + Ēdid(t)

(5)

where

Āi =

[
Ai 0
Ci 0

]
, B̄i =

[
Bi
0

]
, C̄di =

[
Cdi
0

]
, C̄i =

[
Ci
0

]

D̄i =

[
DT

i
0

]T

, D̄di =

[
DT

di
0

]T

, H̄i =

[
0
−I

]
, Ēdi = Edi

The following conditions need to be met in order to achieve feasible results.

Assumption 1. (Ai, Bi) is controllable, and (Wi, Bi, Vi) is observable.

Assumption 2. The disturbance h(t) is assumed to be bounded and satisfies the condition
‖h(t)‖ ≤ ρ, where ρ > 0 is a defined scalar.
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3. Design of Disturbance Observer

For the sake of reconstructing disturbance h(t) in MJSs, an effective DO is defined as
ĥ(t) = Viσ̂(t)

σ̂(t) = v(t)− Li x̄(t)

v̇(t) = Li(Āi x̄(t) + B̄iu(t) + H̄iyh) + (Wi + LiC̄iVi)(v(t)− Li x̄(t)))

(6)

where v(t) is a given auxiliary variable. ĥ(t) and σ̂(t), respectively, stand for the estima-
tions of h(t) and σ(t). Li is a gain matrix of DO, which will be solved later.

Define eσ(t) = σ(t)− σ̂(t), then we have

ėσ(t) = (Wi + LiC̄iVi)eσ(t) + LiC̄did(t) (7)

The next theorem 1 concerns the dynamical performance of the estimated error
system (7).

Theorem 1. For a given parameter λ1 > 0, if there exists matrices P1i > 0 and T1i, i = 1, 2, · · · , N,
which can ensure the inequalities[

sym{P1iWi + T1iCiVi}+ ∑N
j=1 πijP1j T1iC̄di

∗ −λ2
1 I

]
< 0, i = 1, · · · , N (8)

hold, then it can be proved that the estimation error system (7) is stochastically stable. The DO gain
Li can be calculated by Li = P−1

1i T1i.

Proof of Theorem 1. Select the Lyapunov function as

Φ1(eσ(t), i, t) = eT
σ (t)P1ieσ(t) (9)

Next, define the symbol z as the asthenic infinitesimal generator. By the total proba-
bility and conditional expectation, it is deduced that

zΦ1(eσ(t), i, t) = lim
4→0

1
4

{
N

∑
j=1,j 6=i

Pr{rt+δ = j|rt = i}eT
σ (t +4)P1jeσ(t +4)

+ Pr{rt+h = i|rt = i}eT
σ (t +4)P1ieσ(t +4)− eT

σ (t)P1ieσ(t)

}

= lim
4→0

1
4

{
N

∑
j=1,j 6=i

κij(Gi(δ +4)− Gi(δ))

1− Gi(h)
eT

σ (t +4)P1jeσ(t +4)

+
1− Gi(δ +4)

1− Gi(δ)
eT

σ (t +4)P1ieσ(t +4)− eT
σ (t)P1ieσ(t)

}
(10)

where δ is the time that is maintained on mode i before moving to mode j. Besides, κij
denotes the probability from mode i to mode j. Gi(σ) stands for the cumulative distribution
function of σ on mode i.

For a slightly positive number4, according to Taylor formula, one has

eσ(t +4) =eσ(t) + ėσ(t)4+ o(4)

=
{
(Wi + LiC̄iVi)4+ I

}
eσ(t) + LiC̄did(t)4+ o(4) (11)
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Further, based on (10) and (11), it is derived that

zΦ1(eσ(t), i, t) =eT
σ (t)Πeσ(t) + 2eT

σ (t)P1iLiC̄did(t)

≤eT
σ (t)

[
Π + λ−2

1 P1iLiC̄diC̄T
diL

T
i P1i

]
eσ(t) + λ2

1
(12)

where

Π = sym{P1iWi + P1iLiCiVi}+ lim
4→0

N

∑
j=1,j 6=i

κij(Gi(δ +4)− Gi(δ))

4(1− Gi(δ))
P1j

+ lim
4→0

Gi(δ)− Gi(δ +4)

4(1− Gi(δ))
P1i

By using the techniques of cumulative distribution functions, lim
4→0

Gi(δ)−Gi(δ+4)
4(1−Gi(δ))

= πi

can hold, where πi denotes the transition rate when jumping from mode i.

Define πij = κijπi, j 6= i and πii = −
N
∑

j=1,i 6=j
πij. Afterwards, we obtain

zΦ1 ≤ eT
σ (t)

(
sym{P1iWi + P1iLiCiVi}+

N

∑
j=1

πijP1j + λ−2
1 P1iLiC̄diC̄T

diL
T
i P1i

)
eσ(t) + λ2

1 (13)

According to (8), there exits a positive number χ1 satifying

zΦ1(eσ(t), i, t) ≤ −χ1eT
σ (t)eσ(t) + λ2

1 (14)

It can be gotten that, if ‖eσ(t)‖2 > χ−1
1 λ2

1 holds, zΦ1(eσ(t), i, t) < 0 is guaranteed.
As a result, the disturbance estimation error can be verified to be unanimously ultimately
bounded and the augmented closed-loop system (7) is also stochastically stable.

4. Design of ISS and ISM Controller

By using the observation information of h(t), design the ISS, as follows

s(t) = F̄i x̄(t)− F̄i

∫ t

0

(
Āi x̄(τ) + B̄iu1(τ) + C̄i ĥ(t) + H̄iyh

)
dτ (15)

where F̄i are the designed matrices with appropriate dimension. F̄i B̄i are assumed to
be non-singular.

Based on (15), the nominal control input u1(t) is conducted as

u1(t) = Ki x̄(t)− Khi ĥ(t) (16)

where Ki is the gains of controller. Khi is the disturbance suppression gains, which is
expressed as Khi = B̄+

i C̄i, B̄+
i =

(
B̄T

i B̄i
)−1B̄T

i .
The discontinuous control law u2(t) will be considered in order to make sure the

trajectories of augmented system (5) enter into the sliding surface. Subsequently, the ISM
control inout is designed as

u(t) = u1(t) + u2(t) (17)

For the sake of finding the suitable u2(t), the following assumption needs to be met.

Assumption 3. The estimation error term eh(t) = h(t)− ĥ(t) is supposed to be bounded, and sat-
isfies ‖eh(t)‖ ≤ ε, where ε > 0 is a designed constant.
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Subsequently, u2(t) is designed as

u2(t) = −α
B̄T

i F̄T
i s(t)

‖B̄T
i F̄T

i ‖‖s(t)‖
− (F̄i B̄i)

−1 F̄iC̄iC̄T
i F̄T

i s(t)
‖C̄T

i F̄T
i ‖‖s(t)‖

ε− (F̄i B̄i)
−1 F̄iC̄diC̄T

di F̄
T
i s(t)

‖C̄T
di F̄

T
i ‖‖s(t)‖

(18)

where α is a positive scalar.
In the following, the derivation of (15) is deduced as

ṡ(t) = F̄i(B̄i(u(t)− u1(t)) + C̄ieh(t) + C̄did(t)) (19)

Substitute the designed ISM controller (16) into (19), one has

ṡ(t) = F̄i(B̄iu2(t) + C̄ieh(t) + C̄did(t)) (20)

The following theorem will discuss the reachability problem of the state of the ex-
panded system (5).

Theorem 2. When considering the designed ISM controller (16), the state trajectories of the
controlled MJSs (5) are proved to reach the designed ISS (15) in a finite time Tt, where

Tt ≤
√

2F̄i x̄(0)
α‖B̄T

i F̄T
i ‖

(21)

Proof of Theorem 2. Select the Lyapunov function as

Φ2(s, i, t) =
1
2

sT(t)s(t) (22)

It is easy to compute the first order approximation of s(t+4), which can be expressed as

s(t +4) = s(t) + ṡ(t)4+ o(4) (23)

Subsequently, based on the total probability, conditional expectation, and (22), the
asthenic infinitesimal generator of Φ2 is deduced as

zΦ2(s, i, t) = lim
4→0

1
4

{
N

∑
j=1,i 6=j

Pr{rt+δ = j|rt = i}sT(t +4)s(t +4)

+ Pr{rt+h = i|rt = i}sT(t +4)s(t +4)− sT(t)s(t)

}

= lim
4→0

1
4

{
N

∑
j=1,j 6=i

κij(Gi(δ +4)− Gi(δ))

1− Gi(h)
sT(t +4)s(t +4)

+
1− Gi(δ +4)

1− Gi(δ)
sT(t +4)s(t +4)− sT(t)s(t)

}

=2sT(t)ṡ(t) +
N

∑
j=1

πij

=2sT(t)ṡ(t) (24)
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According to (18) and (20), one has

zΦ2(s(t), i, t) =sT(t)(F̄i B̄iu2(t) + F̄iC̄ieh(t) + F̄iC̄did(t))

=− α‖B̄T
i F̄T

i ‖‖s(t)‖ − ‖C̄T
i F̄T

i ‖‖s(t)‖ε + sT(t)F̄iC̄ieh(t)

− ‖C̄T
di F̄

T
i ‖‖s(t)‖+ sT(t)F̄iC̄did(t)

≤− α‖B̄T
i F̄T

i ‖‖s(t)‖ = −α‖B̄T
i F̄T

i ‖
√

2Φ2 (25)

It can be deduced that for any t ≥ Tt, there exits

Tt ≤
2
√

Φ2(0)
α‖B̄T

i F̄T
i ‖

=
2
√

s(0)
α‖B̄T

i F̄T
i ‖

=

√
2F̄i x̄(0)

α‖B̄T
i F̄T

i ‖
(26)

To sum up, it is easy to see that the state of the expanded MJSs (5) can arrive the ISS in
a finite time.

Solve ṡ(t) = 0, then we can obtain the equivalent form of u2(t), as follows

ueq
2 (t) = −B̄+

i C̄ieh(t)− B̄+
i C̄did(t) (27)

and
ueq(t) = u1(t) + ueq

2 (t) (28)

Remark 1. The structure of controller (17) includes two parts. Please note that u1(t) is a common
feedback control, which can compensate the disturbance and guarantee the controlled system
stability. While u2(t) is the discontinuous control that makes the state reach the designed ISS.
In the Theorem 2, the theoretical proof is given to embody the purpose of u2(t). To my knowledge,
the similar controller design method can be found in most of classical sliding mode control results
and it is also proved to be effective.

By integrating (5) with (28), the dynamics of the system states on the ISS are described by

˙̄x(t) =Āix(t) + B̄iueq(t) + C̄id(t) + H̄iyh

=(Āi + B̄iKi)x̄(t) +
(
C̄i − B̄i B̄+

i C̄i
)
h(t) +

(
C̄di − B̄i B̄+

i C̄di
)
d(t) + H̄iyh (29)

5. Dynamical Performance Analysis

Theorem 3. For given parameters λ1 > 0, λ2 > 0, and λ3 > 0, if we can find matrices Qi = P−1
2i

and T2i, i = 1, 2, · · · , N to make the following inequalities
sym

{
ĀiQi + B̄iT2i

}
+ Qi C̄i − B̄i B̄+

i C̄i C̄di − B̄i B̄+
i C̄di H̄i

∗ −λ−2
1 I 0 0

∗ ∗ −λ−2
2 I 0

∗ ∗ ∗ −λ−2
3 I

 < 0, i = 1, · · · , N (30)

are solvable, then the closed-loop MJSs (5) can be proved to be stable and the state trajectory will fall
into a designed bicompact set Ωx̄(t), where Ωx̄ =

{
x̄|‖x̄(t)‖ ≤ λ−1

min(P2i)ζ
}

,

ζ = max
{

x̄T(0)P2i x̄(0), λ2
1ρ2 + λ2

2 + λ2
3y2

h
}

.

Proof of Theorem 3. Select a suitable Lyapunov condition as

Φ3(x̄, i, t) = x̄T(t)P2i x̄(t) (31)

Similar to (11) and (23), the first-order approximation of x̄(t +4) is computed as

x̄(t +4) = ˙̄x(t)4+ x̄(t) + o(4) (32)
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Subsequently, the asthenic infinitesimal generator of Φ3 can be obtained as

zΦ3(x̄, i, t) = lim
4→0

1
4

{
N

∑
j=1,j 6=i

Pr{rt+δ = j|rt = i}x̄T(t +4)P2j x̄(t +4)

+ Pr{rt+h = i|rt = i}x̄T(t +4)P2i x̄(t +4)− x̄T(t)P2i x̄(t)

}

= lim
4→0

1
4

{
N

∑
j=1,j 6=i

κij(Gi(δ +4)− Gi(δ))

1− Gi(h)
x̄T(t +4)P2j x̄(t +4)

+
1− Gi(δ +4)

1− Gi(δ)
x̄T(t +4)P2i x̄(t +4)− x̄T(t)P2i x̄(t)

}

=2x̄T(t)P2i ˙̄x(t) +
N

∑
j=1

πijP2j (33)

Substituting (29) into (33), it can be deduced as

zΦ3(x̄, i, t) =2x̄T P2i(Āi + B̄iKi)x̄ + 2x̄T(t)P2i
(
C̄i − B̄i B̄+

i C̄i
)
h(t)

+ 2x̄T P2i
(
C̄di − B̄i B̄+

i C̄di
)
d(t) + 2x̄T(t)P2i H̄iyh +

N

∑
j=1

πijP2j

≤x̄T(t)Γx̄(t) + λ2
1‖d(t)‖2 + λ2

2‖h(t)‖2 + λ2
3y2

h

≤x̄T(t)Γx̄(t) + λ2
1ρ2 + λ2

2 + λ2
3y2

h (34)

where
Oi =

(
C̄i − B̄i B̄+

i C̄i
)(

C̄i − B̄i B̄+
i C̄i

)T

Odi =
(
C̄di − B̄i B̄+

i C̄di
)(

C̄di − B̄i B̄+
i C̄di

)T

Γ = sym
{

P2i(Āi + B̄iKi)
}
+ λ−2

1 P2iOiP2i + λ−2
2 P2iOdiP2i + λ−2

3 P2i H̄i H̄T
i P2i

Based on Schur Lemma, multiply diag{Q−1
i , I, I, I} on both sides of (28), then we can

obtain Γ < −P2i. Further, (34) is rewritten as

zΦ3(x̄(t), i, t) ≤ −x̄T(t)P2i x̄(t) + λ2
1ρ2 + λ2

2 + λ2
3y2

h (35)

It is easy to find that zΦ3 < 0 holds, if x̄T(t)P2i x̄(t) > λ2
1ρ2 + λ2

2 + λ2
3y2

h can be
satisfied. Thus, for any x̄(t), it is easy to get that the following inequality

x̄T(t)P2i x̄(t) ≤ max
{

λ2
1ρ2 + λ2

2 + λ2
3y2

h, x̄T(0)P2i x̄(0)
}

(36)

It also means that the closed-loop system (5) is stochastically stable, and the state
trajectory of the system can converge into the region Ωx̄(t).

In the following, we will discuss the dynamic tracking of the output y(t) and the distur-
bance attenuation of d(t). In particular, the L1 performance index sup

‖d(t)‖∞≤1
‖yd(t)‖∞ ≤ β2

is imported to analyze the inhibition effect.

Theorem 4. For given parameters β > 0, λ1 >, λ2 > 0 and λ3 > 0, if there exists matrices
Qi = P−1

2i and T2i, i = 1, 2, · · · , N to make (30) and the following inequalities[
Qi QiD̄T

i
∗ ζ−1y2

h I

]
> 0, i = 1, 2, · · · , N (37)
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and  Qi 0 QiD̄T
i

∗ (β− ζ)I D̄T
i

∗ ∗ βI

 > 0, i = 1, 2, · · · , N (38)

are solvable, then the closed-loop MJS can be proved to be stable. Meanwhile, the system output
can effectively track to yd, which is limt→∞y(t) = yh. The measurable output yd(t) can meet the
disturbance attenuation index, which is sup

‖d(t)‖∞≤1
‖yd(t)‖∞ ≤ β2. The ISM controller gain Ki can

be solved by Ki = T2iQ−1
i .

Proof of Theorem 4. It can be known, from Theorem 3, that the augmented closed-loop
MJS is stable. Next, the problem of dynamic tracking and disturbance attenuation will be
analyzed. By squaring the system output y(t), one has

|y(t)|2 = x̄T(t)D̄T
i D̄i x̄(t) (39)

Based on Schur Lemma with (37), one has

P2i − ζy−2
h D̄T

i D̄i ≥ 0 (40)

Further, it can be infered that

|y(t)|2 ≤ ζ−1y2
h x̄T(t)P2i x̄(t) ≤ y2

h (41)

It is distinct that |y(t)| ≤ yh can hold. Besides, noticing that the term
∫ t

0 e(ϑ)dϑ is
one of components in x̄(t), we may conclude that, when t→ ∞,

∫ t
0 e(ϑ)dϑ must converge

into the set Ωx̄(t). Therefore, we can deduce that limt→∞ y(t) = yh. As a result, the good
dynamical tracking can be proven.

Similarly, based on Schur complement theorem to (38), we can get[
P2i 0
0 (β− ζ)I

]
− 1

β

[
D̄T

di
ĒT

di

][
D̄di Ēdi

]
> 0 (42)

Further, can get
β−1‖yd(t)‖2 ≤ x̄T P2i x̄ + (β− ζ) ≤ β (43)

Therefore, we can deduce that the L1 index is certainly less than β, which equals the
inequality sup

‖d(t)‖∞≤1
‖yd(t)‖∞ ≤ β2.

Remark 2. By using the above four theorems, the anti-disturbance tracking control requirement
can be gradually proved. The Theorem 1 guarantees the stability of the disturbance estimation error
system, which also embodies the effectiveness of the designed DO (6). By using the estimation
information of disturbances, the controller and ISS are designed. Based on this, the Theorem 2
further verifies the reachability time to ISS of system state. Based on the proofs of Theorems 1 and 2,
Theorem 3 gives the feasible stability proof of augmented systems. The Theorem 4 can be regarded as
the final refinement of Theorem 3. The dynamical tracking and disturbance suppression problem
can be successfully resolved based on Theorem 4. From Theorems 1–4, it can be seen that the
multi-objective control requirement can be implemented step-by-step, which has an independent
significance in the domain of control of MJSs and anti-disturbance control.

Remark 3. Please noted that this manuscript mainly focuses on the anti-disturbance algorithm
design and theoretical proof. Although this manuscript includes many mathematical contents,
greater attentions are the specific performance analysis and algorithm implementation. In fact,
the implementation of the controller (17) and observer (6) is relatively simple. The controller gain
and the observer gain can be easily computed by solving the inequalities (8) and (30). Further,
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both (8) and (30) are typical matrix inequalities, and they are not hard to compute by using the
LMI toolbox. To sum up, the algorithm is easy to implement and it is fully capable of realizing some
potential applications.

6. An Simulation Example

For verifying the effectiveness of the proposed algorithm, we consider the following
MJSs with two modes suffering by unknown disturbances. The corresponding parameters
are selected as

Mode 1:

A1 =


−0.0605 32.37 0 1
−0.00014 −1.475 1 0
−0.0111 −34.72 −2.793 0

0 0 1 0

, B1 =


0

−0.1064
−33.8

0

, C1 =


0.1
0
−3
0.1



D1 =


1
1
1
1


T

, W1 =

[
0 6
−6 −0.3

]
, V1 =

[
3 0

]
Mode 2:

A2 =


−0.0088 −0.21 0 −0.409
−0.0915 −0.5917 1.2 0
−0.0294 −2.5464 0.897 0

0 0 1 0

, B2 =


0.1

−0.1011
−7.7037

0.1

, C2 =


1

0.1
1.3
0.1



D2 =


1

0.1
1.3
2


T

, W2 =

[
0 5
−5 −0.1

]
, V2 =

[
0.1 0

]
Let the transition rate be given as π11 = −2, π12 = 2, π21 = 0.9, π22 = −0.9. Define

the parameters λ1 = λ2 = λ3 = 0.8. Subsequently, by solving the inequalities (8), (30),
and (31), the DO gains and ISM controller gains can be computed by

L1 =

[
0 −0.0697 0.0027 0.0771 0.0003
0 0.0014 −0.0001 −0.0015 0

]

L2 =

[
0 −0.0663 0.0028 0.0741 0
0 0.0033 −0.0001 −0.0037 0

]
K1 =

[
−1.2344 −5.7755 −1.3298 −4.1037 −0.7188

]
K2 =

[
−0.9829 −4.9555 −1.2187 −1.1060 −0.5233

]
Assuming the primary terms as x(0) = [20,−20, 40,−20] and σ1(0) = [0.04, 0.98].

The desired output is defined as yh = 30. The switching signal is displayed in Figure 1.
Figure 2 is the trajectories of system state. It can be seen that, due to the influence of initial
state, the huge transients of x1 and x3 may occur at the beginning of the control. From the
Figure 2, despite there existing the huge transient, the state of MJS can be stable very
quickly by using the designed control algorithm. Figure 3 shows the dynamics of h(t) and
its estimation value. Figures 4 and 5, respectively, give the responses of controller input
and the ISS. Figure 6 shows the dynamics of system output. The favorable disturbance
estimation, output constraint, and dynamical tracking can be embodied from Figures 1–6.
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Figure 6. Integral sliding surface.

7. Conclusions

In this paper, an effective anti-disturbance ISM control algorithm is put forward for
a typical of MJSs with mismatched disturbances. The mismatched disturbances can be
dynamically estimated by constructing a nonlinear DO. Based on this, the ISS and ISM
controller are both created to realize the dynamic compensation for unknown disturbances.
Further, the convex optimization algorithm is designed to make the system stochastically
stable. Meanwhile, the system output constraint can be guaranteed, and the tracking error
ultimately converges to zero. Finally, the simulation results can verify the feasibility of
the algorithm.
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